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Endometriosis is closely associated with ectopic focal inflammation and

immunosuppressive microenvironment. Multiple types of pattern recognition

receptors (PRRs) are present in the innate immune system, which are able to

detect pathogen-associated molecular patterns (PAMPs) and danger-associated

molecular patterns (DAMPs) in both intracellular and external environments.

However, the exact role of PRRs in endometriosis and the underlying molecular

mechanism are unclear. PRRs are necessary for the innate immune system to

identify and destroy invasive foreign infectious agents. Mammals mainly have two

types of microbial recognition systems. The first one consists of the membrane-

bound receptors, such as toll-like receptors (TLRs), which recognize extracellular

microorganisms and activate intracellular signals to stimulate immune responses.

The second one consists of the intracellular PRRs, including nod-like receptors

(NLRs) and antiviral proteins retinoic acid-inducible gene I (RIG-I) and melanoma

differentiation-associated gene 5 (MDA-5) with helix enzyme domain. In this

review, we mainly focus on the key role of PRRs in the pathological processes

associated with endometriosis. PRRs recognize PAMPs and can distinguish

pathogenic microorganisms from self, triggering receptor ligand reaction

followed by the stimulation of host immune response. Activated immune

response promotes the transmission of microbial infection signals to the cells.

As endometriosis is characterized by dysregulated inflammation and immune

response, PRRs may potentially be involved in the activation of endometriosis-

associated inflammation and immune disorders. Toll-like receptor 2 (TLR2), toll-

like receptor 3 (TLR3), toll-like receptor 4 (TLR4), nod-like receptor family caspase

activation and recruitment domain (CARD) domain containing 5 (NLRC5), nod-like

receptor family pyrin domain containing 3 (NLRP3), and c-type lectin receptors

(CLRs) play essential roles in endometriosis development by regulating immune

and inflammatory responses. Absent in melanoma 2 (AIM2)-like receptors (ALRs)

and retinoic acid-inducible gene I-like receptors (RLRs) may be involved in the

activation of endometriosis-associated immune and inflammation disorders. PRRs,

especially TLRs, may serve as potential therapeutic targets for alleviating pain in

endometriosis patients. PRRs and their ligands interact with the innate immune

system to enhance inflammation in the stromal cells during endometriosis. Thus,

targeting PRRs and their new synthetic ligands may provide new therapeutic

options for treating endometriosis.
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Introduction

Endometriosis is a gynecological disorder characterized by the

presence of endometrial glands and stroma with growth function

outside the uterine cavity, which often causes clinical symptoms such

as chronic pelvic pain, infertility, and even tumors (1). Increased local

production of large amounts of progesterone by endometriotic stromal

cells combined with progesterone receptors deficiency lead to

progesterone resistance, which is associated with their reduced

capacity for decidualization (2). Moreover, aberrant activity of

aromatase enzyme combined with 17b-hydroxysteroid
dehydrogenase type 2 deficiency as a consequence of progesterone

resistance contribute to the abnormally high levels of estradiol in the

endometriotic tissue of endometriosis patients (3, 4). Endometriotic

stromal cells also secrete large amounts of immune mediators such as

interleukin-1b (IL-1b), IL-6, tumor necrosis factor-a (TNF-a),
RANTES (regulated upon activation, normal T cell expressed and

secreted), and MCP-1 (monocyte chemoattractant protein-1) (5).

Proliferation and invasiveness of endometriotic stromal cells are

supported by different chemokines produced in the endometriotic

microenvironment such as RANTES (CCL5), CCL2, CXCL8, and

thymus-expressed chemokine (CCL25) (6). It is suggested that

argument induced by inflammatory mediators such as IL-1b may be

through extracellular regulated protein kinases (ERK) signal pathway

(7). Epidemiological survey shows that the incidence of endometriosis

in women of childbearing age is about 10%, in infertile women it can be

as high as 25%-50%, and the risk of cancer in patients with

endometriosis is also significantly increased (8). Long-term

psychological stress seriously affects the quality of life of women in

their reproductive age and causes heavy economic burden to their

families and the society at large (9). However, little is known about the

mechanisms associated with the occurrence and development of

endometriosis (10), which poses a major challenge for the

development of efficacious therapeutic agents for treating

endometriosis, causing the average annual recurrence rate of

endometriosis after treatment to reach over 10% (11). Therefore, it is

urgent to alleviate the clinical symptoms related to endometriosis and

reduce the recurrence rate after treatment in the clinic. Understanding

the mechanisms underlying the pathophysiology of endometriosis is

paramount to improve the therapeutic efficacy of existing clinical

therapeutic options for endometriosis (12).

As early as 1927, Sampson proposed that the occurrence and

development of endometriosis was closely related to blood reflux. This

mechanism proposes that during menstrual period in women,

endometrial cells and tissue fragments survive through tubal reflux,

adhere to and invade the pelvic structure, leading to ectopic lesions

through the three processes of “adhesion-invasion-vascularization”.

Data indicates that patients with carbohydrate antigen 125 (CA125)

≥ 35 U/mL show a higher risk for pelvic adhesions. Moreover, a

previously published study identified important proangiogenic factor

such as vascular endothelial growth factor (VEGF), IL-1b, IL-6 and IL-
8 as well as TNF-a played important roles in the vascularization

process in endometriosis (13, 14). This mechanism is also recognized as

the classical mechanism of endometriosis (15). However, Sampson’s

blood reflux theory cannot fully explain the difference between the

incidence rate of blood reflex (90%) and the incidence rate of
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endometriosis (10%) (16). In recent years, based on the clinical

symptoms presented by endometriosis patients, studies (17, 18) have

proposed inflammation and immune mechanisms to be closely related

to endometriosis. Firstly, the main reason for infertility in

endometriosis patients is the formation of an endometrial

microenvironment that is not conducive to embryo implantation,

including the formation of anatomical scars and the adverse effects

of local inflammation on oocyte quality and early embryonic

development. Studies have shown that many important

inflammatory mediators are significantly elevated in the ectopic

lesions of endometriosis patients (19, 20). The formation of chronic

inflammatory microenvironment in the endometrium affects the

quality and maturation of oocytes (21). Low-quality embryos have

lower ability to implant, which is not conducive to pregnancy (22).

Secondly, studies have shown that the inflammatory

microenvironment of ectopic lesions in endometriosis patients

activates sensory nerve endings, and further increases the secretion of

inflammatory mediators, resulting in the transmission of pain

stimulation to the spinal cord, causing and maintaining chronic pain

in these patents (23, 24). Thirdly, endometrial microenvironment

immune disorder in endometriosis patients is also one of the

important reasons for infertility and pelvic pain (25). Studies have

shown that, based on Sampson’s theory of countercurrent blood flow,

the impaired immune surveillance of autologous cells and the overload

on the immune system to remove the endometrial debris promotes

immune disorder, which leads to the dysregulation of of innate and

acquired immune cell groups (such as CD8+ T cells, CD56+ NK cells,

CD163+ macrophages and so on) in endometriosis patients (26, 27). In

view of the above mechanisms, researchers also consider endometriosis

as an inflammation and immune-related disease, and identifying

molecules that specifically target such inflammatory and immune

response mechanisms in the endometrium will be the key to

improving the quality of life of endometriosis patients (28).

Pattern recognition receptors (PRRs) (Table 1) recognize

pathogen-associated molecular patterns (PAMPs) and can

distinguish pathogenic microorganisms from self (35–40). PAMPs

are highly conserved structures in various microorganisms (41),

including bacterial lipopolysaccharide, lipoprotein, peptidase,

flagellin, non-methylated CpG dinucleotide motifs (CpG-DNA), viral

double-stranded RNA, fungal cell wall and so on (42). PRRs trigger

receptor ligand reaction after recognizing PAMPs, followed by the

transmission of microbial infection signals to the cells to stimulate the

host immune response, thereby removing the pathogenic

microorganisms (43). On the basis of protein domain homology,

PRRs can be divided into five groups (44), namely, the toll-like

receptors (TLRs), c-type lectin receptors (CLRs), nod-like receptors

(NLRs), retinoic acid-inducible gene I-like receptors (RLRs), and

absent in melanoma 2 (AIM2)-like receptors (ALRs). The two major

classes of these families are membrane-bound receptors and unbound

intracellular receptors (45). The first class consists of TLRs, which are

mainly membrane bound receptors but may also be localized in

intracellular compartment occasionally (e.g., TLR3) and CLRs, which

are located in endocytic compartments or at the cell surface (46, 47).

These receptors identify microbial ligands in endosomes and the

extracellular environment. The second category consists of the NLRs,

RLRs, and ALRs and they are mainly found in the cytoplasm and
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recognize intracellular pathogens in the cytoplasm (35). The generation

of pro-inflammatory cytokines and interferons (IFN), which are

essential for triggering both innate and adaptive immune responses,

is a fundamental aspect of a PRRs-induced innate immune response

(48). Additionally, the activation of PRRs triggers non-transcriptional

reactions, which includes the induction of phagocytosis, autophagy, cell

death, and cytokine processing (49). Through carefully regulated signal

transduction pathways, these transcriptional and non-transcriptional

innate immune responses are linked to PRRs-mediated microbial

recognition (50). Immune responses are orchestrated by the

synchronization of various signaling pathways, which prevent the

spread of an initial infection and guide the proper adaptive response

(51). Endometriosis may develop in at least two waves. Bacterial

infection, for example with Escherichia coli, is the first stage. The

second wave of chronic and aseptic inflammation leading to tissue

damage may be caused due to a combination of apoptosis inhibition

and persistent inflammation, redox-active iron-dependent oxidative

stress, activation of PAMPs/danger-associated molecular patterns

(DAMPs) receptors and DAMPs released by the damaged cells. In

conclusion, endometriosis development is intimately linked to the

original infection and subsequent aseptic inflammation (52).

However, it is still unclear how PRRs and endometriosis are related.

Conventional medicine has only provided symptomatic pain relief so

far. In the current review, we assessed existing literature and examined

the association between PRRs and endometriosis, with the hope to

improve our understanding of the role of PRRs in endometriosis, guide

future research, and identify innovative therapeutic strategies to

treat endometriosis.
TLRs and endometriosis

TLRs

TLRs are type I transmembrane proteins consisting of two

domains, namely, a transmembrane domain, which is necessary for
Frontiers in Immunology 03
downstream signal transmission, and an intracellular domain

containing leucine-rich repeats (LRRs), which mediates the

recognition of PAMPs or DAMPs (53). The activation of TLRs

starts a chain of events that eventually results in the transcription of

several downstream genes involved in inflammatory response and

antimicrobial defense. There are currently 13 TLRs in the

mammalian family. Humans and rats share the same TLR1–9

receptors. In rodents, TLR10 is not functional, and humans do

not express TLR11–13 (54). TLRs differ from one another in terms

of their ligand specificities, expression patterns, and the

downstream signaling pathways that are being activated. TLRs are

crucial for controlling inflammation in both infectious and non-

infectious disorders (55). The levels of TNF-a, IL-1, IL-6, IL-1b,
and transforming growth factor b (TGF-b) in the TLR cascade are

known to be altered in endometriosis patients. The levels of IL-1b,
one of the pro-inflammatory cytokines secreted upon TLR

activation, are significantly higher in the extrauterine tissues and

peritoneal fluid of endometriosis patients than that of healthy

women (56–59). TLRs activation by PAMPs and/or DAMPs may

cause structural and functional alterations that accelerate the

development of endometriosis (52).
TLR4 in endometriosis

TLR4 is one of the members of the TLRs family. As an acute

receptor, TLR4 is widely expressed on the cell membrane of

immune cells. Previous studies (60, 61) have shown that TLR4 is

expressed by macrophages, dendritic cells, neutrophils, natural

killer cells and other immune cells (Figure 1). It plays an

important role in the onset and development of many diseases

and has emerged as a research hotspot in recent years (62, 63).

Several studies have validated TLR4 expression in the endometrial

cells (64, 65). In 2015, endometrial tissues from 15 patients

undergoing laparoscopic surgery were analyzed and the

expression of TLR4 protein was confirmed to be higher in the
TABLE 1 Pattern-recognition receptor families.

Family Members Shared
domains

Receptor locations Inflammatory cytokines References

TLR 1-10 in humans;1-9, 11-13 in mice LRR, TIR Cell surface, endosomal
compartments

IL-1b, IL-1, IL-12, IL-18, IL-6, IFN-g
and TNF-a

(25, 29)

CLR Dectin-1, Dectin-2,... etc. C-type lectin Cell surface IL-6, IL-10, IL-12, IL-17, IFN-g and
TNF-a,

(26, 30)

NLR NODI (NLRC1), NOD2 (NLRC2),
NLRC3-5, NLRP1-9, 11-14;NAIPl, -2,-5, -6

Nucleotide
binding, LRR

Cytoplasm, plasma, and
cndosomal membrane

associated

IL-1b, IL-1 and IL-18 (27, 31)

RLR RIG-I, MDA5, LGP2 DExD/H
helicase

Cytoplasm IFN (32, 33)

ALR AIM2, IFI16 PYRIN,
HIN-200

Cytoplasm, nucleus (IFI16) IL-1b, IL-6, IL-17, IL-8, IL-18, IL-22,
CCL2, CCL5, CCL20, IFN-g and TNF-
a

(28, 34)
AIM, absent in melanoma; ALR, AIM2-like receptor; CLR, C-type lectin receptor; IFI, interferon, g-inducible; LGP, laboratory of genetics and physiology; LRR, leucine-rich repeat; MDA,
melanoma differentiation gene; NAIP, NLR family, apoptosis inhibitory protein; NLR, nucleotide-binding oligomerization domain receptor; NLRC, NLR family CARD domain containing;
NLRP, NLR family PYD domain containing; NOD, nucleotide-binding oligomerization domain; RIG-I, retinoic acid–inducible gene I; RLR, RIG-I-like receptor; TIR, Toll/IL-1 receptor/
resistance; TLR, Toll-like receptor.
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endometrial stromal cells than in the endometrial epithelial cells,

suggesting the potential involvement of TLR4 in the regulation of

immune response in endometriosis (66). In the same year, another

study reported that the expression of TLR4 and TLR2 were higher

in the endometrial tissues from endometriosis patients than that of

normal endometrium, suggesting the potential role of TLR2 and

TLR4 in the development of endometriosis (67). In animal

experiments, investigators injected lipopolysaccharide (LPS) into

the peritoneum of mouse model of endometriosis and found that

the activation of LPS/TLR4 pathway induced the expression of

nuclear factor-kB (NF-kB) and promoted its translocation to the

nucleus, causing peritoneal macrophages and ectopic endometrial

cells to release inflammatory factors (68). LPS was also shown to

promote the proliferation and invasion of ectopic endometrial

stromal cells by inducing the upregulation of cyclooxygenase-2

(COX-2) and prostaglandin E2 (PGE2). Endometriosis has been

associated with an altered profile of intestinal microflora in rhesus

monkeys, and it is linked to higher concentrations of gram-negative

bacteria. Based on these studies, we speculated that as carriers of

LPS, different gram-negative bacteria, such as Escherichia coli,

residing in the vagina could be involved in the pathogenesis of

endometriosis in humans. LPS, one of the most pro-inflammatory

mediators, induces the expression of COX-2 in the periphery.

Endometriotic lesions have high COX-2 and PGE2 biosynthesis

compared with the normal endometrium. The addition of NF-kB
inhibitor has been reported to inhibit the effect of LPS on
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endometriotic lesions in mice (69). In addition, inflammatory

cytokines such as TNF-a and IL-6 activate c-jun terminal kinases

(JNK) in the endometrial cells of endometriosis patients (70).

Activation of the JNK signaling pathway further up-regulates the

expression of inflammatory cytokines and promotes endometrial

cell proliferation by regulating protein translocation (such as

MEKK1/4, MLK1-4, ASK1 and MKK4/7) across the cytoplasm

and nucleus (71). Although clinical evidence is still lacking, it can

still be boldly speculated from the existing cell and animal

experiments that the PAMPs (such as LPS) released by

pathogenic microorganisms, which enter the upper reproductive

tract with countercurrent blood are recognized by TLR4 on

endometrial cells. This activates the TLR4 inflammatory signal

pathway and promotes the recruitment and activation of immune

cells (such as macrophages), triggers local inflammatory response,

and promotes the secretion of different inflammatory factors and

growth factors, stimulates the proliferation of endometrial cells, and

continuously activates and maintains the inflammatory

microenvironment. Also, LPS or PAMPs may furtehr promote

the adhesion, invasion or proliferation of endometrial cells,

expanding the transmission of the local inflammatory response,

and finally leading to the initiation and development of

endometriosis. Continuous inflammatory injury also causes the

damaged cells to release DAMPs such as heat shock protein 70

(HSP70), high mobility group box-1 (HMGB-1) protein and so on,

leading to the activation of TLR4 mediated inflammatory response,
FIGURE 1

Toll-like receptors in endometriosis. By enlisting particular adaptor molecules such as MyD88, TIRAP, TRAM, and TRIF, TLR4, TLR2 and TLR3 are able
to recognize these chemical signals. This sets off a chain of biological processes that activates the transcription factor NF-kB. The pro-inflammatory
cytokines IL-1 (pro-IL-1b) and IL-18 are then transcriptionally induced as a result of activated NF-kB translocating to the nucleus. Parallel to this,
cytosolic PRRs (NLRs, ALR and Pyrin) also identify DAMPs and PAMPs, and they do so by recruiting the adaptor ASC to create an inflammasome, the
assembly of which triggers the cysteine protease caspase-1. The pro-inflammatory form of programmed cell death known as pyroptosis is brought
on by caspase-1 activation, which also encourages the proteolytic cleavage and maturation of pro-IL-1b and pro-IL-18. Endometriotic tissue
proliferation, migration, and invasion results from the activation of NF-kB-induced proinflammatory cytokines and pyroptosis, ultimately resulting in
the development of endometriosis. The meaning of symbol "*" is active caspase-1.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1161606
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1161606
and causing further tissue damage. Therefore, such a vicious cycle

continues to occur in ectopic endometrial lesions.
TLR3 in endometriosis

TLR3 is one of the important members of the PRR family,

which is essential for innate immunity. By recognizing endogenous

and exogenous ligands, it participates in a variety of activities,

including cell proliferation, apoptosis, angiogenesis, tissue

remodeling, and repair (72). TLR3 signaling (Figure 1) also

depends on the protein TIR-domain-containing adapter-inducing

interferon-b (TRIF). Given the function of TRIF, the TLR3

signaling pathway is focused on the following two directions. NF-

kB and the activator protein-1 (AP-1) transcription factor are

activated by one pathway, while interferon regulatory factor 3

(IRF3) and IRF7 are activated by the alternate pathway (73).

Transforming growth factor-b-activated kinase 1 (TAK1) is

activated by TRIF through tumor necrosis factor receptor-

associated factors 6 (TRAF6) and a number of other adaptor

proteins (Table 2). Kinases and mitogen-activated protein kinase

(MAPK) are activated by TAK1. By phosphorylating and degrading

its inhibitor (i.e. inhibitors of kappa B (IkB)), inhibitory kappa B

kinases (IKKs) activate NF-kB. IkB and NF-kB are then transported

to the nucleus, where they promote the transcription of genes

encoding inflammatory cytokines such as IL-6 and IL-8 (77, 78).

TRIF induces interferon expression via TRAF3 and subsequently, it

enhances type I and type III IFN production and also induces the

transcription of a series of IFN-responsive genes. TLR3 is expressed

by the endometrial tissue, dendritic cells, macrophages, and

fibroblasts, as well as endothelial and epithelial cells.

Moreover, endometrial epithelial tissue expresses TLR3 in a

menstrual cycle-dependent manner (79). By simultaneously

measuring all TLRs, the above study measured their altered

expression profiles, and showed their positive correlation with the

expression of the IL-6 and IL-8 genes, suggesting their potential

contribution to the inflammatory etiology of adenomyosis (80).

Compared to the control endometrium, both the ectopic and the

eutopic endometrium showed higher expression levels of TLR3

mRNA and protein (80). They tested the mRNA expression levels of

a few selected genes involved in specific signaling pathways

(TICAM, NF-kB1A, CXCL10, IRF3, IFN-B1, IL-6, and IL-8) in
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clinical specimens, to ascertain whether or not the elevated

expression of TLR3 gene transcript in the endometriosis tissues

resulted in a shift in the expression of downstream signaling

molecules (81). TRIF is activated upon TLR3 binding and triggers

the activation of NF-kB signaling pathway, which subsequently

promotes the release of pro-inflammatory and inflammatory

cytokines such as IL-6 and IL-8. Endometriosis patients also

showed significant and obvious alterations in the mRNA

expression levels of other genes in the TLR3 cascade, indicating

that eutopic endometrium experiences an intense inflammatory

state similar to that of the ectopic endometrium. These changes

were in addition to the elevation in the levels of IL-6 and IL-8.

Intriguingly, the findings from the above studies revealed a

considerable difference in the expression of the aforementioned

genes between ectopic and eutopic endometrium, indicating that

the latter is capable of evading immune surveillance due to

fundamental changes in immune response. The proliferation and

viability of endometrial cells are thought to be enhanced by

increased TLR3 expression and consequent increase in the levels

of interferons and pro-inflammatory cytokines (82).
TLR2 in endometriosis

By establishing functional heteromeric complexes with TLR1,

TLR4, and TLR6, TLR2 is known to have anti-microbial functions

and is involved with lipopeptides that identify bacteria in synergy

with these receptors (74, 83). TLR2 (Figure 1) may play a crucial

role in the pathogenesis of endometriosis patients. In addition to

the vast set of TLRs, TLR2 in particular, plays important

roles in bacterial, viral, and fungal infections (84), along with

immunological roles as a crucial signaling molecule of the innate

immune system (85). Researchers assessed the levels of numerous

immunological cell subsets (dendritic cells, monocytes, and basic

peripheral blood lymphocytes) expressing TLR2 and evaluated the

potential correlation between the expression of TLR2 and the

clinical characteristics of endometriosis patients (86).

Overall, there are only few reports that have explored TLRs in

patients with endometriosis, leaving only a small amount of

information related to the presence of TLRs 1, 2, 3, 4, 5 and 6 in

the epithelium of the female genital tract at different sites (87).

TLR1-6 was reported to be expressed in endometrial samples while
TABLE 2 Adaptor proteins.

Adaptor or adaptor
set

Receptor
interaction

Signaling interaction Localization References

TIRAP/MyD88 TIR domain Death domain Cell surface, endosomal compartments (74)

TRAM/TRIF TIR domain TRAF binding, RHIM domain Cell surface, endosomal compartments (55)

MAVS CARD
domain

Proline-rich region, TRAF
binding

Mitochondrial, peroxisomal, and mitochondria-associated
membranes

(75)

ASC PYRIN CARD domain Cytosol, mitochondria (76)
ASC, apoptosis-associated speck-like protein containing a CARD; CARD, caspase recruitment domain; MAVS, mitochondrial antiviral signaling protein; RHIM, RIP homotypic interaction
motif; TIR, Toll/IL-1 receptor/resistance; TIRAP, TIR-containing adaptor protein; TRAF, TNF receptor–associated factor; TRAM, TRIF-related adaptor molecule; TRIF, TIR domain–containing
adaptor-inducing IFN-b.
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TLR10 was not (88). The greatest hurdles on the path to an early

diagnosis of endometriosis includes the absence of biomarkers that

could be non-invasively utilized to detect endometriosis. Further

studies investigating the cost effectiveness of utilizing blood cells

expressing TLRs as clinical markers of endometriosis needs to be

explored for early disease detection.
CLRs and endometriosis

CLRs

The crucial pathogen pattern-recognition molecules known as

CLRs are known to identify the shapes of carbohydrates (89). When

a ligand binds to a CLR, many cellular responses are brought about,

including a respiratory burst, the secretion of cytokines and

chemokines, and ultimately the initiation of adaptive immunological

responses (90). In recent cutting-edge research, CLRs have been shown

to play a crucial role in initiating anti-inflammatory immune responses

and maintaining homeostasis in host immunological response (91).
CLRs in endometriosis

Immunoglobulins and CLRs work in synergy and are intimately

connected in the etiology of endometriosis (92). Among patients

suffering from benign disease, endometriosis and malignancy, a

previous study compared the expression levels of mRNAs which

encoded CLRs and their adaptive molecules associated with the

innate immune reaction, along with their protein expression (31).

They found that the etiology of endometriosis was directly related to

the combined action of CLRs, its adaptor mRNA molecules,

immunoglobulin G (IgG), IgA, and IgM. These CLRs and the

associated endometriosis mechanisms are illustrated by a few

examples in Figure 2. Another study investigated the potential

role of mannose receptor, C-type 2 (MRC2) in the development

of Treg cells by co-culturing ESCs with mannose receptor C,

macrophages and naïve CD4+ T cells and along with the

knockdown of MRC2 (93). Compared with the vector group, the

proportion of Treg cells, in particular CD4 high regulatory T cells

(Tregs), was increased in the MRC2-silenced group, which

indicated that MRC2 was essential for the emergence of Treg cells

within the endometriotic tissue. The peritoneal DCs within the

endometriotic tissue exhibited high levels of mannose receptor

(MR), making them more capable of phagocytosing dead

endometrial stromal cells and enabling the development of

endometriosis (94). Endometriosis treatment options could

include the modulation of MR expression or activity in peritoneal

DCs. The function of DC-SIGN+ macrophages within the

immunological milieu of endometriosis has been investigated

before (95). The number of macrophages within the abdominal

immune microenvironment in patients with DC-SIGN+ CD169+

endometriosis was found to be elevated. When Colony stimulating

factor-1 (CSF-1) was added to induce the polarization of

macrophages to DC-SIGN+ CD169+ phenotype and generate DC-
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SIGN+ macrophages, the level of peripheral blood lymphocytes

decreased, which was comprised of a high percentage of Treg cells

as well as a low percentage of CD8+ T cells. Further investigation of

the mechanism and biological functions of DC-SIGN+

macrophages that are activated by CSF-1 would enable a better

understanding of the pathophysiology of endometriosis. There are 4

new somatic mutations in caspase activation and recruitment

domain (CARD)10 and CARD11 in 4.0 percent (4/101) of

patients with ovarian endometriosis (96). According to the above

findings, these mutations were mutually exclusive and promoted a

beneficial effect on the pathogenesis of ovarian endometriosis. SRC

signaling was active in both the eutopic endometrium of

endometriosis patients and in in vitro models of endometriosis,

and their findings suggested the novel therapeutic potential of Src

inhibition (Src-pY416) for treating endometriosis-associated

ovarian cancers (EAOCs) (97). Endometriosis exhibited sustained

activation and dysregulation in the T-cell immunoglobulin and

mucin domain-3 (TIM-3)/Galectin-9-dependent pathway, which

likely induced a weakening of immune surveillance mechanisms,

promoting the survival of ectopic lesions, eventually contributing to

the progression of reproductive failure in endometriosis patients

(98). Serum soluble triggering receptor expressed on myeloid cells-1

(sTREM-1) may serve as a prognostic indicator for female

fecundity, possibly due to poor immune system inflammation

(99). By comparing follicular fluid, serum, and endometriosis loci

with the peritoneal fluid, they suggest that the function of sTREM-1

needs to be re-examined in endometriosis patients.
NLRs and endometriosis

NLRs

NLRs are the regulatory nexuses for a variety of biological

processes and are a family of widely used and highly developed

signaling regulators (100). These proteins combine incoming signals

that are both positive and negative, and in response, they activate

additional signaling regulators that are implicated in cancer,

inflammatory pathways, cellular senescence, and stemness (101).

NLRs are PRRs that particularly recognize PAMPs, which were

first studied as important regulators of immune response (102). Several

gene mutations have been identified in NLRs, which render these

proteins incapable of detecting PAMPs or self-assembly (102). By

interfering with the NF-kB, MAPK, and/or caspase-1 signaling

pathways, NLR variants with gain-of-function or loss-of-function

mutations may contribute to the development of inflammatory

disorders. The idea that innate immune signaling significantly

contributes to the pathogenesis of endometriosis has also lately

gained support due to accumulating evidence (103). Inflammatory

signaling pathways may be taken over by endometriosis, leading to the

proliferation, migration, and invasion of endometrial cells. However,

the precise biochemical link between inflammation and endometriosis

is still unknown. Since NLRs serve as signaling nodes in innate

immunity, they are speculated to be potential therapeutic targets for

treating endometriosis that is accompanied by inflammation.
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NLRC5 in endometriosis

The innate immune molecule NLR family CARD domain

containing 5 (NLRC5) is one of the highly conserved members of

the newly discovered NLRs-like receptor family (104). Under the

action of IFN-g, two kinds of signaling transmitters and a

transcriptional activator binding site on the promoter of NLRC5

bind to the phosphorylated STAT1 dimer, and the activated NLRC5

translocates to the nucleus (105) (Figure 3A). The translocation of

NLRC5 from the cytoplasm to the nucleus also increases its

regulatory function and scope (106, 107). Studies have reported

that NLRC5 is widely involved in a variety of cellular processes,

including immune, inflammatory and cell fate. In the immune

response, NLRC5, as a major histocompatibility complex class I

(MHC I) gene transactivation factor, activates the transcription of

MHC I gene and the subsequent antigen presentation process (108,

109). Relevant studies have shown that NLRC5 is involved in

mediating the immune escape of tumor cells, and activation of

NLRC5 is known to inhibit tumor progression by promoting anti-

tumor immune response (110, 111). During inflammatory response,

NLRC5 may be involved as a negative regulator, suppressing

inflammatory response by inhibiting the NF-kB inflammatory

signaling pathway and the secretion of inflammatory factors (112).

Notably, NLRC5 likely acts as a negative regulator in the development
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of endometriosis by inhibiting inflammation. By collecting clinical

specimens of eutopic and ectopic endometrium from endometriosis

patients, Zhan and co-workers found that the expression of NLRC5

in the above tissues from endometriosis patients was significantly

higher than that in the normal endometrium (113). Mechanistically,

NLRC5 inhibited inflammation by promoting autophagy through the

extraction of secretory ectopic endometrial stromal cells (114).

Therefore, these studies indicated that inflammatory conditions in

endometriosis patients contributed to the elevated expression of

NLRC5, where elevated levels of NLRC5 could suppress

endometriosis by inhibiting inflammatory response.
NLRP3 in endometriosis

NLR family pyrin domain containing 3 (NLRP3), a

representative of the NLR family, is a type of extracellular

receptor that detects exogenous and intrinsic danger signals (115).

Previous studies have suggested that the development of

endometriosis may be influenced by the NLRP3 inflammasome

(57, 116). NLRP3, the adaptive protein apoptosis-related spotted

protein has a caspase activation and recruitment domain (ASC),

and along with caspase-1 (117), they make up the NLRP3

inflammasome (Figure 3B). The proteolytic enzyme, caspase-1, is
FIGURE 2

Role of C-type lectin-like receptors in endometriosis. CLRs belonging to the “Dectin family” recognize a variety of self-derived ligands, including
pathogen-associated molecular patterns (PAMPs). Binding to PAMPs results in the activation of the immune-receptor tyrosine-based activation motif
(ITAM), which attracts and activates kinases from the SYK family. Endometriosis may be aided by the subsequent activation of the Card9-Bcl10-Malt1
complex through SYK, which results in NF-kB activation and the transcription of a number of chemokines and cytokines (CLEC4E alias INCLE).
Alternately, increased synthesis of ROS and IL-1 (CLEC8A), which alters gene expression and releases ROS into the extracellular matrix, may control
immune response. On the other hand, activation of the immune receptor’s tyrosine-based inhibition motif (ITIM) results in the recruitment and
activation of SHP-1 and SHP-2 as well as the dephosphorylation of activation motifs, preventing further activation by other PRRs such as CLEC12A.
Hemi-ITAM (HITAM), a component of CLEC9A, is essential for CD8+ T cell cross-priming.
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involved in the process of pyroptosis (118). Gasdermin D is an

executor of pyroptosis and required for IL-1b secretion (119).

Pyroptotic cell death defends against intracellular pathogens in

addition to its role in IL-1b release (120). NLRP3 inflammasome-

mediated pyroptosis has been reported to play a significant role in

the development of inflammatory diseases (121). Moreover, in a

mouse model of endometriosis, they showed that the loss of NLRP3

reduced the bulk of endometrial pathology (122), and suppression

of endometrial infiltration through the repression of NLRP3

activation and IL-1b generation in the mouse endometrial tissues,

providing evidence for the involvement of the NLRP3

inflammasome in the pathogenesis of endometriosis (123). It was

reported that estrogen promoted IL-1b production through

estrogen receptors b mediated activation of the NLRP3

inflammasome in a murine model, which exacerbated the

progression of inflammation and endometriosis, providing

additional evidence for the role of NLRP3 inflammasome in

endometriosis. Tripartite motif 24 ubiquitinated NLRP3, and its

absence increased the activity of the NLRP3/Caspase-1/IL-1b-
mediated pyroptosis signaling, which was suggested as the

mechanism by which human endometrial stromal cells (hESCs)

migrated and released the pro-inflammatory cytokines IL-1b and

IL-18, promoting endometriosis (124). Targeted suppression of

NLRP3 dramatically slowed the progression of endometriosis

lesions and fibrogenesis in a mouse model of endometriosis (125).

According to their research, mast cells were involved in the

development of endometriosis through the activation of the

NLRP3 inflammasome, which is known to be a nuclear-initiated

estrogen signaling pathway. Progesterone suppresses the uptake of

estrogen-induced NLRP3 inflammasome and IL-1b production

through autophagy inducible inhibition. This study confirmed the

anti-inflammatory function of autophagy in endometrial stromal

cells (126). They also identified that the pathogenesis of

endometriosis might be significantly supported by the imbalance
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in autophagy dependent NLRP3 inflammasome activation. NLRP3/

IL-1b contributed to the etiology of endometriosis, and NLRP3

suppressors (MCC950) possibly helped to reduce ovarian

endometriosis as well as enhanced the functionality of ovaries

affected by endometriosis (127). These results indicated that

NLRP3 suppressors may serve as a potential therapeutic target for

the treatment of endometriosis.
RLRs and endometriosis

RLRs

Cytoplasmic nucleic acid receptors known as RLRs bind to

RNA viruses, intermediary molecules in RNA replication, and

transcription products (128). Retinoic acid-inducible gene I,

melanoma differentiation factor 5 (MDA5) and laboratory of

genetics and physiology 2 (LGP2) are the 3 components that

constitute the RLRs family of receptors (129).
Potential association between
endometriosis and retinoic RLRs

Mitochondrial antiviral-signaling (MAVS) protein is a key factor in

the signal transduction pathway through RLRs receptors (130). During

persistent viral infections and chronic immune activation, an elevated

interferon signature and lymphoid tissue destruction correlate with

disease progression. For example, in the context of a more physiologic

HBV infection with a recombinant virus, HBV induced only a transient

and modest increase in the expression of IFN and pro-inflammatory

genes, which was associated with a persistent infection (131). When

MAVS (Figure 4) is triggered, a giant signaling complex composed of

TRAF protein and TBK1 (or IKKE (IkB kinase-E)) protein starts
BA

FIGURE 3

Role of NOD-like receptors in endometriosis. (A) NLRC5 and endometriosis. Firstly, the expression of the MHC class I gene is inversely associated
with NLRC5 methylation. Secondly, inflammatory bodies can be created when NLRC5 and NLRP3 interact in the presence of pathogens. Finally,
NLRC5 regulates immune response through a variety of signaling pathways that have been shown to play significant roles in the emergence of
immune disorders, hence promoting the development of endometriosis. (B) Active NLRP3 inflammasome recruits ASC, followed by caspase-1
activation, IL-1b secretion and programmed cell death, leading to the development of endometriosis.
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forming a prion-like filamentous structure. The ubiquitin chains

attached to the TRAFs activate the IKK-a-IKKB-IKK-y triple

complex. IRF3, IRF7, and/or NF-kB are subsequently activated as a

result of this. IRF3, IRF7, and NF-kB boost the transcriptional activity

of the genes such as the IFNs as well as other cytokines like TNF, IL-6,

and IL-8 (108), with the help of AP-1. These inflammatory factors may

be related to the development of endometriosis (132).
ALRs and endometriosis

ALRs

An extensive network of structurally related proteins known as

ALRs are thought to function as intracellular DNA sensors, notifying
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the innate immune systemwhen DNA is present on the cell membrane

of infected or stressed cells (133, 134). Humans have 4 members in the

ALR family (AIM2, interferon gamma-inducible 16 (IFI16), IFIX

(PYHIN1), and MNDA), but mice have 13 members (including

AIM2, p202, p203, p204, p205, p207, pyhin1) (135, 136). The

inflammasome is also activated by proteins such as pyrin, AIM2, and

IFI16. PRRs have received significant attention in recent years due to

the variety of infectious and sterile stimuli that they can respond to,

implicating them in a variety of disorders (137, 138). Pyroptosis, an

inflammatory version of cell death, always occurs when the

inflammasome is activated (139). Due to the nature of this type of

cell death, pyrogenesis in the affected cells leads to the eradication of the

etiological sites but is associated with tissue damage (140). We

speculate that ALRs may trigger the inflammasome to promote

endometriosis development.
FIGURE 4

Potential association between RLRs and endometriosis. Nuclear translocation of the transcription activators IFN regulatory factor (IRF)3/7 and NF-kB
and the detection of viral nucleic acids both intracellularly and extracellularly by nucleic acid sensors activate intracellular signaling pathways, which
in turn activate the type I and type III interferon (IFN) genes. When type I and type III IFNs are secreted, they bind to their corresponding IFN
receptor (IFNR) complexes in an autocrine and paracrine manner, activating a secondary signaling pathway. Strong antiviral responses are produced
as a result of the downstream JAK-STAT pathway activating the transcription complex IFN-stimulated gene factor 3 (ISGF3), which in turn causes the
production of hundreds of IFN-stimulated genes (ISGs). Since IFN-induced antiviral activity is essential for eradicating infectious viruses, a delayed or
inadequate response causes the virus to spread unchecked. Interferon, on the other hand, is essential for controlling adaptive immunity. The
development of autoimmune or autoimmune inflammatory illnesses, cytokine storms, and inflammation can all result from the excessive or chronic
activation of interferon signaling, which may also be linked to the development and progression of endometriosis.
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Potential association between
endometriosis and ALRs

ALRs are present in the cytoplasm in its inactive conformation

(141). AIM2 (Figure 5A) acquires an open, active conformation

upon association with cytoplasmic DNA in a sequence-independent

manner. This conformation allows it to attach with the adaptor

protein ASC, which binds to caspase-1 (142). As a result, there is a

whole inflammasome that enables the function of caspase-1 and

proteolytic processing as well as activates the cytokines IL-1 and IL-

18 (143). Some diseases are characterized by the release of DNA

from the pathogen into the cytoplasm. The type-I interferon

response induces the expression of guanylate-binding proteins

(GBPs) and IRGB10. In order to enable the pathogenic DNA to

be released into the cytoplasm, where AIM2 can be triggered, GBPs

and IRGB10 combine with the pathogens and break their

membranes (144). Overall, activation of the AIM2 inflammasome

appears to be critical for host protection as well as clearance of

intracellular pathogens such as bacteria, viruses, fungi and parasites

(145). AIM2 activation or some pathogen and host encoded

modulators may also regulate pathogen proliferation,

inflammation, and tissue damage (146). Therefore, further

research on the implications of AIM2 inflammasome activation

are necessary. The IFN-inducible p200 (also known as PYHIN)

family, of which IFI16 is a member, is primarily composed of

nuclear proteins (147). Assembly of the nuclear IFI16 (Figure 5B)

inflammasome is triggered by IFI16’s recognition of the KSHV
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genomes (148). Upon sensing DNA, cytosolic and nuclear (IFI16)

PYHIN proteins recruit an adaptor protein (ASC) and pro-caspase-

1 to form an inflammasome, which activates caspase-1. Activated

caspase-1 then cleaves pro-IL-1b and pro-IL-18 to generate their

active forms (149). In earlier studies (150, 151), IFI16 has been

implicated in the regulation of the cell cycle, differentiation and

apoptosis, which are explained in greater detail elsewhere.

Inflammasome-mediated pyroptosis has been reported to play an

important role in the development of inflammatory diseases. We

hypothesiz that loss of ALRs reduces the volume of endometrial

pathology and inhibits endometrial infiltration by inhibiting the

inactivation of ALRs and IL-1b production in endometrial tissues,

which is a possible mechanism for the involvement of ALRs

inflammasome in the pathogenesis of endometriosis. However,

animal studies or clinical evidence showing a specific link

between ALR inflammasome and endometriosis is lacking.
Potential clinical applications of PRRs
for treating endometriosis

Several modern treatment options are currently available for the

management of endometriosis symptoms (152). Several arguments can

be made for the use of medical treatment in endometriosis for lifelong

management. For example, both hormonal and Non-steroidal anti-

inflammatory medications (NSAID) treatments decrease

inflammation, which is a key aspect of the pathogenesis of
BA

FIGURE 5

Potential association between ALRs and endometriosis. (A) Mechanisms associated with AIM2 inflammasome activation. AIM2 is present in an
inactive state in the cell’s cytoplasm. AIM2 acquires an open, active conformation after binding to cytoplasmic DNA in a sequence independent
manner. This conformation enables attachment to the adaptor protein ASC, which binds to caspase-1. This entire inflammasome enables caspase-1
activation, proteolytic processing, and cytokine IL-1 and IL-18 activation. Some diseases require the release of their DNA into the cytoplasm from
inside the pathogen itself. The type-I interferon response induces guanylate-binding proteins (GBPs) and IRGB10. In order to enable the release of
pathogenic DNA into the cytoplasm, where it can activate AIM2, GBPs and IRGB10 bind to pathogens and break down their membranes. Thus, AIM2
may be involved in the pathogenesis of endometriosis. (B) Inflammasome is assembled in the nucleus by IFI16. IFI16’s recognition of KSHV genomes
results in the assembly of nuclear IFI16 inflammasomes. The formation and development of endometriosis may be linked to the inflammasome’s
translocation to the nucleus, and then it cleaves pro-IL-18 into its physiologically active version.
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endometriosis. However, all these therapies serve as suppressive

measures rather than therapeutic ones. Endometriomas, deeply

infiltrating diseases, and increased fecundity cannot be treated with

the currently available medical interventions (153). NSAIDs and

hormone therapy have served as the cornerstones of conventional

endometriosis treatment. The most widely used hormonal medications

include a combined oral contraceptives (COCs), progestogens,

gonadotropin-releasing hormone (GnRH) agonists, androgens, and

anti-progestogens (154, 155). All of them are thought to have

comparable effectiveness but differing, sometimes unfavorable,

tolerability profiles. Because pain has the greatest influence on the

quality of life of endometriosis patients and is the condition for which

novel medical treatments are most urgently needed, we focused on

medications based on their pain reduction ratings as the key endpoint

(156). Currently, there are a few medical treatments available for

patients seeking relief from discomfort symptoms, especially those

who are trying to get pregnant (157). We are aware of this unmet need

and have reassessed our approach for the development of novel

therapeutics by focusing on processes like inflammation and

pertinent receptors or signaling pathways implicated in the

production of pain symptoms. This was achieved by taking

advantage of new and emerging information on the pathophysiology

of the disorder. Several registered clinical studies exploring the efficacy

of new pharmacological therapies have considered endometriosis-

related pelvic discomfort as one of the major inclusion criteria for

the patients (Table 3). We identified that medications which were

frequently prescribed for endometriosis in medical settings could also

affect other illnesses by acting on PRRs. The discovery that aspirin

could influence other disease processes through PRRs caught us by

surprise. Aspirin, for instance, protects against acute kidney injury

caused by lipopolysaccharide through the TLR4/MyD88/NF-kB
pathway (158). At the same time, it was shown that aspirin-triggered

lipoxin reduced cerebral infarction through the regulation of TLR4/NF-

kB-mediated endoplasmic reticulum stress in a mouse model (159).

Indobufen, aspirin, and their combinations with clopidogrel or

ticagrelor reduced the symptoms of inflammasome-mediated

pyroptosis in ischemic stroke by blocking the NF-kB/NLRP3
signaling pathway (160). Progesterone induced blocking factor

(PIBF), which was identified as a possible therapeutic target, has

been reported to be involved in some leukemia patients to evade

immune monitoring. Progesterone, through its effects on the LPS

receptor, TLR signaling, and antimicrobial peptides, may affect

infection and autoimmune disease progression (168). Progesterone

inhibits interferon signaling by suppressing the expression of TLR7 and

the myxovirus resistance protein A in the peripheral blood

mononuclear cells of hepatitis C virus-infected patients (161).

Progesterone plus vitamin D treatment reduced inflammation after

traumatic brain damage and did so by modulating the TLR4/NF-kB
signaling pathway (162). Progesterone also protected against Ab-
induced NLRP3-Caspase-1 inflammasome activation by increasing

autophagy in astrocytes (163). Progesterone was shown to reduce

stress-induced NLRP3 inflammasome activation and increase

autophagy after ischemic brain injury (164). In monocytes from

preeclampsia-affected pregnant women, progesterone and vitamin D

inhibited the activation of the TLR4-MyD88-NF-kB pathway and the

NLRP1/NLRP3 inflammasomes (165). In endometrial epithelial cells,
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LPS andHMGB-1 stimulated TLR4 expression, which was inhibited by

dienogest (169). Blocking corticosterone activity with the

glucocorticoid receptor antagonist mifepristone, suppressed the

elevation of NLRP3 and HMGB1 in unchallenged rats, regulated the

proinflammatory response to LPS, and prevented memory impairment

(166). Mifepristone exerted protective effects against NLRP1

inflammasome activation and prolonged dexamethasone-induced

damage to hippocampus neurons (167). Therefore, strategies to block

the NLRP1 inflammasome axis may serve as potential therapeutic

options for the treatment of endometriosis.

As mentioned above, medications frequently used in

endometriosis treatment may also be effective against other

diseases due to their action on PRRs. Meanwhile, given the

significant roles that PRRs play in the pathophysiology and

progression of many diseases, they may be useful therapeutic

targets (43). However, there may be a safety concern because

many of these receptors regulate NF-kB and IRF activation,

similar to other PRRs, and their inhibition may interfere with

host immune response to infection (170). It makes sense to look

at potential targets upstream of this event that may decrease the

activity of some PRRs while preserving the ability of other PRRs

that respond to infection. Additionally, inflammation and

neurological pathways also have a role in the development of

endometriosis-related pelvic pain (171). Closely associated with

pain induced by neuronal pathways are PRRs, particularly TLR

receptors (172–174). Lidocaine affects nerve terminals and

intraperitoneal macrophages in addition to having anti-

inflammatory characteristics (175, 176). A double-blind,

randomized, phase-II clinical trial was conducted to assess the

effect of lidocaine on endometriosis patients with severe

dysmenorrhea. Based on this randomized controlled trial, patients

with endometriosis and dysmenorrhea may benefit from treatment

with lidocaine as a non-hormonal therapy (177). In LPS-stimulated

murine macrophages, lidocaine strongly suppressed the activation

of TLR4, NF-kB, and MAPKs (178). In a mouse model of allergic

airway inflammation, lidocaine reduced allergic airway

inflammation through TLR2, indicating that the TLR2/NF-kB/
NLRP3 pathway may provide a promising therapeutic approach

for treating allergic airway inflammation (179). In summary, we

speculate that indobufen, aspirin, and their combinations with

clopidogrel or ticagrelor may find several potential applications

for targeting PRRs in the treatment of endometriosis.
Discussion

The functions of PRRs in endometriosis have been outlined in

this review. Suppression of hyperinflammatory response and

controlling regular infectious agents could be used as a potential

therapeutic target for the treatment of endometriosis. Although

experience suggests that the PRRs-mediated immune and

inflammatory responses are involved in endometriosis, additional

research is needed for clarifying the following issues:

(1) The role of RLRs and ALRs in endometriosis: There has

been a huge progress in our understanding of the role of TLRs,

NLRs, and CLRs in endometriosis. Other PRRs, such as RLRs and
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ALRs are also important immune response initiators, similar to

TLRs, NLRs, and CLRs. However, their functions in endometriosis

are still unknown. Better understanding of the function of the above

receptors in endometriosis would enable the discovery of novel

therapeutic targets in endometriosis and help improve the clinical

symptoms of endometriosis patients.

(2) PRRs produced from non-immune cells and their functions in

endometriosis: A great deal of research has been done to identify the

function of immune cell-derived PRRs in endometriosis. However,

there is accumulating evidence that the immune response to

endometriosis is also heavily dependent on the expression of PRRs

that are expressed in non-immune cells, such as endothelial and

epithelial cells. Nevertheless, additional studies are necessary in order

to fully understand their function in endometriosis.

(3) Creation of brand-new PRRs antagonists and inhibitors:

Endometriosis treatment strategies may change if PRRs and the

signaling proteins they interact with are targeted. Sadly, there have

been incredibly few clinical trials on the use of PRRs inhibitors and

antagonists for the management of endometriosis symptoms. The

creation of novel PRRs inhibitors and antagonists, as well as the

confirmation of their therapeutic functions in endometriosis, may

represent a viable approach for the development of new therapeutic

strategies for treating endometriosis.
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