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Aberrant activation of the innate immune system is a known driver of lupus

pathogenesis. Inhibition of the inflammasome and its downstream signaling

components in murine models of lupus has been shown to reduce the severity

of disease. Interleukin-1 beta (IL-1b) is a proinflammatory cytokine released from

cells following inflammasome activation. Here, we examine how loss of IL-1b
affects disease severity in the lupus-prone NZM2328mousemodel. We observed

a sex-biased increase in immune complex deposition in the kidneys of female

mice in the absence of IL-1b that corresponds to worsened proteinuria. Loss of

IL-1b did not result in changes in overall survival, anti-dsDNA autoantibody

production, or renal immune cell infiltration. RNA-sequencing analysis

identified upregulation of TNF and IL-17 signaling pathways specifically in

females lacking IL-1b. Increases in these signaling pathways were also found in

female patients with lupus nephritis, suggesting clinical relevance for

upregulation of these pathways. Together, these data suggest that inhibition of

the inflammasome or its downstream elements that block IL-1b signaling may

need to be approached with caution in SLE, especially in patients with renal

involvement to prevent potential disease exacerbation.
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1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease involving aberrant

immune responses, production of autoantibodies, and multiorgan system involvement.

The etiology of SLE is multifactorial, likely involving a complex interplay between genetic

risk factors and environmental triggers (1). Dysregulation of several innate and adaptive

immune signaling pathways contributes to the inflammation characteristic of the disease.
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Multiple cytokines have been implicated in the pathogenesis and

progression of SLE including B-cell activating factor (BAFF), type I

interferons (IFN), and members of the interleukin-1 (IL-1)

superfamily (2–4). While drugs targeting BAFF (belimumab) and

the type I IFN receptor (anifrolumab) have been approved for

treatment of SLE, the specific roles of IL-1 cytokines in SLE have

remained more elusive (5, 6).

IL-1 beta (IL-1b) and IL-18, members of the IL-1 superfamily,

are synthesized as inactive precursor molecules that are processed to

their mature, biologically active form following activation of the

inflammasome. Enhanced inflammasome activation is observed in

lupus macrophages and monocytes, and studies suggest that

inhibition of inflammasome signaling attenuates disease severity

in murine models of lupus (7–10). Specifically, suppression of

inflammasome activation through blockade of caspase-1 or the

NLRP3 inflammasome has been shown to reduce severity of

lupus nephritis (LN) and decrease autoantibody production (8, 10).

Most studies to date have focused on the role of the

inflammasome complex in the modulation of disease activity, and

many of them have only highlighted correlative associations

between IL-1b/IL-18 and disease severity (8, 11). As a result, the

specific roles and mechanisms of these individual cytokines in SLE

are incompletely understood. Given that IL-1b can trigger a broad

range of responses that drive systemic inflammation and exacerbate

damage during chronic disease, we hypothesized that inhibition of

this cytokine would limit disease severity in a lupus-prone

mouse model.

In this study, we examined how loss of IL-1b modulates disease

in the NZM2328 lupus-prone mouse model. We observed no

differences in overall survival or autoantibody production

between NZM and NZM-Il1b-/- mice. Surprisingly, we identified a

female-specific increase in immune complex deposition in the

kidneys in the absence of IL-1b. Consistent with these results,

female NZM-Il1b-/- mice also had increased proteinuria compared

with NZM controls. RNA-sequencing analysis of the kidneys

identified sex-specific differences in TNF and IL-17 signaling

pathways that are also observed in female LN patients. These

results demonstrate an unexpected potentially protective role for

IL-1b in LN in a sex-biased manner. This suggests that IL-1b
blockade could have unintended consequences for disease

progression in LN patients.
2 Results

2.1 Deletion of IL-1b does not improve
survival of lupus-prone mice

Lupus-prone NZM2328 (NZM) mice spontaneously develop

lupus-like characteristics including autoantibody production and

glomerulonephritis with females developing more severe

manifestations at an earlier age of onset compared with males

(12). To investigate the role of IL-1b in driving disease pathology in

this model, we used NZM mice with a homozygous deletion of Il1b

(NZM-Il1b-/-) (13).
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We first examined how loss of IL-1b impacted the overall

survival of both male and female mice. While disease progression

was much slower in male mice, as expected, there were no

differences in survival outcomes within the sexes between NZM

and NZM-Il1b-/- mice (Figure 1A). Next, we measured production

of anti-dsDNA antibodies, a hallmark of disease that generally

begins by 5 months of age in female NZM mice and is delayed by

approximately 4 weeks in males (12). Serum levels of anti-dsDNA

IgG increased over time in both male and female mice but were not

significantly different between NZM and NZM-Il1b-/- (Figure 1B).
2.2 Absence of IL-1b results in increased
immune complex deposition in the kidneys

LN is characterized by the deposition of immune complexes

within the kidney that can promote renal inflammation and damage

contributing to development of proteinuria. We thus quantified

immune complex deposition in the kidneys. Surprisingly, we

observed a significantly increased staining of both C3 (p =

0.0397) and IgG (p = 0.0176) in the kidneys of female NZM-

Il1b-/- mice compared with NZM controls, indicating increased

immune complex deposition. No significant difference was

observed between male NZM and NZM-Il1b-/- mice (C3: p =

0.0798; IgG: p = 0.9238) (Figures 1C–E). We then examined the

urine to see if this increase in immune complexes translated into

any meaningful change in proteinuria. In line with the immune

complex staining, female NZM-Il1b-/- mice had increased albumin-

to-creatinine ratios (p = 0.0196), indicative of damage to the

filtration barrier, compared with their NZM counterparts,

whereas no significant difference was observed for males at this

timepoint (p = 0.1593) (Figure 1F).

Together, these data suggest that whereas IL-1b does not affect

overall survival or autoantibody production in lupus-prone mice, it

may play an important sex-specific protective role in the kidney by

limiting immune complex deposition and resultant proteinuria.
2.3 Loss of IL-1b does not change immune
cell infiltration into kidneys

LN is characterized by an inflammatory cascade involving

immune cell infiltration into the kidneys followed by production

of proinflammatory cytokines and chemokines that contribute to

kidney damage (14). To determine if gross differences in immune

cell infiltration were observed in the female NZM-Il1b-/- kidneys, we

examined the presence of CD4+, CD8+, CD11b+, and CD11c+ cells

by immunostaining. While CD4+ (female: p = 0.3513; male: p =

0.2725) and CD8+ (female: p = 0.3306; male: p = 0.2966) T cells, as

well as CD11b+ myeloid cells (female: p = 0.7987), were detected in

the kidneys, there were no significant differences in the numbers of

these cells between female NZM and NZM-Il1b-/- mice

(Figures 2A–D; Figures S1A, B). Male NZM-Il1b-/- mice did have

significantly more CD11b+ cells compared with NZM (p = 0.0195)

(Figures 2C, D). CD11c+ dendritic cells were not identified in the
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kidneys (Figure S1C). Based on these data, we see similar

populations of immune cells in the kidneys of these mice.
2.4 IL-17 and TNF signaling pathways are
activated in females in the absence of IL-1b

To better understand the impact of IL-1b deletion on lupus

kidneys, genome-wide transcriptome analysis using RNA-sequencing

(RNA-seq) was performed and transcriptional differences in the

kidneys of male and female NZM and NZM-Il1b-/- mice were

examined. As expected, Il1b transcripts were significantly

downregulated in the NZM-Il1b-/- kidneys compared with NZM in

both male and female mice (female: FC = 0.42, p = 0.014; male: FC =

0.17, p = 6.75 × 10-7). We performed uniform manifold

approximation and projection (UMAP) for dimension reduction on

the transcriptome data, and we highlighted that male and female mice

separated from each other only in NZM-Il1b-/- but not NZM kidney

samples, emphasizing the sex bias seen in the mouse model

(Figure 3A). Indeed, when comparing differentially expressed genes

(DEGs) between NZM and NZM-Il1b-/- kidneys (using FDR <0.01

and fold change of 2), we identified 1,046 and 1,992 genes that were

up- and downregulated, respectively, for female mice (Figure 3B),

whereas for male there were only 112 up and 382 down genes.

Pathway analysis from those DEGs highlighted the TNF (p =

7.59 × 10-5) and IL-17 signaling (p = 1.21 × 10-6) pathways among
Frontiers in Immunology 03
the top uniquely regulated pathways (Figure S2) in the NZM-

Il1b-/- mice.

Heatmaps of the genes involved in the modulated TNF and IL-

17 pathways confirmed a robust upregulation of TNF and IL-17-

related genes in kidneys of female NZM-Il1b-/- mice compared with

the kidneys of male NZM-Il1b-/- mice (Figures 3C, D). Ingenuity

Pathway Analysis was used to predict upstream regulators for the

DEGs identified in the kidneys of female and male NZM-IL1b-/- vs.

NZM mice (Table S1). TNF was identified as the top upstream

regulator in female mice. These data suggest that enhancement of

the IL-17 and TNF signaling pathways occurs in a sex-biased

manner in the absence of IL-1b signaling and that TNF may be a

driving differentiator of this signal.

To determine whether sex-biased regulation of IL-17 and TNF

pathways has clinical relevance in LN patients, we studied available

gene expression data of microdissected renal biopsies from healthy

living donors and patients with class III and/or IV LN (Table S2).

IL-17 and TNF signaling pathway signature scores (see Methods)

were significantly elevated in the glomeruli of female LN patients

compared with living donors (p = 0.0186 and 0.0091, respectively),

but not in males (p = 0.7921 and 0.2188, respectively) (Figures 4A,

B). Those results were validated in a second independent LN patient

cohort (Table S3, Figures S3A, B). Interestingly, these signatures are

not seen in the tubule compartments from the same patients,

highlighting that this may be a glomerular-specific pathology

(Figures S3C-F). This further supports our murine data
A B
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C

FIGURE 1

Absence of IL-1b has no effect on survival but increases renal immune complex deposition (A) Survival of female (F) and male (M) NZM and NZM-
Il1b-/- mice was monitored for 72 weeks or until mice became moribund following development of proteinuria (n = 11–31). (B) Levels of anti-dsDNA
IgG were measured in the serum at the indicated age ranges by ELISA (n = 3–20 per age range). (C) Representative images of immunofluorescent
microscopy of renal cortex containing glomeruli. Green = FITC-C3, red = Texas Red-IgG, blue = DAPI. Levels of (D) C3 and (E) IgG were quantified
using a semiautomated analysis program (n = 7–15). (F) The ratio of microalbumin (Alb) to creatinine (Cr) was assessed in the urine at time of death
as a measure of proteinuria (n = 10–16). Data analyzed by the log-rank test, unpaired t test, or Mann–Whitney test. *<0.05.
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suggesting involvement of these pathways in promoting sex-biased

differences in kidney disease in the absence of IL-1b.
3 Discussion

In this study, we uncovered a novel sex-biased protective role

for IL-1b in limiting renal pathology in the lupus-prone NZM2328

mouse model. While loss of IL-1b did not significantly alter survival

or autoantibody production, it did increase glomerular immune

complex deposition and worsen proteinuria in a female-specific

manner. We observed no differences in immune cell infiltration into

the kidneys to explain these differences. RNA-seq analysis identified

upregulation of genes involved in IL-17 and TNF signaling

pathways in female, but not male, NZM-Il1b-/- compared with

NZM mice. Importantly, upregulation of these signaling pathways

was also observed in female LN patients compared with healthy

controls, suggesting that activation of IL-17 and TNF may have

relevance in the sex bias in human disease and should be

further investigated.

Our data support an unexpected role for IL-1b in limiting renal

damage in LN. Previous studies have offered differing

interpretations of the role of IL-1b in SLE. Indeed, inhibition of

the activating caspase and inflammasome complexes has protective

effects on LN in many murine models. Both IL-1b and IL-18 are

secreted following inflammasome activation; however, the

individual contributions of these cytokines to SLE are
Frontiers in Immunology 04
incompletely understood. Serum levels of IL-18 are elevated in

SLE patients and correlate with disease activity and organ damage

(11, 15, 16). Furthermore, in murine lupus models, IL-18 serum

levels correlate with LN severity (8, 17). Therefore, inflammasome

activation of IL-18 may be responsible for driving pathogenic effects

in SLE instead of IL-1b.
Some studies have identified increased expression of IL-1b in

the serum of SLE patients (18, 19) and in lupus-prone mouse

models (20). Our data suggest that IL-1b is not critical for nephritis

progression but may in fact have a protective effect that is revealed

when its function is inhibited in isolation (as opposed to full

inflammasome complex targeting). This may also be evidence that

increased levels of IL-1b in lupus is an extraneous consequence of

inflammasome activation and not actually indicative of a

pathogenic effect. Indeed, recent studies support a protective

effect for signaling through the IL-1 receptor in podocytes during

glomerular diseases (21, 22). Our data exhibit more proteinuria, but

not inflammation, in the absence of Il1b, which may suggest a role

for protective IL-1 podocyte signaling in our model as well.

Furthermore, in our human data, the IL-17 and TNF signatures

are only increased in the glomeruli, not the tubules, of female LN

patients suggesting that this might be a podocyte-associated effect of

IL-1b. Lastly, IL-1b has been shown to induce the expression of

CD16 (FcgRIII), a receptor involved in immune complex clearance,

suggesting that the worsened renal pathology in our model may, in

part, result from reduced ability to clear immune complexes

(23, 24).
A B

DC

FIGURE 2

Loss of IL-1b does not change immune cell infiltration into kidneys. Quantification of (A) CD4+, (B) CD8+, and (C) CD11b+ cells in the kidney per ×20
field averaged across three images each (n = 3–4). (D) Representative images of kidneys stained with CD11b. Data analyzed by unpaired t tests. *<0.05.
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We have identified an upregulation of IL-17 signaling pathways

in NZM-Il1b-/- mice. This is surprising, as IL-1b plays a critical role

in differentiation of Th17 cells (25, 26), which are the canonical

producers of IL-17. While it is seemingly contradictory that loss of

IL-1b would result in the increase of a signaling pathway for which

IL-1b is known to be important, there are other cell types that
Frontiers in Immunology 05
produce IL-17 that may explain this. Populations of DN T cells are

expanded in SLE patients and in some lupus-prone mouse models

(27, 28), and these cells have been shown to be major producers of

IL-17 (29). Furthermore, these IL-17-producing DN T cells have

been identified in kidney biopsies from patients with LN (29). In a

murine model of crescentic glomerulonephritis, the primary source
A B

DC

FIGURE 3

Sex-biased increase in IL-17 and TNF signaling pathway gene expression in the absence of IL-1b. (A) Dimension reduction (UMAP) plot for RNA-seq
kidney samples. (B) Volcano plot to show summary statistics of the differential expression analysis comparing NZM-Il1b-/- vs. NZM in female mice.
(C-D) Heatmaps illustrating standardized expressions of genes participating in the (C) IL-17 and (D) TNF signaling pathways.
A B

FIGURE 4

IL-17 and TNF pathway scores increased in female lupus nephritis patients. Microarray gene expression analysis of (A) IL-17 and (B) TNF pathway
scores in the glomerular compartment of human lupus nephritis (LN) and healthy living donor (LD) biopsies: IL-17 and TNF signaling pathway scores
were significantly higher in female LN (n = 19) compared to LD controls (n = 5) (p = 0.0186 and 0.091, respectively), but not in males (n = 9 LD and
3 LN) (p = 0.7921 and 0.2188, respectively).
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of IL-17 in the kidney was shown to change over the course of the

disease (30). Later in disease, most IL-17 was produced by Th17

cells. However, at early time points, gd T cells were the major

producers of IL-17 with additional contributions from DN T cells

and NKT cells. These IL-17+ gd T cells were dependent on renal

dendritic cell-derived IL-23 (another cytokine reported to be highly

expressed in human SLE sera (31) and the transcription factor

RORgt. Absence of gd T cells in this model resulted in less

neutrophil and macrophage infiltration into the kidney as well as

reduced levels of serum creatinine, suggesting a pathogenic role for

the IL-17-producing gd T cells (30). Intriguingly, and relevant to

our work, IL-17 production from gd T cells was not dependent on

IL-1b (30). This suggests a potential mechanism by which loss of IL-

1b, an important cytokine for Th17 cells, can still result in enhanced

IL-17 signaling.

Our study has a few limitations to note. First, the study was

completed comparing homozygous Il1b-/-mice and did not include

heterozygotes to examine gene dosage effects. Second, we chose a

survival timepoint of 72 weeks, which may have blunted our ability

to see differences in survival, especially in the male mice. If we had a

cohort of mice at an earlier timepoint, we may have also noted

differences in the timing of onset of immune complexes in the Il1b-

deficient compared with the NZM mice. Finally, our human

nephritis cohort was from a European consortium, which

included only Caucasian patients, which limits our ability to

extend our human data to patients of other ethnic and racial

backgrounds without further study.

Enthusiasm for IL-1 inhibition in SLE has remained low until late.

A small clinical trial of anakinra, a recombinant version of IL-1Ra,

was conducted with four SLE patients with severe, treatment-

refractory polyarthritis (32). While subjective improvements were

observed in patients, one patient had an arthritic flare, and studies in

larger cohorts of patients were not conducted. No signs of SLE flares

in the kidneys were identified, but enrolled patients did not have a

history of renal disease and specific clinical markers of lupus nephritis

were not measured. Recently, other studies of IL-1 blockade using

anakinra have shown promise in improving SLE-associated recurrent

fevers, pericarditis, and macrophage activation syndrome,

highlighting potential benefits for specific acute manifestations of

lupus (33–36). Our data, however, suggests that chronic inhibition of

IL-1 signaling, especially in patients with renal involvement, should be

approached with caution to potentially prevent aggravation of disease.

Elevated levels of type I IFNs are a prominent feature of SLE

that plays an important role in driving development and

progression of lupus nephritis (37). Previous work suggests that

inflammasome activation negatively regulates the expression of type

I IFNs through IL-1b-mediated signaling in the context of malaria

infection (38). In our study, we did not identify differential

expression of type I IFN signaling pathways between the NZM-

Il1b-/- and NZM kidneys. This lack of difference could suggest that

regulatory mechanisms in an infection setting may differ from those

in an autoimmune setting in which inflammatory pathways,

including type I IFN pathways, are already highly activated and

dysregulated. Prior work indicates that females mount higher type I

IFN responses that make them more prone to autoimmune diseases

(39). This suggests that, perhaps, loss of the repressive effects of IL-
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1b nudges the type I IFN-dependent nephritis even further. This

could partially explain the sexual dimorphism that is seen in

these mice.

In summary, we have described an unexpected inflammatory

regulatory role for IL-1b in renal injury in female NZM2328 mice.

In its absence, mice develop worsened proteinuria and immune

complex deposition in a sex-specific manner. We hypothesize that

the more highly dysregulated inflammatory environment present in

female NZM mice is needed for this sex-biased response. Further

research into the specific mechanisms at play in our model is

needed; until then, caution regarding the use of inflammasome

and IL-1 inhibitors in human lupus (especially in patients with

lupus nephritis) should be considered.
4 Materials and methods

4.1 Mice

New Zealand Mixed (NZM) 2328 lupus-prone mice were a gift

from Dr. Chaim Jacob, University of Southern California. NZM-

Il1b-/- mice (NZM2328 mice lacking functional IL-1b) were

generated through the University of Michigan Transgenic Animal

Model Core, as previously described (13). All mice were bred and

housed in specific pathogen-free facilities at the University of

Michigan and treated in accordance with our University of

Michigan IACUC-approved protocol. Survival studies were

conducted for 72 weeks in male and female mice or until mice

became moribund following development of proteinuria. Mice were

monitored for development of lupus via weekly urine collection

starting at 20 weeks of age. Blood was sampled via saphenous vein

bleed every other week. At euthanasia, terminal bleeding was

performed via cardiac puncture and tissues were harvested.
4.2 Quantification of autoantibodies

Anti-dsDNA IgG levels were quantified in the serum using the

Mouse Anti-dsDNA IgG ELISA Kit (Alpha Diagnostics

International), according to the manufacturer’s protocols.
4.3 Proteinuria analysis

Urine samples were assessed for microalbumin using the mouse

Albuwell M Kit (Exocell, Philadelphia, PA) and creatinine using the

mouse QuantiChrom™ Creatinine Assay Kit (BioAssay Systems;

Hayward, CA), both according to the manufacturer’s protocols.

Mircoalbumin-to-creatinine ratios were calculated to estimate 24-h

urinary protein excretion.
4.4 Immune complex deposition scoring

Glomerular immune complex deposition was quantified on

frozen kidney sections via staining for C3 and IgG deposition, as
frontiersin.org
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previously described (40). Briefly, sections were stained with FITC-

conjugated anti-C3 (1:250; Immunology Consultants Laboratory,

Portland, OR) and Texas-Red-conjugated anti-IgG (1:250;

Invitrogen, Waltham, MA) for 1 h at 4°C. DAPI was used to

visualize DNA. Glomerular immune complex staining was

quantified using FIJI ImageJ and a semiautomated looping

program to capture fluorescence within a user-defined area

designed by the BRCF Microscopy Core at the University

of Michigan.
4.5 Immunohistochemistry

For detection of immune cells in mouse kidney, formalin-fixed,

paraffin-embedded sections were heated at 60°C for 1 h,

deparaffinized, rehydrated, and heated at 100°C for 20 min in

Retrievagen A (pH 6.0) (for CD11c; BD Biosciences, Franklin

Lakes, NJ) or Tris–EDTA buffer (pH 9.0) (for CD11b, CD4, and

CD8) for antigen retrieval. Slides were washed, treated with 3%

hydrogen peroxide in PBS for 5 min, blocked in goat serum for 1 h,

and incubated with Recombinant Anti-CD11c antibody

[EPR21826] (1:50; ab219799), Recombinant Anti-CD4 antibody

[EPR19514] (1:500; ab183685), Recombinant Anti-CD8 alpha

antibody [EPR21769] (1:2,000; ab217344), or Recombinant Anti-

CD11b antibody [EPR1344] (1:4,000; ab133357) (Abcam, Boston,

MA) overnight at 4°C. Isotype controls (#3900; Cell Signaling

Technology, Danvers, MA) were stained in parallel with each set

of slides. All slides were incubated with biotinylated goat anti-rabbit

IgG secondary antibody (1:200; Vector Laboratories, Newark,

California), followed by incubation with VECTASTAIN Elite

ABC Reagent (Vector Laboratories, Newark, CA) and detection

with 3,3′-diaminobenzidine (BD, Franklin Lakes, NJ) under a light

microscope. Slides were counterstained with hematoxylin,

dehydrated, and mounted. Images were acquired using a Zeiss

microscope (Zeiss, Oberkochen, Germany) at indicated

magnifications. Positive cells were quantified by manually

counting the # of positive cells (brown) averaged for five 20×

fields of view.
4.6 RNA-sequencing

Kidney RNA was isolated via Zymo Direct-zol RNA isolation

kit, and libraries were generated using standard poly-A prep kits

(New England Biolabs) with the assistance of the U-M Advanced

Genomics Core. An average of 61 million read pairs were obtained

per sample via NextSeq 6000. Paired-end reads (151 bp for each

end) were generated for the RNA-seq experiments. After quality

control and adapter trimming, we conducted read alignment (41)

and gene quantification (42) using mm10 and Gencode vM18,

respectively. DESeq2 was used for read normalization and modeling

(43). Only genes with on average greater than one read per sample

were used in subsequent analysis.
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4.7 Human renal biopsy samples and
calculation of IL17 and TNF signaling
pathway signature scores

Gene expression analyses of glomeruli and tubulointerstitial

compartments from the European cDNA Bank (ERCB) human

renal biopsies were used, as previously described (44, 45). In brief,

the discovery cohort included pretransplant healthy living donors

(LD; 5 females, 9 males for glomeruli; 6 females, 3 males for tubules)

and patients’ demographic characteristics representative of lupus

nephritis disease (LN; 19 females, 3 males for glomeruli; 6 females,

3 males for tubules) and WHO class III and/or IV. The validation

cohort included 5 LD (4 females, 1 male for glomeruli and tubules)

and LN patients (10 female, 3 male for glomeruli; 18 female, 6 male

for tubules), alsoWHO class III and/or IV (ref: www.Nephroseq.org).

IL-17 and TNF pathway scores were calculated using the

algorithm described by Feng et al. (46), and as previously published

(47), using sex-matched LD controls. The IL-17 and TNF signaling

pathway genes were extracted from KEGG (https://www.genome.jp/

entry/pathway+hsa04657 and https://www.genome.jp/entry/

hsa04668). The IL-17 pathway score was calculated for glomeruli

using 77 and 80 of the 94 genes that were expressed in the discovery

and validation datasets, respectively, and for tubules using 74 and 82

of the 94 genes that were expressed in the discovery and validation

datasets, respectively (Table S4). The TNF pathway score was

calculated for glomeruli using 99 and 108 of the 112 genes that

were expressed in the discovery and validation datasets, respectively,

and for tubules using 95 and 109 of the 112 genes that were expressed

in the discovery and validation datasets, respectively (Table S4).
4.8 Upstream regulator analyses

Ingenuity Pathway Analysis (IPA) software was used to identify

potential upstream transcriptional regulators, which may be

involved in the regulation of the genes differentially expressed in

NZM-Il1b-/- compared to NZM mice.
4.9 Statistical analysis

Data (Figures 1, 2, 4, Supplementary Figure 3) were graphed

and statistics were performed using GraphPad Prism 9. Data are

presented as the mean ± SEM (Figures 1, 2) or with median line

(Figure 4, Figure S3). For comparisons between two groups,

unpaired two-tailed t tests or Mann–Whitney tests were used. For

survival studies, log-rank testing was used. p-values <0.05 were

considered as statistically significant.
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