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Heterogeneity in functional
genetic screens: friend or foe?

David W. Vredevoogd and Daniel S. Peeper*

Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute,
Amsterdam, Netherlands
Functional genetic screens to uncover tumor-intrinsic nodes of immune

resistance have uncovered numerous mechanisms by which tumors evade our

immune system. However, due to technical limitations, tumor heterogeneity is

imperfectly captured with many of these analyses. Here, we provide an overview

of the nature and sources of heterogeneity that are relevant for tumor-immune

interactions. We argue that this heterogeneity may actually contribute to the

discovery of novel mechanisms of immune evasion, given a sufficiently large and

heterogeneous set of input data. Taking advantage of tumor cell heterogeneity,

we provide proof-of-concept analyses of mechanisms of TNF resistance. Thus,

consideration of tumor heterogeneity is imperative to increase our

understanding of immune resistance mechanisms.
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Introduction

The utility of functional, CRISPR-Cas9 genetic screens in understanding immune

resistance mechanisms and, by extension, their value in identifying novel therapeutic

targets has become increasingly clear in recent years. Multiple research groups have used

such screens to elucidate immunologically active pathways in tumor cells and presented

strategies to (therapeutically) exploit them to combat cancer, both in vitro (1–11) and in

vivo (5, 12–15). In vitro, such screens have almost invariably been performed with genome-

scale libraries in one (or few) tumor cell line(s), whereas in vivo screens have been

performed using smaller, focused libraries in single tumor cell lines. The reason that

screens have largely been limited to single cell lines in publications is a technical one: to

ensure maintenance of library complexity (i.e., sufficient replication of each genetic

perturbation), and thus fidelity and confidence of the hits identified, a(n extremely)

large number of cells need to be used in such screens, making the inclusion of multiple

cell lines labor-intensive. Despite this limitation, their success and fidelity were

demonstrated by virtue of their identification of common pathways by several groups.
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By and large they comprise the TNF, IFNg, antigen presentation

and autophagy pathways [reviewed by us (16) and others (17, 18)].

However, these genetic screens do occasionally differ in terms of

the exact nodes that they discover within the identified pathways,

offering glimpses at potential context-dependent vulnerabilities.

This is seen most prominently in one of the few publications in

which multiple cell lines were employed (5). Because the screens

were performed in the same lab, technical and methodological

variation is limited. In those parallel screens, the loss of TRAF2 was

able to sensitize all but one tumor cell line to T cell attack. For this

gene in particular, we validated that different tumor cell lines may

indeed not all be equally dependent on TRAF2 for their immune

resistance, with some cell lines relying (more) on BIRC2, whereas

others require inactivation of both genes in order to be sensitized to

T cell challenge (1). These observations thus underscore the need to

scale up these screens to add to their fidelity and offer insight into

the context of identified hits. Because of their limited scale,

heterogeneity between tumor cell lines in terms of intrinsic

immune resistance mechanisms is currently largely ignored in the

design of CRISPR-Cas9 screens, limiting our understanding of

immune-resistance mechanisms and preventing us from

predicting which cell lines and, by extension, which tumors will

respond to specific forms of immunotherapy. In this perspective we

will outline sources of tumor heterogeneity, how this may negatively

influence CRISPR-Cas9 screens and how to take advantage of those

mechanisms in the design of these screens.
Heterogeneity: nature and causes

Tumor heterogeneity exists in different forms and is caused by

multiple processes. Intertumor heterogeneity (i.e., the differences

between different tumors), intratumor heterogeneity (i.e., the

difference between different tumor cells/clones/populations/

regions of the same tumor) and heterogeneity in the tumor

micro-environment (i.e., the difference in the anatomical location

and non-tumor cell infiltration between [different] tumors and/or

metastases) all contribute to the smorgasbord we term cancer. These

mechanisms of heterogeneity not only co-exist, but frequently also

actively influence one another. For example, different metastases of

the same tumor in distinct anatomical locations may experience

different growth signals and thus display preferential outgrowth of

different subpopulations (19–21). In addition, the genetic

heterogeneity within tumors can surpass even that between

tumors of different individuals (22, 23). Even different single cells

within the same tumor can have remarkably different characteristics

[reviewed in (24)].

This heterogeneity is manifested through a variety of different

mechanisms. They can be summarized in four, central concepts:

germline differences, genomic instability, selection by exogenous

means and obligate co-dependency of tumor subpopulations. For

each of these, clinical evidence illustrates how they can result in

tumor heterogeneity. Germline differences are perhaps best

characterized within hereditary cancers. For example, hereditary

breast cancer cases generally have poorer prognoses than sporadic

cases (25). Genomic instability also, a core hallmark of cancer-
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causing mutations and other genomic aberrations such as genetic

duplications or deletions, can lead to inter- and intratumor

heterogeneity. This can be driven by, for example, enhanced

APOBEC3 activity in late-stage cancers which promotes the

stochastic mutation of the tumor genome (26). Furthermore, non-

tumor driven selection, for example through therapy, can result in

heterogeneity as tumor subclones with therapy-resistant traits are

selected for (27, 28). Lastly, tumors can also evolve to be

heterogeneous through the common, co-dependent evolution of

different tumor cell subpopulations. In such a symbiotic

relationship, one population within the tumor provides growth

stimuli to another and, in some cases, this may even be

reciprocated (29–31).
Heterogeneity affects immune
sensitivity of tumors

Heterogeneity can also affect the sensitivity of tumors

challenged by multiple different inflammatory cytokines and/or

cells of the immune system. This may occur in a general sense,

but could also impact specific immune effector pathways. The same

general concepts of tumor heterogeneity are involved in these

processes (Figure 1).

Intertumor heterogeneity is perhaps most evident for the tissue

from which a tumor arises. The identity of this tissue in and of itself

can already determine immune sensitivity. For example, cancers

arising from intrinsically (more) hypoxic tissues, such as melanoma,

have heightened expression of cIAP1. These tumors therefore

display enhanced resistance against TNF (32). Extending these

observations, a recent meta-analysis of tumor-intrinsic

determinants of ICB sensitivity identified multiple strong

predictors of response for individual tumor types, but those
FIGURE 1

Heterogeneity in immune sensitivity mechanisms.
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factors fail to predict well in a tumor type-agnostic fashion (33),

implying tumor-type specific mechanisms to be at play. Intertumor

heterogeneity also manifests through heterogeneity in driver

mutations, which can differentially affect the antitumor immune

response. An example of this is the generation of an

immunosuppressive TME driven by the loss of PTEN (34).

KRASG12C and several p53 mutations, too, alter immune

sensitivity (35, 36).

Intertumor heterogeneity can also more broadly influence

immune status, being associated with both mutational load (37)

and immune infiltrate (38). Each of these may influence which type

of immune pressure, and of what strength, a tumor encounters.

Another determinant concerns the expression of activating and

inhibitory immune ligands, which also differ between tumors and/

or tumor types. This heterogeneity in receptor expression may

occur upon induction by signals from the TME, such as the

differential strength of induction of PD-L1 in different tumors

(and tumor cell lines) (39, 40). This phenomenon is particularly

of interest as PD-L1, being the main ligand for the inhibitory T cell

checkpoint PD-1, is a key target for immune-checkpoint blockade

(41–43). Diversity in receptor expression may also be more deeply

ingrained, such as the genetically-encoded, patient-specific

repertoire of inhibitory receptors for NK cells (immune effector

cells that rely on a combined input of activating and inhibitory

ligands for their activation) (44–47). This is not only true for cell-

surface bound ligands, but equally for tumor cell-derived cytokines

or other soluble factors secreted (only) by specific tumors. For

example, tumor cell-derived CCL2 indirectly dampens CD8+ T cell

responses (48) while, additionally, induction of the Wnt/b-catenin
signaling pathway leads to T cell exclusion (49).

Intratumor heterogeneity can equally influence immune

sensitivity. While some of the above mechanisms may also be

evident within a tumor, such as local expression of cytokines and/

or immune ligands, other phenomena are also at play. For example,

regions within the tumor can lose components of the antigen-

presentation machinery, specific T cell antigens or HLA alleles,

limiting T cell recognition (50–52). At the same time, such tumor

adaptations may (locally) attract otherwise absent immune cells, as

was recently shown for Vd1 and Vd3 T cells in B2M MUT colorectal

cancer (53). Additionally, tumor subclones can contain mutations

in key immune signaling nodes, even before onset of therapy. They

include mutations in JAK1, responsible for transmitting IFNg
signals, and in CASP8, responsible for the final, decisive step in

the apoptotic cascade initiated by TNF (54, 55). Furthermore,

different, interdependent subpopulations may contribute to

intratumor heterogeneity. In a particularly elegant study, it was

demonstrated that IFNg pathway-mutant tumors are more sensitive

to CD8+ T cell-mediated eradication due to the loss of protection by

IFNg-induced PD-L1, but become more resistant when intermixed

with PD-L1-producing wildtype tumor cells (56). This intratumor

heterogeneity is enhanced once (immuno)therapy is administered

to the patient tumor, with ample opportunity for selection of escape

mutants (52, 57–64).

Lastly, the anatomical location of the tumor may affect immune

sensitivity. First, there is a purely technical consideration: the way in

which immune sensitivity mechanisms are studied influences how
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the biology of the pathway manifests. For example, IFNg has

seemingly opposing effects on tumor cell viability in vitro and in

vivo: the cytostatic effects of IFNg largely inhibit tumor cell growth

in vitro, whereas in vivo, the induction of PD-L1 by IFNg provides a
strong, cytoprotective effect that overcomes those inhibitory effects

(16, 65, 66). Additionally, and perhaps obviously, some immune

pathways cannot be studied at all in vitro because of the use of

simplified model systems: either cell types, ligands or cytokines can

be missing. The influence of tumor location on heterogeneity has

also been demonstrated clinically: different distant metastases may

have entirely different TMEs, (neo)antigen burden and immune

resistance mechanisms (19, 63, 67, 68). Along these lines, a recent

meta-analysis of >2,000 patients showed that genetic alterations in

IFNg signaling components that are present prior to treatment do

not necessarily diminish ICB response (69).
Approach to counteract heterogeneity
in CRISPR-Cas9 immune screens

Heterogeneity thus has near limitless influence on the

sensitivity of tumors to eradication by the immune system. How

can we meaningfully combat, and perhaps even exploit, this

heterogeneity in CRISPR-Cas9 screens for tumor-intrinsic,

immune sensitivity modifiers? By integrating large amounts of

functional screening and omics data from many different settings

and contexts, one can more precisely annotate tumor cell nodes of

immune sensitivity. Specifically, this integration will yield either

biomarkers, which mark cell lines in which a particular immune

sensitivity node is active, or will generate mechanistic hypotheses

that explain why a given node is seemingly inactive in a given cell

line. Based on the mechanistic sources of heterogeneity described

above, ideally one would derive omics and screening data from as

many sources as possible. These would include (epi)genomic,

transcriptomic and proteomic omics data. At the same time, the

screening data should be derived from both in vitro and in vivo

screens from as many genetic backgrounds as possible [reviewed in

(16)]. Such an undertaking however, would require immense

investments of both time and funding.
Proof-of-concept analyses exploiting
cell line-to-cell line heterogeneity

While a comprehensive catalogue of screening data is currently

lacking, other domains of research have already embraced the

concept of heterogeneity more comprehensively. In fact, in order

to find an Achilles’ heel for specific cancers, many cell lines have

already been deeply characterized. A multi-decade, multi-national

effort, collected within the DepMap database, has screened >1800

cell lines using genome-scale perturbation libraries to identify

cancer (type)-specific dependencies. Aside from these functional

genetic screens, the cell lines used in these studies have also been

extensively characterized, including the collection of RNA, DNA,

epigenetic, metabolic and drug-sensitivity metrics (70–72). The use
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of these databases has allowed investigators to identify novel

therapeutic targets in a variety of cancer indications (73–75). An

important element lacking from this database then, is an annotation

of which genes can be considered immune sensitivity modifiers.

Interestingly, because of the extent of this database, both in

terms of cell line number and cell line characterization, we can

perform a proof-of-concept analysis for immune sensitivity

modifiers that exploit heterogeneity. Specifically, we can look at

modifiers of TNF sensitivity. As more than 300 cell lines in the

DepMap produce TNF, we can compare the effects of gene

knockouts in these cell lines compared to those that do not

produce TNF, to identify factors sensitizing tumor cells to TNF

(which, using the excellent portal is trivial to accomplish). By

performing this analysis, we could find factors whose ablation

reduces viability of TNFHi cell lines specifically (Figure 2A).

Indeed, many of those we had already identified and validated

ourselves, including TRAF2, BIRC2 (encoding cIAP1) and RNF31

(Figures 2A, B) (1, 2). However, with such an approach we could

identify also novel, potential TNF sensitivity modifiers, such as the

EMC family of genes which, though currently not yet validated, we

also identified in our meta-analysis of immune sensitivity screens

(Figure 2A) (16).

Having established the fidelity of this approach, we could

continue by also taking advantage of the size and heterogeneity of

the particular database used. In our previous work, we have

identified a differential reliance on TRAF2 and BIRC2 to establish

resistance to TNF in different tumor cell lines. While it had been

difficult to fully comprehend this differential sensitivity before,

given that TRAF2 and cIAP1 are thought to signal in a linear

fashion, we could now make transcriptomic comparisons between

TNFHi cell lines in which both TRAF2 and BIRC2 sensitize, those in

which solely BIRC2 knockout sensitizes, those in which solely

TRAF2 knockout sensitizes, or those cell lines in which neither

the loss of TRAF2 nor the loss of BIRC2 reduces the viability of the

affected cell line (Figure 2C). These analyses can yield biomarkers of

specific populations (Figures 2D–J). For example, high HLA-F

expression marks populations that will respond solely to TRAF2

inhibition (Figure 2D). These analyses can also provide mechanistic

insight. For example, the observation that BIRC3 expression is

higher in cell lines that respond solely to the loss of TRAF2

compared to those that respond to either TRAF2 or BIRC2 loss,

implies that this protein compensates for the loss of its paralog

BIRC2 (Figure 2F).

As a second proof-of-concept for discovery of immune

sensitivity modifiers that exploit heterogeneity using the DepMap,

we performed a similar analysis for cells producing TNF-related

apoptosis-inducing ligand (TRAIL, encoded by the gene TNFSF10;

Figure 2J). Here, we identified the loss of both CFLAR and RELA to

specifically sensitize those cells capable of producing TRAIL, in line

with published literature (Figures 2J, K) (76, 77). Using the

transcriptomic data of those same cell lines, we may even begin

to speculate as to how these cells are capable of surviving in the

presence of TRAIL. These cells seemingly induce transcription of

genes that protect against TRAIL-induced cell death, including the

aforementioned CFLAR, but also TRADD and TNFAIP3

(Figures 2L–N) (76–78). In doing so, they may gain a previously
Frontiers in Immunology 04
described proliferative advantage of TRAIL signaling (78), which

may explain their higher level of expression of the TRAIL receptor,

TNFRSF10A (Figure 2O), but this predict ion awaits

functional validation.

Beyond these transcriptomic comparisons, we can exploit the

DepMap to find ways of targeting these specific tumor cell

subpopulations. Again, to probe the fidelity of such an approach,

we compared the drug sensitivity between the TNFLo and TNFHi

cell lines in the DepMap. With this analysis, we could, at least in

part, recapitulate the genetic analysis, identifying birinapant, an

inhibitor of cIAP1 to sensitize TNFHi cell lines more than TNFLo

cell lines (Figures 3A, B). We validated this therapeutic approach

previously in conditions of high concentrations of TNF (i.e., T cell

attack) (1). Using the drug sensitivity database, we could also

identify specific inhibitors for the cell lines differentially

dependent on TRAF2 and BIRC2 for their resistance against TNF.

For those cell lines that particularly depend on BIRC2 we found that

ZD-7114, a b3-adrenoceptor agonist, is a potential pharmaceutical

strategy (Figure 3C). In cell lines that depend on TRAF2, we could

find a specific sensitivity to CAY10576, an IKKϵ inhibitor

(Figure 3D). IKKϵ is known interact with TRAF2, and its

identification may thus have a clear mechanistic basis (79).
Considerations for the future

While the above analyses show the promise of integrating

heterogeneity in target discovery, they are preliminary and

marred by assumptions (e.g., can we realistically assume that

TNF-producing cells are a good model for cell experiencing T

cell-derived TNF? Can we assume that protein levels of TNF scale

linearly with TNFmRNA expression)? Therefore, and as mentioned

above, the true complexity of tumor-immune interactions, and

forms and mechanisms of heterogeneity at play require more data

to be integrated in these models. Firstly, and perhaps most easy to

accomplish, the field should invest in performing more tumor : T

cell screens, to complement those that have already been reported in

key publications in the recent past (1, 3–7, 12–16, 18, 75, 80). These

screens, combined with deep characterization as performed for the

DepMap, should result in a more granular understanding of

genotype – phenotype interactions, as demonstrated here with

our proof-of-concept analyses (Figure 2). An analogous approach

was already taken for NK sensitivity (75). Obviously, such screens

only scratch the surface of the different types of heterogeneity

outlined above. One could imagine that with time, and significant

investment, the screens can be performed in parallel in a large

number of settings. For example, they can be performed with

different (e.g., NK cells, as was done in (75), or ‘exhausted’ vs.

polyfunctional T cells), or more complex co-culture systems (e.g.,

tumor : T cell : NK cell combinations), more environmental

perturbations (e.g., nutrient starvation, hypoxia, highly acidic

conditions), in in vivo mouse models (as in (5, 12, 13), in isogenic

tumor cell lines with specific alterations [as was done in (5)] or even

in combination with specific therapeutics (e.g. anti-CTLA-4 or anti-

PD-1). Ultimately, such genetic screens will improve our

understanding of important immune resistance mechanisms,
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FIGURE 2

DepMap dependency analyses allow understanding of heterogeneity in immune resistance mechanisms. (A) Volcano plot that compares the gene
perturbation effects in TNFHi [i.e., >0.5 log2(TPM+1)] and TNFLo (i.e., 0 read counts for TNF) cell lines. (B) Comparison of the effect of TRAF2
knockout in TNFHi and TNFLo cell lines. (C) Schematic diagram indicating the populations analyzed in the panels that follow. Only TNFHi cell lines
were used in the analyses. (D–I) Violin plots of the expression of indicated genes for the indicated populations (cell lines were deemed sensitive
when their CERES score was < -0.3 and insensitive when their CERES score was > -0.1). Statistics were performed by Student t test. The solid white
line indicates the population median, with the bottom and top dashed white lines indicating the first and third quartiles, respectively. (J) Volcano plot
comparing the gene perturbation effects in TNFSF10Hi [i.e., >5 log2(TPM+1)] and TNFSF10Lo (i.e., 0 read counts for TNFSF10) cell lines. (K)
Comparison of the effect of CFLAR knockout in TNFSF10Hi and TNFSF10Lo cell lines. (L–O) Violin plots of the expression of indicated genes for the
indicated populations. Statistics were performed by Student t test. The solid white line indicates the population median, with the bottom and top
dashed white lines indicating the first and third quartiles respectively. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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aiming to have as many patients as possible benefit from

(personalized) immunotherapy.
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