
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Michael Evangelopoulos,
Northwestern University, United States

REVIEWED BY

Ritika Tewari,
Benaroya Research Institute, United States
Nemat Ali,
King Saud University, Saudi Arabia
Bishal Singh,
MRC Laboratory of Molecular Biology
(LMB), University of Cambridge,
United Kingdom

*CORRESPONDENCE

Saif Khan

sf.khan@uoh.edu.sa;

saifkhan.bio@gmail.com

Mohd Wajid Ali Khan

mw.khan@uoh.edu.sa;

wajidkhan11@gmail.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 09 February 2023
ACCEPTED 13 March 2023

PUBLISHED 29 March 2023

CITATION

Khan S, Khan MWA, Sherwani S, Alouffi S,
Alam MJ, Al-Motair K and Khan S (2023)
Directional preference for glioblastoma
cancer cell membrane encapsulated
nanoparticle population: A probabilistic
approach for cancer therapeutics.
Front. Immunol. 14:1162213.
doi: 10.3389/fimmu.2023.1162213

COPYRIGHT

© 2023 Khan, Khan, Sherwani, Alouffi, Alam,
Al-Motair and Khan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 29 March 2023

DOI 10.3389/fimmu.2023.1162213
Directional preference for
glioblastoma cancer cell
membrane encapsulated
nanoparticle population: A
probabilistic approach for
cancer therapeutics

Saif Khan1,2*, Mohd Wajid Ali Khan2,3*, Subuhi Sherwani4,
Sultan Alouffi2,5, Mohammad Jahoor Alam2,4, Khalid Al-Motair2

and Shahper Khan6

1Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il,
Ha’il, Saudi Arabia, 2Medical and Diagnostic Research Centre, University of Ha'il, Ha’il, Saudi Arabia,
3Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia, 4Department of
Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia, 5Department of Clinical
Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia,
6Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
Background: Selective cancer cell recognition is the most challenging objective

in the targeted delivery of anti-cancer agents. Extruded specific cancer cell

membrane coated nanoparticles, exploiting the potential of homotypic binding

along with certain protein-receptor interactions, have recently proven to be the

method of choice for targeted delivery of anti-cancer drugs. Prediction of the

selective targeting efficiency of the cancer cell membrane encapsulated

nanoparticles (CCMEN) is the most critical aspect in selecting this strategy as a

method of delivery.

Materials and methods: A probabilistic model based on binding scores and

differential expression levels of Glioblastoma cancer cells (GCC) membrane

proteins (factors and receptors) was implemented on python 3.9.1. Conditional

binding efficiency (CBE) was derived for each combination of protein involved in

the interactions. Selective propensities and Odds ratios in favour of cancer cells

interactions were determined for all the possible combination of surface proteins

for ‘k’ degree of interaction. The model was experimentally validated by two

types of Test cultures.

Results: Several Glioblastoma cell surface antigens were identified from literature

and databases. Those were screened based on the relevance, availability of

expression levels and crystal structure in public databases. High priority eleven

surface antigens were selected for probabilistic modelling. A new term, Break-

even point (BEP) was defined as a characteristic of the typical cancer cell

membrane encapsulated delivery agents. The model predictions lie within ±7%

of the experimentally observed values for both experimental test culture types.
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Conclusion: The implemented probabilistic model efficiently predicted the

directional preference of the exposed nanoparticle coated with cancer cell

membrane (in this case GCC membrane). This model, however, is developed

and validated for glioblastoma, can be easily tailored for any type of cancer

involving CCMEN as delivery agents for potential cancer immunotherapy. This

probabilistic model would help in the development of future cancer

immunotherapeutic with greater specificity.
KEYWORDS

glioblastoma, encapsulated nanoparticle, cancer cell membrane, probabilistic
model, homotypic binding, human serum albumin nanoparticles
Introduction

Cancer cell targeting is the most critical step towards its

successful therapy. Researchers have employed a myriad of

techniques to achieve this selective targeting thereby alleviating

undesirable consequences (1–4). Recently, biodegradable

nanoparticles coated with extruded target cancer cell membranes,

were employed to selectively identify target cancer cells. This

specificity originates from homotypic binding of differentially

expressed extracellular regions of transmembrane proteins (5–7).

Glioma cells are well known for differential expression of several

membrane associated surface antigens/proteins (8, 9). This

characterizes GBM (Glioblastoma multiforme) cell as suitable

candidate/s for selective identification built on homotypic

interaction of cell surface proteins/antigens (10–13). Nanoparticles

coated with extruded cell membranes from glioma cells, harboring

similar levels of differentially expressed surface antigens/proteins, was

employed by several researchers to selectively target GBM cells (14–

17). Glioma cell surface harbors several receptor-factor complexes.

These surface receptor-factor couples possess high affinity for each

other. These heterotypic surface interactions are critical for

progression and/or inhibition of glioma cell proliferation (9).

Hetero-complexes of surface-receptor couples are well defined and

explored by several studies (8, 10–16). These hetero complexes

(involving receptor- factor couple) may offer significant hinderance

to the homotypic selective force exploited by the Cancer cell

membrane encapsulated nanoparticles (CCMEN) employed for

selectively differentiating healthy cells from GBM cells. The

magnitude and direction (favour or opposition) of heterotypic

interaction play decisive role in determining the selective potential

of the CCMEN. The magnitude (or the strength) and direction of the

heterotypic interactions depends upon the differential expression

pattern of the receptor-factor couples in glioma cells w.r.t healthy

cells. Several studies report expression levels of such receptor-factor

couples (18–20). Expression levels may also be extracted from

databases such as Gene Expression Omnibus (GEO, 21), Human

Protein Atlas (HPA, 22) and The Cancer Genome Atlas (TCGA, 23).

Probabilistic models have been developed for patient-specific

combination cancer treatments based on sequencing data and

functional assay of the drug (24). Other approachesinvolve the
02
application of probabilistic models for the prediction of the

metastatic spread of the tumor (25). In the present study we have

encoded a probabilistic model in python 3.9.1 based on the binding

potential and expression levels of the surface receptors/proteins

(SP) on Glioblastoma cancer cells (GCC), Normal healthy cells

(NHC) and their corresponding protein Factors (F). The objective

of this model is not only to determine the directional preference of

the exposed CCMEN population, but also to characterize the

CCMEN for a range of degree of interaction of SP. This model,

however, is developed and validated for Glioblastoma, can be easily

tailored for any type of cancer involving CCMEN as delivery agents.
Material and methods

Expression levels

Normalized surface gene (receptors) and secreted factors (gene)

expression levels for healthy normal brain cells were determined

from the Human Protein Atlas (HPA) and GEO (Gene Expression

Omnibus) datasets. Secreted levels of the IL-13 (Interleukin-13) for

normal healthy brain cells was considered as a baseline (since it has

the minimum expression level) and all other gene expression levels

(factors and receptors) were represented w.r.t to IL-13. Over/

repressed levels of genes (receptors and factors) were determined

from the GEO series GSE147352. This series includes 85 adult (age

range from 22-81 years) grade Glioblastoma tissues, 18 lower grade

glioma tissues and 15 normal brain tissues characterized by rRNA-

depleted total RNAseq. Only 85 adult grade glioblastoma and 15

normal brain tissues were included in this study. Altered

glioblastoma levels of gene expression was represented as folds

(Table 1) for each gene considered in this study.
Determination of binding efficiency
(Intrinsic affinities)

RCSB Protein data bank (PDB) database was used to retrieve

three-dimensional structure of surface protein as well as their

respective ligand/s. Discovery studio suit was used to optimize the
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three-dimensional structures. We removed unwanted redundant

molecules. All the protein-protein interactions involving native

receptor-factor complex are redocking results since these are

available in either protein databank or other predicted databases,

all receptor-receptor and non-native cross receptor-factor

interactions were determined by performing protein-protein

docking. Haddock 2.4 online server (https://wenmr.science.uu.nl/

haddock2.4/) was used to do docking and to predict the strength of

interaction between ligand-protein as well as protein-protein. The

best dock was selected that was based on two parameters i.e

Haddock score and Z-score. Prodigy webserver (https://

wenmr.science.uu.nl/prodigy/) was used to find out binding

affinity between ligand-protein as well as protein-protein. The

intrinsic binding scores (BS) are reported in database repository

RDO_datasets (link provided in Database availability statement)
Frontiers in Immunology 03
Probabilistic model

A probabilistic model was developed to determine the

interaction probabilities (and eventually odds ratios) for the

receptor (R) surface proteins (SP) and their combinations present

on the glioma CCMEN. The interaction probabilities (P) of

individual and combinations of SP receptors on CCMEN were

determined towards GCC, NHC and F. The model has the

following assumptions:
1. A specific SP or their combination undergoes interaction

with the SP on any of the following: GCC only, GCC + F,

NHC only, NHC + F or F only.

2. A SP or their combination cannot interact with the SP on

both GCC and NHC simultaneously.
TABLE 1 Expression Levels and Glioblastoma fold change.

Receptors

Receptor Gene Description NEX rNX FC

PDGFRA Platelet derived growth factor receptor 7.24 72.43 11.1

TGFB2R Transforming Growth Factor beta Type II Receptor 5.21 52.14 3.58

EGFR Epidermal growth factor receptor 4 40 17.19

Met R. Hepatocyte growth receptor 2.7 27 1.95

IL4R Interleukin-4 receptor 4.2 42 2.28

IL-13R Interleukin-13 receptor 7.34 73.43 4.48

Tfr2 Transferrin receptor 0.45 4.5 0.41

Kdr Vascular endothelial growth factor receptor 1.96 19.57 2.55

FGFR1 Fibroblast growth factor receptor 12.4 124 1.67

PLAUR Urokinase plasminogen activator surface receptor 2.63 26.29 10.24

ITGA2B Integrin 1.69 16.86 0.71

Factors Gene Factors NEX rNX FC

PDGF Platelet derived growth factor 12.77 127.71 1.95

TGF Transforming Growth Factor 8.79 87.86 2.51

EGF Epidermal growth factor 0.27 2.71 1.36

HGF Hepatocyte growth factor 1.31 13.14 1.41

IL-4 Interleukin-4 0.2 2 1.1

IL-13 Interleukin-13 0.1 1 1.9

Tf Transferrin 7.86 78.57 1.17

VEGF Vascular endothelial growth factor 6.09 60.86 10.21

FGF2 Fibroblast growth factor 10.16 101.57 1.33

PLAU Urokinase plasminogen activator 0.87 8.71 32.64

TNC Tenascin-C 1.79 17.86 78.92
NEX, Original Normal brain cell expression levels; rNX, Normal brain cell expression levels w.r.t Interlukin-13; FC, Glioblastoma expr levels vs normal brain cell (fold change: The fold change is
derived as the ratio of relative rNX (Normal brain cell expression levels w.r.t Interlukin-13 shown in the table) to relative glioblastoma expression levels w.r.t Interlukin-13 not shown in the table
but represented as Fold change FC). Relative glioblastoma expression levels w.r.t Interlukin-13 can be obtained simply by dividing FC by rNX.
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3. Atleast one SP interacts with any one instance of the SP of

the following: GCC only or NHC only or F only or GCC + F

or NHC + F.

4. Interaction of the SP or their combination with the secreted

“F only” represents no interaction with either GCC or

NHC.

5. No Factor-Factor interactions are considered in this study

6. All other interactions were assumed to result in zero net

preference to the specific cell or Factor type.
Probabilities were derived from the conditional binding

efficiency (CBE) of surface proteins on CCMEN towards the SP

on cell type (GCC or NHC) and/or F. CBE were derived from the

BS. Since CBE depends upon the protein type and its conditional

expression level (Glioblastoma positive: GCC/F or Negative: NHC;

Table 1). Final CBE values were derived from the following Eq.1

CBE =  BS * MIN (
SPNEX   on CCMEN,  SPNEX  on

GCC
NHC

F
)*

 MIN (
SPFC  on CCMEN,  SPFC  on

GCC
NHC

F
)

Eq:1

Where,

MIN = select the lower value among the choices.

SPNEX = Surface Protein normal/native expression level

SPFC = Surface Protein Fold change (Glioblastoma positive:

GCC/F or Negative: NHC)

The model assumes that any number of surface protein types on

CCMEN may undergo interaction with the SP of GCC/NHC or F.

The degree of interaction (k) is defined as the number of SP on

CCMEN undergoing interaction simultaneously. Probabilities were

calculated for degree of interactions ranging from one to n (n =11)

proteins considered in this study (Table 1). Except for single protein

interaction, several combinations of proteins may be derived

depending upon the degree of interaction. The number of

possible combinations (PC) for a given degree of interaction (k) is

given by the following equation (Eq.2)

PC =
n !

(n − k) !�k !
Eq:2

Where,

n! = factorial of total number of protein types considered in the

study (11 in this case).

k! = factorial of degree of interaction (range from 1 to 11)

Probabilities (P) were calculated for each combination

assuming null to full factor interactions. The degree of factor

interaction (kF) is defined as the number of factors interacting

with a certain combination of degree k (0 ≥ kF ≥ k). Binding

strengths (BST) and probabilities were calculated for each type of

combination. BSTGCC and PGCC of interaction towards GCC,

BSTNHC and PNHC of interaction towards NHC and BSTF and PF
of interaction towards F. Each combination is further subdivided

based on number of factors interacting for a given combination (kF).

The subclasses range from zero F interaction (Full cell type

Interaction: GCC/NHC) to full F Interaction (zero cell type

Interaction: F). BST and P of interaction was determined for each
tiers in Immunology 04
class and its subdivision. The hierarchy of probabilistic model

classes and subclasses is represented in the flowchart (Figure 1).

(PGCC: probability of Interaction with GCC, PNHC: probability of

Interaction with NHC, PF: probability of Interaction with F, n=11)

The model was implemented in python (3.9.1).
Conditional expected value calculation

Expected value (E(x)) of a random variable x is defined as the

sum of the probability-weighted average of all the possible

realization of the discreet variable. The Expected value is the

arithmetic mean of several independently selected outcomes. In

this case the expected values of binding strength were determined

(from the probabilistic model discussed above) for each class (k)

and subclass (kF) based on their respective conditional probabilities

(Conditional probability is defined as the likelihood of an event or

outcome occurring, based on the occurrence of a previous event or

outcome, in this case depending class: k and corresponding

subclass: kF)

E(x)k,kF =   o
i= n !

(n−k) !�k !

i=1
P
BST

k,kF
i

k,kF
� BSTk,kF

i

Here:E(x)k,kF is the expected value of the kth class and kF
subclass; n=11.

P
BST

k,kF
i

k,kF
is the conditional probability value of the ith

combination for the kth class and subclass kF.

BSTk,kF
i is the binding strength of the individual or specific

combination of SP for the kth class and subclass kF.
Determination of selective propensities

Selective propensity (Sp) is defined as the affinity of the SP on

CCMEN or their combination for a particular degree of protein

interaction (k and subclass kF) towards SP on GCC, NHC or F. Sp
for a typical SP combination (for a specific k and kF) were derived

by representing the BSTs (for GCC, NHC and F) as vectors on the x,

y and z axis in a three-dimensional space (Figure 2). Sp, GCC/NHC/F:
FIGURE 1

Probabilistic Model.
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selective propensity towards GCC/NHC/F is given by Eq.3-5

Sp, GCC = 90 °−R °x, GCC Eq:3

Here :R °x = Angle   of   the   resultant   vector  with   x − axis, x-

axis represents GCC

Sp, NHC = 90 °−R °x, NHC Eq:4

Here :R °x = Angle   of   the   resultant   vector  with   x − axis, x-

axis represents NHC

Sp,  F = 90 °−R °x,  F Eq:5

Here :R °x = Angle   of   the   resultant   vector  with   x − axis, x-

axis represents F

R °x, GCC=NHC=F was determined as the ratio of the resultant

vector Rx, (calculated by Eq.6-11) with the BST for GCC/NHC/F on

the x-axis (x-axis was cycled through BSTs for GCC, NHC and F

sequentially)

Rx, GCC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BST2

x,GCC +  BST2
y,NHC + BST2

z,F
2

q
Eq:6

Rx, NHC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BST2

x,NHC +  BST2
y,GCC + BST2

z,F
2

q
Eq:7

Rx,  F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BST2

x,F +  BST2
y,GCC + BST2

z,NHC
2

q
Eq:8

R °x, GCC = Degrees(
BSTx,GCC

Rx, GCC
) Eq:9

R °x, NHC = Degrees(
BSTx,NHC

Rx, NCC
) Eq:10

R °x,  F = Degrees(
BSTx,F

Rx,  F
) Eq:11

Sp is directly proportional to the pull of the SP or their combination

towards the axis of interest (x-axis). Selective propensities (Sp) of

each protein type or their combination for a particular degree of

interaction (k and for their subclasses kF) were derived from Eq.3-5.
Experimental validation of
model predictions

An In vitro validation experiment was designed to determine

the accuracy of the probabilistic model prediction for GCC binding

efficiency of the exposed CCMEN population. The initial (exposed)

and final concentration of the CCMEN was determined in terms of

Na+/K+ ATPase a-1 cell surface receptor concentration (μg/mL).

This receptor is present on the glioblastoma cell membrane

encapsulating the HSA-Nanoparticle (described in the database

repository RDO_datasets). The concentration was determined by

direct binding ELISA for Na+/K+ ATPase a-1 cell surface receptor.
Frontiers in Immunology 05
Standard plot for Na+/K+ ATPase a-1 is given in database

repository RDO_datasets: Standard Plot. The ln fitting equation

(Eq.12) with R² = 0.9158 is given as

Absorbance   (nm)  

=   0:2657ln(Na + =K +  ATPase a − 1 μg=mL)   +   1:072 Eq:12

Overnight culture of Glioblastoma cancer cells (GCC cells)

10,000 (U87MG) or both: GCC cells and peripheral blood

mononuclear cells (PBMCs) in a ratio of 1:1 (5000:5000) were

prepared separately in a total volume of 200 ml of complete RPMI

medium. CCMEN (5 μg/ml) was added to the Test cultures: Test

culture I: GCC + F (released from GCC cells) and Test culture II:

GCC + NHC + F (released from GCC and NHC cells) and

incubated for 30 mins (duration standardized previously data not

provided here). The contents of the test culture were centrifuged

after incubation to separate the supernatant for Test culture I and

Test culture II. The supernatant was subjected to direct binding

ELISA for Na+/K+ ATPase a-1 cell surface receptor (refer to

database repository RDO_datasets for details). The fraction of

CCMEN population binding the GCC was determined from Eq. 13.

%   of  CCMEN   bound   to  GCC

=
conc :   of  CCMENexposed  (

µg
mL= ) −   conc :   of  CCMENsupernatant   I   or   II  (

µg
mL= )

conc :   of  CCMENexposed  (
µg

mL= )
x 100

Eq:13

Note:- All the experiments were performed in triplicate and

average value were reported.
Preparation of CCMEN (CCM-c/m-HSA-
Cis NPs)

Synthesize of CCMEN was carried out using a previously

reported extrusion approach with slight modifications (6, 26).

First, cell membrane was isolated from a glioblastoma cancer cell

line U87MG. Second, a dual delivery mode HSA NPs was

synthesised using cationic HSA (c-HSA) and manno-pyranoside

HSA (m-HSA). Both c-HSA (5 mg; 10%) and m-HSA (10 mg; 20%)

were mixed together using distilled water. Five gram of cisplatin

(free base form) was added to 50 ml of distilled water, and then this

was added to the above mixture of albumin in a ratio of 1% w/v in

total 10 ml. The mixture will be emulsified using centrifugation at

10,000 rpm for 2 minutes. The pellet was collected and

homogenized using a glass homogenizer resulting primary

emulsion. Furthermore, a high-pressure homogenizer was used

and primary emulsion was passed through (7-9 times) at a

pressure of 20,000 psi to get c/m-HSA-Cis NPs. c/m-HSA-Cis

NPs were passed through a 200 nm filter. Filtered c/m-HSA-Cis

NPs were stored at −80°C for future experiments. Finally, isolated

cancer cell membrane (CCM) was 10-15 times extruded physically

using a 400 nm polycarbonate membrane and the resulting vesicles

were mixed with c/m-HSA-Cis NPs. The mixture was further
frontiersin.org
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extruded through a 200 nm polycarbonate membrane to get the

final product CCM-c/m-HSA-Cis NPs.
Results

A probabilistic model was implemented in python to predict the

fraction of CCMEN directed towards specific cell type (GCC/NHC)

or protein F. Both tabular and graphical results were generated from

this tool. The tabular results were presented as.csv files. Several

types of.csv files were generated. BST_k_GCC/NHC/F.csv files

represent the calculated binding strength for all the possible

combinations of the SP of CCMEN towards SP of GCC/NHC/F

for k degree of interaction (1≤k ≤ 11). Column headers: Prot_comb

represents the receptor numeric code for the specific protein

combination (refer to Table 1 for numeric receptor code:

R_code), BST@kf = N is the binding strength for N factor

interaction (0≤N≤k). BST@k_interactions.csv file tabulates the

overal l binding strengths (summation of BST for all

combinations) of SP on CCMEN for k interaction (1≤k ≤ 11)

towards GCC (first row), NHC (second row) and Factors (third

row). P_k_GCC/NHC/F.csv tabulate the absolute probability of

interaction derived from the probabilistic model for all the possible

combinations of the SP of CCMEN towards SP of GCC/NHC/F for

k degree of interaction (1≤k ≤ 11). Column header: P@kf = N is the

probability of binding of the specific protein combination (refer to

Table 1 for numeric receptor code: R_code) for N factor interaction

(0≤N≤k). P@K_interactions.csv file tabulates the overall absolute

probabilities of binding (summation of probabilities for all

combinations) of SP on CCMEN for k interaction (1≤k ≤ 11)

towards GCC (first row), NHC (second row) and Factors (third

row). The distribution of overall binding probabilities as a function

of 1≤k≤ 11 is given in Figure 2. SP_k_GCC/NHC/F.csv tabulate the

selective propensity (as discussed in methods section) of all the

possible combinations of the SP of CCMEN towards SP of GCC/

NHC/F for k degree of interaction (1≤k ≤ 11). Column headers:

Sp_,prot_comb represents the average selective propensity of the

specific SP combination towards GCC/NHC/F, Sp@kf = N is the

selective propensity of the specific SP combination for N factor

interactions. SP@K_interactions.csv file tabulates the overall

selective propensity of binding (summation of selective

propensities for all combinations from BST@k_interactions.csv)

for SP on CCMEN@k interaction (1≥k ≤ 11) towards GCC (first

row), NHC (second row) and Factors (third row).

EBST_k_GCC/NHC/F.csv files reports the probabilistic

Expected Value E(x)k,kF for BSTk,kF (binding strength for k

interaction and kF factor interactions) towards GCC/NHC/F.

Column headers: EBST_Overall is the overall probabilistic E(x)kof

binding strength for k degree of interaction towards GCC/NHC/F,

EBST@kf=N is the probabilistic E(x)k,kF of binding strength for k

degree of interaction and N Factor interactions towards GCC/

NHC/F. EBST_k_interactions.csv summarizes the E(x)k of BST

for GCC, NHC and F for 1≤k≤n. ESP_k_GCC/NHC/F.csv files

tabulates the probabilistic E(x)k,kF of selective propensity towards

GCC/NHC/F. Column headers: EBST_Overall is the overall

probabilistic E(x)k of Sp for k degree of interaction towards GCC/
Frontiers in Immunology 06
NHC/F, EBST@kf=N is the probabilistic E(x)k,kF of Sp for k degree

of interaction and N Factor interactions towards GCC/NHC/F.

ESP_k_interactions.csv summarizes the E(x)k of Sp for GCC, NHC

and F for 1≤k≤n. E(x)k results for BST and Sp are reported in

database repository RDO_datasets (link provided in Database

availability statement).

Sp for individual surface receptor protein (Table 1) on CCMEN

were determined as function of their average respective CBEs towards

GCC, NHC and F (Eq. 3-11), Figures 3A–C presents the unscaled Sp,

GCC, Sp,NHC and Sp,F of individual surface receptor protein as vectors

in a 3D interstitial space. The 2D red plane represents threshold

boundary below which the arrows parallel to x-axis represents the

individual protein directed towards cell type/proteins on the x-axis.

The labels on the three axis (x, y and z) represents arbitrary positional

coordinates within the interstitial space. E(x)k Skp,NHC and Skp,F were

determined for all possible k interactions (1≤k≤n=11; Figures 3D–F,

File: SP@K_interactions.csv). Sk,kFp,GCC and Sk,kFp,F were determined for all

possible k interactions (1≤k≤n=11) and factor interactions

kF (0≤kF≤11). Figure 4 presents the distribution for the Sk,kFp,GCC

in contrast to Sk,kFp,F up till three factor interactions (rest are provided

in database repository RDO_datasets). 3D quiver plots were

also determined for Sk,kFp,NHC and reported in in database

repository RDO_datasets.

Fraction of population having Sk,kFp,GCC and Sk,kFp,F > 45° and the

respective odds ratios in favour of GCC (Figure 5A) and F

(Figure 5B) of the fractional population were determined for all

classes of interaction level (1≤k≥11) and their corresponding

subclass (leaves of network) of factor interaction (0≤kF ≤ 11).

This was reported as Kamada-kawai network plots (Figures 5A,

B). The size of nodes corresponds to the fractional population of

CCMEN encapsulated nanoparticle (directed towards GCC:

Figure 5A and towards F: Figure 5B) for the specific class ‘k’

(Intermediary nodes; refer to color codes in the figure for specific

degree of interaction) and/or subclass ‘kF’ (leaf nodes; refer to color

codes in the figure for specific degree of factor interaction). Each

node label (Figure 5A) = odds ratio of the fractional population in

favour GCC interaction for the specific class ‘k’ and subclass ‘kF’/

fraction of population directed towards GCC for the specific class ‘k’

and subclass ‘kF’. Each node label (Figure 5B) = odds ratio of the

fractional population in favour of F interaction for the specific class

‘k’ and subclass ‘kF’/fraction of population directed towards F for
FIGURE 2

Probability distribution @k interactions; P:Probability, CP: conditional
probability.
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FIGURE 4

Distribution of Sk,kFp,GCC Vs Sk,kFp,F (A–D). Sk,kFp,GCC (E–H). Sk,kFp,F . (A) zero Factors; (B) 1 Factor; (C) 2 Factors; (D) 3 Factors; (E) zero Factors; (F) 1 Factor; (G) 2

Factors; (H) 3 Factors.
A B

D E F

C

FIGURE 3

Individual Protein vs Degree of interaction quiver plots; 3D S_p plot for Individual surface proteins towards (A) GCC, (B) NHC and (C) F; 3D S_p plot
@k interactions towards (D) GCC, (E) NHC and (F) F.
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the specific class ‘k’ and subclass ‘kF’. Kamada-kawai network plots

for Sk,kFp,NHC > 45° and the respective odds ratios in favour of NHC of

the fractional population of CCMEN encapsulated nanoparticle

directed towards NHC are provided as in database repository

RDO_datasets. E(x)k,sp and E(x)k,sp for a particular k degree of

interactions are given in Figure 6. The horizontal bar for E(x)k,sp
represents the threshold (E(x)k,sp≥ sp=45°) required propensity to

be directed towards x-axis (cycled through GCC, NHC and F).

The distribution of resultant E(x)kof Sp,k towards GCC is

portrayed in Figure 6C. resultant E(x)kprofile of Sp,k towards

NHC and F are provided in in database repository RDO_datasets.

Ultimate directional preference (GCC, NHC, F and NNDP) of the

CCMEN (Figure 5A, B). NNDP corresponds to the fraction of

nanoparticles having no net directional preference (NNDP) and

hence their fate is unpredictable. The GCC, NHC and F fraction of

nanoparticle have a net directional preference towards the GCC,

NHC and F respectively.
Discussion

This study and associated python tool were designed to

determine the fraction of CCMEN directed towards the cancer
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cell (in this case GCC, NHC and extracellular Factors F). This was

derived by implementing a probabilistic model (discussed in the

methods section) based on the CBE of the of surface receptor

proteins on CCMEN for GCC, NHC and F. Eq. 1 explains the

derivation of CBE from BS. BS is multiplied with the expression fold

change of the contributing (R-R or R-F) proteins having the lower

fold change of the two interacting proteins. This magnify/reduce the

BS as a function of expression level simultaneously keeping it within

the bounds defined by the lower expression fold change. Three types

of CBEs were derived: CBE for interaction of SP on CCMEN and

GCC (input file: cmcc.csv), CBE for interaction of SP on CCMEN

and NHC (input file: cmnc.csv) and CBE for interaction of SP on

CCMEN and F (input file: cmf.csv). The probabilistic model reveals

the BST and corresponding probabilities of all the possible ways

(combinations) the CCMENmay interact with the GCC, NHC and/

or F (model assumptions discussed before). Figure 2 highlight the

probability distribution profile of CCMEN interaction with GCC,

NHC and F. The distribution is mildly left skewed normal with peak

at k=6. More than 80% of the exposed CCMEN population have

protein interactions ranging from 5 to 8 surface receptors. It is

interesting to note that the conditional probability (CPk) for

interaction of SP on CCMEN with GCC follows an inverse

relationship with k (Figure 2). CPk corresponds to the fractional

population of CCMEN for a specific k . For k≥5 the

fractional population directed towards Factors dominates over the

fractional population targeting GCC. This point of intersection

defined here as the Break-even point (BEP) corresponds to the first

instance of CPk,GCC falling below either of the other two (CPk, NHC

or CPk, F). Higher is the value of BEP more is the fraction of

CCMEN directed towards the cancer cells (in this case GCC). BEP

ranges from 0 to n. Hence, BEP is hereby suggested as a critical scale

for measurement of cancer cell targeting efficiency of CCMEN for

given surface antigens (receptors).

Individual Sp for all the surface receptor proteins (except Tfr2

and ITGA2B, Table 1) on CCMEN are directed towards GCC.

(Tfr2: towards NHC, and ITGA2B: no net directional preference,

Figure 3A-C). However, a sharp contrast is observed in the

directional preference of the CCMEN population obtained as a

consequence of the real probabilistic picture (based on all possible

combinations) from the probabilistic model. The dominant GCC

directional preference of CCMEN fades away gradually when the

k≥5 (Figures 3D–F). This may be accounted to the proportionally

growing population of CCMEN interacting with the factors, with

increasing “k”. A detailed picture of the distribution of Sk,kFp,GCC

(Figures 4A–D) and Sk,kFp,F (Figures 4E–H) reveals the effect of

increasing factor interaction for all degrees of k (1≥k ≤ 11, kF ≤

3, distribution for kF≥4 available in database repository

RDO_datasets. It is obvious, that higher factor interactions are

only possible at higher k values. It is important to note that the

increase in the fractional population of CCMEN directed towards F

(with increasing kF) does not exactly correspond to the fractional

loss of CCMEN population directed towards GCC. This fractional

loss is distributed into three types of CCMEN population having

different directional preferences. Type1: Directed towards F; Type2:

Directed towards NHC (negligible in this case) and Type3: No Net

directional preference (NNDP). CCMEN classified under NNDP
A

B

FIGURE 5

(A) Network plot of class wise fractional distribution of Sk,kFp,GCC and

corresponding odds ratio: node label = odds ratio of the fractional
population in favour GCC interaction for the specific class ‘k’ and
subclass ‘kF’/fraction of population directed towards GCC for the
specific class ‘k’ and subclass ‘kF’. (B) Network plot of class wise

fractional distribution of Sk,kFp,GCC and corresponding odds ratio: node

label = odds ratio of the fractional population in favour of F interaction
for the specific class ‘k’ and subclass ‘kF’/fraction of population directed
towards F for the specific class ‘k’ and subclass ‘kF’.
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category have almost equal propensities towards the three: GCC,

NHC and F. Sk,kFp,GCC , S
k,kF
p,F and Sk,kFp,NHC for CCMENs under NNDP are

always < than the threshold 45° (red 2D plane) for all k and kF
values. As per the assumption no. 3 (refer to methods section:

probabilistic model assumptions) NNDP population may be equally

distributed among the three fates: GCC, NHC and F. In this case,

NNDP population corresponds to 3% of the exposed CCMEN.

GCC, NHC and F each will get an equal share of ~ 1%. This will be

added up to the respective fractional population directed towards

GCC, NHC and F derived from the model.

Kamada-kawai network plots (Figures 5A,B) reveal the fractional

selective preference of each class (k: Intermediary nodes) and its

corresponding subclass (kF: Leaf Nodes). No direct proportionality is

observed between odds ratio in favour of GCC and F interaction

(nodes label: numerator; Figures 5A, B respectively) and fraction of

population directed towards GCC and F (node labels: denominator;

Figures 5A, B respectively). The fraction of CCMEN population

directed towards GCC falls sharply as the degree of interaction

increases. The odds ratio falls below 1 for kF ≥3 (for all k). The

resultant conditional expected directional preference (E(x)kof Sp,k
(refer to Methods section) for GCC (Figure 6B) exactly resemble the

gross directional preference (Figure 6A). E(x)kof Sp,k for F increases

gradually (as ‘k’ tends to 11) and jumps over the threshold (sp=45°) for

k≥6 (Figure 6C). Since the E(x)5of Sp,5 for GCC, NHC and F falls short

of the threshold this class (k =5) may be designated as the class with

the highest NNDP population (Figure 6C). The overall odds ratio in

favour of GCC interaction is almost double (1.87) for a CCMEN

fractional population of 37% (directed towards GCC). This odds ratio
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prescribes a good fidelity of the selective preference of this fraction of

population towards GCC. This population primarily corresponds to

subclass 0≥kF < 4 (Figure 5A). 60% of the total exposed population of

CCMEN is directed towards F with significantly high odds in favour of

F interaction (3.58). This fraction of population primarily corresponds

to subclass 5≥kF < 11 (Figure 5B). NHC appears to attract a negligible

fraction of population (provided in database repository

RDO_datasets). The present model has the following shortcomings,

this model considers only three type of interactions i.e to GCC, NHC

and Factors however in realistic scenarios there will be more

interactions such as with certain immuno/inflammatory markers.

The upcoming upgraded model will be more comprehensive and

will include case specific interactions in addition to the present three

dimensional. The upcoming model will be able to handle customised

N-dimensional interactions. This model does not include Factor-

Factor interactions. The upgraded model will be able to handle this

type of interactions as well. As and when the model becomes more

comprehensive in upcoming upgraded version it will be able to

determine the net directional preference of more and more particle

fraction thereby reducing the particles within NNDP fraction. The

final prediction of the exposed CCMEN population (for Test culture

type II, Figure 5A): GCC = 38% (37P_model + 1NNDP)@Odds ratio in

favour of GCC=1.87, NHC = 1% (0 P_model + 1NNDP))@Odds ratio in

favour of NHC=1.5 and F = 61% (60P_model + 1NNDP))@Odds ratio in

favour of F=3.58. The model prediction for percentage/fraction of

CCMEN (exposed) population directed towards GCC (for Test

culture type I): GCC = 39% (39P_model + 0NNDP))@Odds ratio in

favour of GCC=4.63, NHC = Absent in Test culture type I and F =
FIGURE 6

Probabilistic Expected Directional preference. (A) 3D Sp plot @k interactions towards (B) Resultant E(x)kof Sp,k (C) comparison of E(x)kof Sp,k for GCC,
NHC and F.
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61% (61P_model + 0NNDP)@Odds ratio in favour of F >5. Model

predictions for test culture I were derived by supplying a zero

matrix for NHC input file of CBE values (cmnc.csv). The fraction of

CCMEN population directed towards GCC, F and NHC were

determined experimentally as discussed in methods section

(Experimental validation of model predictions: Eq 13). The model

predictions lie within ±7% of the experimentally observed values for

both (Test culture I and II). The probabilistic model efficiently predicts

the directional preference of the nanoparticle population.
Conclusion

A probabilistic model based on binding scores and expression

levels was implemented on python 3.9.1. The implemented

probabilistic model efficiently predicted the directional preference

(39%) of the exposed CCMEN towards Glioblastoma cancer cells. It

is recommended to selectively include those surface antigen on the

membrane encapsulated nanoparticles which enhance the value of

BEP. Higher the value of BEP more is the fraction of CCMEN

directed towards the Cancer cells. Present model may be applied to

determine the directional preference of an entity (e.g Nanoparticle

coated with cancer cell membrane) under the influence of three

directional forces in three dimensions. However, upcoming versions

will be able to deal with ‘N’ number of forces representing different

attractive entities for Cancer cell membrane coated Nanoparticles

in hyperspace.
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