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Background: Inclusion body myositis (IBM) is a slowly progressive inflammatory

myopathy that typically affects the quadriceps and finger flexors. Sjögren’s

syndrome (SS), an autoimmune disorder characterized by lymphocytic

infiltration of exocrine glands has been reported to share common genetic

and autoimmune pathways with IBM. However, the exact mechanism underlying

their commonality remains unclear. In this study, we investigated the common

pathological mechanisms involved in both SS and IBM using a bioinformatic

approach.

Methods: IBM and SS gene expression profiles were obtained from the Gene

Expression Omnibus (GEO). SS and IBM coexpression modules were identified

using weighted gene coexpression network analysis (WGCNA), and differentially

expressed gene (DEG) analysis was applied to identify their shared DEGs. The

hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein

−protein interaction (PPI) networks, cluster analyses, and hub shared gene

identification were conducted. The expression of hub genes was validated by

reverse transcription quantitative polymerase chain reaction (RT−qPCR). We then

analyzed immune cell abundance patterns in SS and IBM using single-sample

gene set enrichment analysis (ssGSEA) and investigated their association with

hub genes. Finally, NetworkAnalyst was used to construct a common

transcription factor (TF)-gene network.

Results: Using WGCNA, we found that 172 intersecting genes were closely

related to viral infection and antigen processing/presentation. Based on DEG

analysis, 29 shared genes were found to be upregulated and enriched in similar

biological pathways. By intersecting the top 20 potential hub genes from the
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WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were

derived and validated to be active transcripts, which all exhibited diagnostic

values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in

IBM and SS, and the hub genes were positively correlated with the abundance of

immune cells. Ultimately, two TFs (HDGF andWRNIP1) were identified as possible

key TFs.

Conclusion: Our study identified that IBM shares common immunologic and

transcriptional pathways with SS, such as viral infection and antigen processing/

presentation. Furthermore, both IBM and SS have almost identical immune

infiltration microenvironments, indicating similar immune responses may

contribute to their association.
KEYWORDS

Sjögren syndrome, inclusion body myositis, bioinformatic analysis, antigen processing
and presentation, viral infection, immune infiltration landscape
1 Introduction

Inclusion body myositis affects mostly people over 45 years of

age and has distinctive clinical and pathologic characteristics.

Muscle weakness is slow-progressing, frequently asymmetrical

and predominantly affects the quadriceps and finger flexors. The

histopathological features of IBM are complex and consist of not

only lymphocytic infiltration (primarily CD8 T cells) but also

congophilic inclusions, rimmed vacuoles and mitochondrial

changes (1). Several mechanisms have been proposed in the

pathogenesis of IBM, including autoimmunity and muscular

degeneration (2–4). However, its exact pathogenic mechanism is

unclear at present, and effective treatments are still lacking (3).

Sjögren’s syndrome (SS) is an autoimmune disorder

characterized by lymphocytic infiltration of exocrine glands,

primarily salivary glands and lacrimal glands (5). Except for

exocrine gland manifestations, patients may also develop

extraglandular features, resulting in the involvement of most

organ systems, including muscles (5). Since 1982, a few case

reports have described the coexistence of IBM in patients with SS

(6–11). A study from Greece found that three out of 518 SS patients

(0.6%) suffered from IBM, which is much higher than its prevalence

in the general population (24.8-45.6 individuals per million) (12,

13). Similarly, a prospective cohort study carried out in France

followed 395 patients with SS, finding four diagnosed with myositis,

of whom two developed IBM (0.5%) (14). Interestingly, even

though there were no clinical IBM findings, 8/36 SS patients

showed muscular histopathological features that resembled those

of IBM, suggesting a specific predisposition to IBM among SS

patients (15). On the other hand, the prevalence of concurrence SS

in IBM patients was reported to be 6% in United States, whereas it

was just 0.1-0.6% in the general population

(16, 17). All these findings suggest that SS and IBM may

share common pathogenic pathways, and currently, three

possible mechanisms have been reported. The first is shared
02
autoantibodies. Anti-SSA antibodies, which are the primary

serological marker of SS, were detected in 20% of IBM patients,

while anti-cN1A antibodies, a valuable biomarker for IBM, were

also found in 12% of SS patients (2, 18, 19). The second is related to

genetic susceptibility. The HLA-B8, DRB1*0301 (DR3) haplotype

has consistently been reported to be associated with IBM in 60-75%

of cases (20). Additionally, a study of 57 Australian cases found that

the HLA-DRB1*0301 (DR3) allele was linked to decreased

quadriceps muscle strength and faster decline in strength (21). A

similar association has also been found between SS and HLA-A1, B8

and DR3 (22). Notably, a clinical study reported that six patients

with both IBM and SS had the same HLA-DR3 and major

histocompatibility complex (MHC) 8.1 ancestral haplotype,

suggesting a common genetic predisposition associated with

MHC (23). The third one is the expansion of clonal T cells has

been demonstrated in both muscle biopsy samples from IBM

patients (15/15) (24) and exocrine gland samples from SS patients

(25). Nevertheless, these studies mainly focused on clinical or basic

experiments, and few explored the whole genetic background for SS

or IBM. An analysis of the transcriptional profile shared by SS and

IBM may reveal their common pathogenesis.

With the advent of bioinformatics and high-throughput

sequencing, researchers have been able to analyze data on

thousands of genes quickly and gain a better understanding of

disease pathogenesis from a transcriptional perspective. In this

study, we used weighted gene coexpression network analysis

(WGCNA) to identify coexpression modules between SS and IBM

and analyze differentially expressed genes (DEGs) to identify shared

DEGs in a second cohort. Then, we performed functional

enrichment analysis to explore common pathways. Furthermore,

we performed protein−protein interaction (PPI) networks and

cluster analyses to identify gene modules and shared hub genes.

Reverse transcription quantitative polymerase chain reaction (RT

−qPCR) was applied to validate the expression of shared hub genes.

Figure 1 shows the flowchart for the research. Through an
frontiersin.org
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integrated bioinformatic approach and in vivo validation, this study

is the first to investigate the common pathological mechanisms

between SS and IBM.
2 Materials and methods

2.1 GEO dataset collection

Using the keywords “Sjögren syndrome” and “inclusion body

myositis”, we searched the GEO databank for SS and IBM high-

throughput sequencing and expression microarray data (Gene

Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/). Three

datasets (GSE173808, GSE151757 and GSE128470) were

downloaded from the GEO database. GSE173808 is an SS dataset,
Frontiers in Immunology 03
while GSE151757 and GSE128470 are IBM datasets. Since

GSE173808 contains high-throughput sequencing data from both

labial glands (LG) and parotid glands (PG), we divided it into two

parts, GSE173808-LG and GSE173808-PG. Table 1 summarizes the

detailed information of the four datasets. GSE173808-LG and

GSE151757 were paired for WGCNA, while GSE173808-PG and

GSE128470 were paired for DEG analysis.
2.2 WGCNA

To obtain SS- and IBM-related modules, theWGCNA package in

R (26) was applied to the GSE173808-LG and GSE151757 datasets.

First, we calculated the variance for each gene expression value and

filtered out genes with absolute deviations greater than 25% from the
TABLE 1 Detailed information of GEO datasets containing the SS and IBM patients.

GSE Number Platform Samples Organism Source types Group

1 GSE173808-LG GPL16791 38 SS and 19 controls Homo sapiens Labial gland WGCNA analysis

2 GSE151757 GPL16791 24 IBM and 9 controls Homo sapiens Muscle WGCNA analysis

3 GSE173808-PG GPL16791 37 SS and 20 controls Homo sapiens Parotid gland DEG analysis

4 GSE128470 GPL96 26 IBM and 12 controls Homo sapiens Muscle DEG analysis

5 Local cohort – 16 SS and 10 controls Homo sapiens Peripheral blood Validation

6 Local cohort – 13 IBM and 10 controls Homo sapiens Muscle Validation
SS, Sjögren syndrome; IBM, inclusion body myositis; GEO, Gene Expression Omnibus.
FIGURE 1

Flow chart of the research.
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median. Then, we used the goodSampleGenes function to eliminate

samples with outlier characteristics (Supplementary Figures 1A, B).

Subsequently, the “pickSoftThreshold” function was used to

determine an appropriate soft threshold to build a scale-free

network, and the soft threshold b was 14 in SS and 12 in IBM

(Supplementary Figures 2A, B). Afterward, a hierarchical clustering

dendrogram was further constructed, and similar genes were

separated into different modules with at least 30 genes. Analogous

modules were consolidated again according toMEDissThres (module

eigengenes dissimilarity threshold) = 0.2. Finally, we used Pearson

correlation analysis to determine the correlation between modules

and disease phenotypes of interest. Our analysis focused on modules

that had high correlations with the phenotypic interests, and we

selected genes from disease-related modules for further analysis.
2.3 Identification of intersecting genes in
SS and IBM via WGCNA

Based on the module trait correlation and the P value of

eigengenes and phenotypic traits of each module, we selected the

modules that were highly associated with SS and IBM. Then, we

identified 172 intersecting genes in modules positively related

to SS and IBM using the Jvenn online tool in http://

jvenn.toulouse.inra.fr/app/example.html (27).
2.4 Detection of shared DEGs in
SS and IBM

Other SS and IBM datasets (GSE173808-PG and GSE128470)

were analyzed for gene expression differentiation. The “DESeq2”

package in R software was used to identify DEGs in the GSE173808-

PG dataset, while the “limma” package was used to identify DEGs in

the GSE128470 dataset. Log2|fold change (FC)|>1 and P value<0.05

were the screening criteria. Shared DEGs between the SS and IBM

databases were revealed using Jvenn (27).
2.5 GO and KEGG enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses of common genes were completed in R

using the “enrichplot” and “clusterProfiler” packages to identify

biological functions and pathways. P < 0.05 was recognized as a

significant term/pathway.
2.6 PPI network construction and
cluster analysis

We constructed the PPI network utilizing the Search Tool for

Retrieval of Interacting Genes (STRING; http://string-db.org). PPI

networks were visualized with Cytoscape (version 3.7.2) with a

minimum interaction score > 0.4. Subsequently, we performed
Frontiers in Immunology 04
cluster analysis using the MCODE algorithm from the Cytoscape

plug-in with default parameters.
2.7 Screening and validation of shared
hub genes

We used the maximal clique centrality (MCC) algorithm from

the cytoHubba plug-in to identify hub genes in PPI networks with

high connectivity. We identified three shared hub genes using the

Jvenn online tool (27) by intersecting the top 20 hub genes from

WGCNA with the top 20 hub genes from the DEG analysis. Then,

hub shared gene expression was verified in the four datasets with the

help of GraphPad Prism software (version 9.3). Furthermore, with

the R package “pROC”, we created receiver operating characteristic

(ROC) curves to assess the diagnostic power of the shared hub genes.
2.8 Clinical samples

Between 2019 and 2022, sixteen patients with SS diagnosed

according to the American College of Rheumatology/European

League Against Rheumatism 2016 criteria and ten healthy donors

were included (28). Patients with comorbidities such as

hypertension, diabetes, hyperlipidemia, chronic inflammatory

disease, other autoimmune diseases, or cancer were excluded. For

each participant, 1 ml peripheral fasting blood was collected into a

5 ml ethylene diamine tetra-acetic acid (EDTA) tube. At the same

time, thirteen patients with IBM were diagnosed according to the

inclusion body myositis workshop of the European Neuromuscular

Centre (ENMC) 2011 criteria (4). Ten muscle tissues with no

histopathological changes were used as controls. All muscle

samples were cryopreserved at -80°C for subsequent testing. The

study was conducted in accordance with the Declaration of Helsinki

and was approved by the Ethical Committee of Sichuan Provincial

People’s Hospital. All participants signed informed consent forms.
2.9 Reverse transcription−quantitative
polymerase chain reaction analysis

Total RNA from the skeletal muscle tissue and whole blood was

isolated using TRIzol reagent (Invitrogen; Thermo Fisher Scientific,

Inc.) and reverse transcribed (High-Capacity RNA-to-cDNA kit,

Applied Biosystems, Foster City, CA). The primer sequences were

PSMB9 forward, 5’−CGCTTCACCACAGACGCTAT-3’ and

reverse 5’- TGCCCAAGATGACTCGATGG-3’; CD74 forward,

5’- AGAACCTGCAGCTGGAGAAC-3’ and reverse 5’-GGGT

CAGCATTCCCCTGG-3’; HLA-F forward 5’-TGGCCTTG

TTGTCCTTGGAG-3’ and reverse 5’- AGAAGACAGTCC

TCCCTGAGA-3’; and GAPDH forward 5’- CACTAGGCGCT

CACTGTTCT-3 ’ and reverse 5 ’- GCCCAATACGACC

AAATCCGT-3’. The RT−qPCR analysis was performed on an

ABI 7900 system using Applied Biosystems Power SYBR Green

PCR Master mix (Thermo Fisher Scientific, Inc.) in triplicate. In
frontiersin.org
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brief, 0.5 mM forward and reverse primers, 2 ml of buffer and 100 ng
of cDNA templates were added to each tube, and the total volume

was adjusted to 20 ml with RNase-free water (Thermo Fisher

Scientific Inc.). PCR activation was at 95°C for 20 s, followed by

40 cycles of 1 s at 95°C to denature and 20 s at 60°C to extend.

Reactions were performed in triplicate, and relative changes in

target gene expression were normalized to the expression levels of

GAPDH and calculated using the 2–△△Ct method.
2.10 Assessment of immune cell
abundance in SS and IBM

We assessed the levels of 28 immune cells in SS and IBM

patients using a single-sample gene set enrichment analysis

(ssGSEA) algorithm in the R package (29) in GSE173808-LG and

GSE151757 datasets. The expression levels of different immune

infiltrating cells between disease group and control were compared

using the Wilcoxon rank-sum test (P<0.05) and displayed in

boxplots. A Spearman correlation analysis was conducted

between the 28 immune cells and the hub shared genes using the

“ggplot2” package.
2.11 Prediction of transcription factors
associated with shared hub genes

We constructed the TF-gene interactions of the shared

hub genes with the NetworkAnalyst tool (v2019; https://

www.networkanalyst.ca/). The shared hub genes and TFs were

plotted using Cytoscape.
2.12 Statistical analysis

All data are presented as the mean and standard deviation. The

gene expression levels were calculated using Student’s t−test by

GraphPad Prism™ software (version 9.0; GraphPad Software Inc.,

La Jolla, CA, USA). P<0.05 was considered to indicate a statistically

significant difference.
3 Results

3.1 Identification of shared gene signatures
in SS and IBM via WGCNA

In GSE173808-LG, nine modules were identified via WGCNA,

each represented by a different color. Then, we evaluated the

disease-module association by creating a heatmap based on the

Spearman correlation coefficient (Figures 2A–C). Module

“MElightyellow” exhibited a high correlation with SS and was

categorized as an SS-related module (r = 0.53, p = 2e-05). A total

of 949 genes from the MElightyellow module were further used for

analysis. Similarly, we obtained ten modules from the GSE151757

dataset using WGCNA, and four modules, “MEsalmon”,
Frontiers in Immunology 05
“MEdarkorange”, “MElightgreen” and “MEskyblue3”, had high

correlations with IBM (MEsalmon: r = 0.69, p = 8e-06;

MEdarkorange: r = -0.62, p = 1e-04; MElightgreen: r = -0.81, p =

9e-09; MEskyblue3: r = -0.83, p = 2e-09) (Figures 2B–D).

MEsalmon was positively correlated with IBM, while

MEdarkorange, MElightgreen and MEskyblue3 were negatively

correlated. The positively correlated module MEsalmon,

containing 483 genes, was categorized as an IBM-related module

(Figure 2D). A total of 172 common genes were screened from the

intersection of SS positively related gene modules (MElightyellow

module) and IBM positively related gene modules (MEsalmon

module) (Figure 2E, Supplementary Table 1). Furthermore, a PPI

network of intersecting genes was constructed using the STRING

database. By removing discrete proteins, we obtained a network of

145 nodes and 2,602 edges (Figure 2F, Supplementary Table 2). We

then applied the MCODE plug-in to extract four closely connected

gene cluster modules (Figures 2G–J). To investigate the potential

biological functions of these genes, we performed functional

enrichment analysis on these four clusters. According to GO

analysis results, these genes were mainly associated with antigen

processing and presentation and MHC protein complex assembly

(Figure 2K). Based on KEGG analysis results, the gene

set had significant enrichment in antigen processing and

presentation as well as microbial infections (e.g., human T-cell

leukemia virus 1 infection, Epstein−Barr virus infection and viral

myocarditis) (Figure 2L).
3.2 Validation of shared gene signatures in
SS and IBM via DEG analysis

To verify our findings, we analyzed the differential gene

expression of the GSE173808-PG and GSE128470 datasets. We

identified 687 DEGs (657 upregulated and 30 downregulated

genes) in the GSE173808-PG dataset, while 306 DEGs (216

upregulated and 90 downregulated genes) were screened out in

the GSE173808-PG dataset. Volcano plots were used to visualize

the DEGs in both datasets (Figures 3A, B). Using a Venn diagram,

we identified 29 upregulated genes that were shared between

GSE173808-PG and GSE128470 (Figure 3C). Furthermore, a

PPI network was constructed, which had 22 nodes and 118

edges after discrete proteins were removed (Figure 3D). A

cluster with 9 nodes and 54 edges was then extracted using

algorithms from the MCODE plug-in (Figure 3E). The same GO

and KEGG enrichment analyses that were conducted in the

WGCNA was also performed on the DEGs in IBM and SS.

According to GO analysis, intersecting genes were primarily

associated with response to virus, lymphocyte and leukocyte

mediated immunity, and regulation of immunity (Figure 3F).

Based on KEGG analysis, the gene set had significant

enrichment in antigen processing and presentation as well as

microbial infections (e.g., viral protein interaction with cytokine

and cytokine receptor, viral myocarditis) (Figure 3G). In

accordance with the WGCNA results, “antigen processing and

presentation” and “viral infection” were enriched again.
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3.3 Shared hub gene screening and in vivo
validation in SS and IBM patients

To identify shared hub genes, we also analyzed the PPI

networks using the Cytoscape plug-in cytoHubba. The top 20

genes were identified as potential hub genes using the MCC

algorithm. Taking the intersection of the top 20 genes in the

WGCNA and DEG sets, we identified three hub genes (PSMB9,

CD74, and HLA-F) (Figure 4). Additionally, we conducted
Frontiers in Immunology 06
WGCNA analysis in GSE173808-PG and GSE128470 datasets and

DEG analysis in GSE173808-LG and GSE151757 datasets. As

shown in Supplementary Figure 3, 17 genes overlapped in the

WGCNA and DEG algorithms, PSMB9, CD74, and HLA-F were

also enriched, demonstrating strong consistency with our previous

results (Supplementary Figure 3J) The expression levels of shared

hub genes were further validated in the four datasets. Interestingly,

in both SS and IBM, the expression of all hub genes was significantly

higher than that in the control group. (Figures 5A–D).
B
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I J
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FIGURE 2

Identification and analysis of shared gene signatures in SS and IBM via WGCNA. (A–D) WGCNA of the GSE173808 and GSE151757 datasets. (A) The
coexpression gene cluster dendrogram in SS. (B) The coexpression gene cluster dendrogram in IBM. (C) Correlation analysis between module genes
and clinical phenotypes in SS. (D) Correlation analysis between module genes and clinical phenotypes in IBM. (E) Venn diagram for intersecting
genes between the light-yellow module of SS and the salmon module of IBM. (F) The PPI network of the intersecting genes. (G–J) Four clusters
extracted by MCODE. (K) The top 10 GO terms of four gene clusters. (L) The top 10 KEGG pathways of four gene clusters. WGCNA, weighted gene
coexpression network analysis; SS, Sjögren syndrome; IBM, inclusion body myositis. PPI, protein−protein interaction; MCODE, Minimal Common
Oncology Data Elements; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Furthermore, we evaluated the diagnostic power of the three hub

genes across four datasets. Both GSE173808-LG and GSE173808-

PG had area under the curve (AUC) values above 0.75, indicating

their diagnostic value in SS. GSE151757 and GSE128470 both had

AUC values > 0.95, demonstrating their high diagnostic value in

IBM (Figure 5E). Further quantification of PSMB9, CD74, and

HLA-F mRNA abundance revealed that these hub genes were

actively transcribed in both SS (Figures 6A–C) and IBM patients

(Figures 6D–F). In addition, the three genes (PSMB9, CD74, and
Frontiers in Immunology 07
HLA-F) were validated in other rheumatologic disorders including

systemic lupus erythema (SLE) and rheumatoid arthritis (RA).

Notably, only HLA-F expression in SLE and CD74 expression in

RA showed a statistically significant difference (Supplementary

Figures 4A–C), and only CD74 was found to be diagnostically

significant in RA (AUC=0.93, Supplementary Figures 4B–D).

Additionally, the expression levels and diagnostic values of the

three genes were evaluated in other inflammatory myopathies,

including PM, DM, and IMNM (Supplementary Figure 5). In
B

C D

E

F G

A

FIGURE 3

Verification and analysis of shared DEGs in SS and IBM. (A) Volcano plots of the DEGs in SS. (B) Volcano plots of the DEGs in IBM. (C) Venn diagram
for shared DEGs in the GSE173808 and GSE128470 datasets. (D) The PPI network of the shared DEGs. (E) One cluster extracted by the MCODE
plug-in. (F) GO enrichment results of shared DEGs. (G) KEGG enrichment pathways of shared genes. DEGs, differentially expressed genes; SS,
Sjögren syndrome; IBM, inclusion body myositis. PPI, protein−protein interaction; MCODE, Minimal Common Oncology Data Elements; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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PM, like IBM, all three genes were significantly upregulated and

showed high diagnostic value, with an AUC >0.85 (Supplementary

Figures 5A, B). However, only PSMB9 and HLA-F expression in

DM and CD74 expression in IMNM showed statistically significant

differences, which have certain diagnostic value for DM and IMNM

(Supplementary Figures 5C–F).
3.4 Similar immune infiltration landscape
between SS and IBM

Several studies have suggested that IBM is a late complication of

SS, so we hypothesized that IBM and SS may share common

pathological mechanisms and similar immune microenvironments.

With GSE173808-LG and GSE151757 datasets, we assess the extent

of infiltration of 28 immune cell types using the ssGSEA algorithm.

As shown in Figures 7A–C, SS and IBM demonstrated similar

immune infiltration patterns, such as B cells, CD4 T cells, CD8 T

cells, dendritic cells (DCs), myeloid-derived suppressor cells

(MDSCs) and natural killer (NK) cells. All hub genes were

positively associated with immune cell abundance (Figures 7B–D).
3.5 Prediction of TFs

We used NetworkAnalyst to predict the TFs that interact with

the three shared hub genes and Cytoscape to visualize the TF-gene

regulatory network. Figure 8 shows that HDGF and WRNIP1

interact with all three hub genes, possibly regulating their
Frontiers in Immunology 08
expression. However, further research is needed to confirm

these findings.
4 Discussion

IBM and SS are autoimmune diseases, and the two sometimes

coexist. However, their common pathogenic mechanisms remain

unclear despite intense research. As of now, clonal T expansion

abnormalities (16, 24, 25), genetic predisposition linked to the

MHC (23), and shared autoantibodies (18, 19) have been

reported to be potential links between SS and IBM. However, few

studies have examined the genetic link between SS and IBM. Our

study is the first to integrate data from the GEO databank and use

bioinformatic and experimental methods to investigate the

common mechanisms between SS and IBM. Additionally, we

found that both SS and IBM have identical immune infiltration

microenvironments, strongly suggesting that similar immune

responses are important for SS-IBM association.
4.1 Viral infection in SS and
IBM pathogenesis

Global gene expression studies can provide us with a greater

understanding of SS and IBM pathobiology. According to the

functional enrichment of the WGCNA and DEG sets, we found

that viral infection and antigen processing and presentation could

play important roles in both SS and IBM.
FIGURE 4

Venn diagram of common genes from the top 20 hub genes of WGCNA and DEG analysis. WGCNA, weighted gene coexpression network analysis;
DEGs, differentially expressed genes.
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Infections with viruses are closely related to SS and IBM. Epstein

−Barr virus (EBV), a DNA virus, is capable of inducing autoimmune

responses in SS (30, 31). Salivary glands from SS patients contained

EBV antigens and viral DNA, as well as autoantigens homologous to

EBV antigens, which suggests that EBV infection could contribute to

autoimmune reactions through a molecular mimicry mechanism (31,

32). In addition, EBV can induce the production of type I interferon

(IFN-I), which is a key factor in SS pathogenesis (33). Other viral

infections, such as hepatitis C virus (HCV), cytomegalovirus (CMV)

and human T lymphotropic virus type I (HTLV-1), are also

associated with SS (34). HCV infection can exhibit SS symptoms

and salivary gland lymphocytic infiltration (35). IgM antibodies

against CMV were found to be higher in the serum of SS patients

than controls (36), and HTLV-1 exhibited direct affinities for salivary

glands according to Japanese studies (34, 37). Viral infection also

plays a major role in IBM. For example, human immunodeficiency

virus (HIV) and HTLV-1, two retroviruses, have been implicated in

IBM (16). HIV-positive patients may develop an IBM-like phenotype

with remarkable weakness of the finger flexors and knee extensors

(38). Among 46 HIV-myopathy patients, three had typical IBM-like

pathological features. Interestingly, 11 HTLV-1-positive patients

showed a similar clinical and pathological phenotype to HIV-IBM

(39). In addition, HCV, EBV, and influenza have been reported to be
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indirectly linked to IBM (16). It is speculated that the exhaustion of

the immune system resulting from viral chronicity and antiviral

medication may contribute to IBM muscle damage (40). In our

study, functional enrichment analysis revealed EBV and HTLV-1

infections as common pathogens, so we hypothesized that both SS

and IBM could be initiated by a common viral infection. The serum

antibodies against EBV and HTLV-1 in patients with SS and IBM

will need to be monitored in the future. Vaccines or drugs that block

these viral infections may be effective targets for preventing SS

and IBM.
4.2 Antigen processing and presentation in
SS and IBM pathogenesis

Antigen processing and presentation are immunological

processes by which whole antigens are fragmented and bound to

the major histocompatibility complex (MHC) for presentation on

the cell surface (41). There are two different antigen presentation

pathways: MHC class I molecules present cytosolic antigens,

whereas MHC class II molecules present extracellular proteins

(41). In our analyses, antigen processing and presentation were

the most significantly enriched KEGG terms, whether in the
B

C D

E

A

FIGURE 5

Expression levels and diagnostic values of hub genes. (A) The expression of PSMB9, CD74 and HLA-F in labial gland tissues of SS (n=38) compared
with controls (n=19) in the GSE173808 dataset. (B) The expression of PSMB9, CD74 and HLA-F in parotid gland tissue samples of SS patients (n=37)
compared with controls (n=20) in the GSE173808 dataset. (C) The expression of PSMB9, CD74 and HLA-F in muscle samples of IBM patients (n=24)
compared with controls (n=9) in the GSE151757 dataset. (D) The expression of PSMB9, CD74 and HLA-F in muscle samples of IBM patients (n=26)
compared with controls (n=12) in the GSE128470 dataset. The two groups were compared using a nonparametric Student’s t test with a P value of
0.05. ***p<0.001; ****p<0.0001; (E) The ROC curves of PSMB9, CD74 and HLA-F in the four datasets. SS, Sjögren syndrome; IBM, inclusion body
myositis. LG, labial gland; PG, parotid gland.
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WGCNA algorithm or in DEG analysis. In addition, multiple alleles

of MHC class I and II are enriched in most GO terms, indicating a

key role for MHC molecules in SS and IBM.

The MHC is also known as human leukocyte antigen (HLA).

Hundreds of genes reside within the HLA region and play

fundamental roles in immunity. HLA alleles are the strongest

heritable predictors of various autoimmune diseases, including SS

and IBM (42, 43). The 6p21 locus carries three HLA alleles (HLA-

DRA, HLA-DQB1, and HLA-DQA1) strongly associated with SS

(44). In a Han Chinese population study, HLA-DRB1/HLA-DQA1

and HLA-DPB1/COLI1A2 at the 6p21.3 locus were identified as

independent association signals with SS (45). Moreover, a meta-

analysis by Cruz-Tapias et al. identified HLA-DQA1*05:01, HLA-

DQB1*02:01 and HLA-DRB1*03:01 as risk factors for SS, while

HLA-DQA1*02:01, HLA-DQA1*03:01 and HLA-DQB1*05:01

were protective factors for SS (46). Similar to SS, the strongest

genetic risk associated with IBM lies within the HLA region, where

HLA-DRB1 and HLA-DR3 are implicated (47–50). Moreover,

Rojana-udomsart et al. reported six patients suffering from both

SS and IBM, with all of them carrying the 8.1 ancestral haplotype

and HLA-DR3 (23), suggesting a strong possibility that the

coexistence of SS and IBM is linked to a common genetic

predisposition associated with the MHC.
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Our enrichment analysis results and the studies mentioned

above also demonstrated a possible explanation for the coexistence

of SS and IBM. A common viral infection triggers autoimmunity,

and genetic susceptibility associated with the MHC leads to

abnormalities in antigen processing and presentation, functioning

in the pathogenesis of SS and IBM.
4.3 Shared key genes in SS and IBM

In this study, three shared hub genes (PSMB9, CD74 and HLA-F)

were obtained by integrating theWGCNA and DEG sets, and all three

were significantly overexpressed in both the SS and IBM groups

compared with the controls. The PSMB9 gene is located within the

MHC class II region and encodes a key component of the

immunoproteasome complex, proteasome subunit beta type-9

(PSMB9) (51). The immunoproteasome, part of the ubiquitin

−proteasome system, breaks down intracellular proteins into peptide

fragments that bind to MHC molecules and triggers the presentation

of antigens (51, 52). PSMB9 is also targeted by IFN-I, which induces

immune activation and regulates proinflammatory cytokines and

mediators (52). A variety of studies have demonstrated that PSMB9

dysregulation contributes to autoimmune diseases, such as SS (53),
B C

D E F

A

FIGURE 6

Transcription levels of hub genes in clinical SS and IBM patients. (A–C) The expression of PSMB9, CD74 and HLA-F mRNA in SS patients (n=16)
compared with healthy controls (n=10). (D–F) The expression of PSMB9, CD74 and HLA-F mRNA in IBM patients (n=13) compared with healthy
controls (n=10). The two groups were compared using a nonparametric Student’s t test with a P value of 0.05. ***p<0.001; **p<0.01; SS, Sjögren
syndrome; IBM, inclusion body myositis.
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rheumatoid arthritis (54), systemic lupus erythematosus (SLE) (51)

and dermatomyositis (51). In refractory SLE, the inhibition of PSMB9

with bortezomib antibody significantly improved symptoms by

targeting plasma cells and type I interferons (55). Cluster of

di fferentiat ion 74 (CD74) , a lso cal led HLA class II
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histocompatibility antigen gamma chain, is a nonpolymorphic type

II transmembrane glycoprotein that contributes to antigen

presentation (56). CD74 can regulate immune cell function and

development by interacting with macrophage migration inhibitory

factor (MIF) (56). Inflammatory diseases such as ankylosing
B

C

D

A

FIGURE 7

The immune infiltration landscape in SS and IBM and its association with hub genes. (A) Analysis of 28 types of immune cells in SS patients and
controls with the ssGSEA algorithm. The blue box represents the control group, while the red box indicates the disease group. (B) Hub genes and
immune cell infiltration heatmaps in SS. (C) Analysis of 28 types of immune cells in IBM patients and controls with the ssGSEA algorithm. (D) Hub
genes and immune cell infiltration heatmaps in IBM. *p< 0.05; **p< 0.01; ***p< 0.001; ns, non-significant. SS, Sjögren syndrome; IBM, inclusion body
myositis.
FIGURE 8

TF-shared hub gene regulatory network. The red circle represents a shared hub gene, while the blue diamond represents transcription factors. TFs,
transcription factors.
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spondylitis, SLE and type I diabetes are associated with CD74 (56, 57).

A recent bioinformatics study identified DEGs in IBM using the

GSE39454 and GSE128470 datasets. They showed that CD74 is a hub

gene, which is in consistent with our findings (58). Human leukocyte

antigen F (HLA-F) is a nonclassical heavy chain that forms a complex

with a b-2 microglobulin light chain (59). In contrast to many other

HLA heavy chains, HLA-F is mainly found in the ER and Golgi

apparatus rather than on the surface of most tissues (59). As an

important immune regulator, HLA-F binds directly to

immunostimulatory and immunoinhibitory receptors on immune

cells such as NK cells and presents uncharacteristically long peptides

to T cells (59, 60). Furthermore, HLA-F can trigger an NK cell

response, preventing viral replication and killing infected cells (61).

Higher expression of HLA-F and its genetic variants has been related

to a predisposition to autoimmune diseases, such as SLE (62),

rheumatoid arthritis (63) and ankylosing spondylitis (64). Taken

together, these findings show that PSMB9, CD74, and HLA-F all

play important roles in presenting antigens and triggering

autoimmune diseases. It is likely that the dysregulation of these

genes results in an imbalance in immunity and may contribute to

the progression of SS and IBM. Furthermore, by building TF-hub gene

networks, we discovered that HDGF and WRNIP1 interact with all

three hub genes. However, few studies have elucidated the role of

HDGF and WRNIP1 in SS and IBM, and their potential relationship

needs further study. Futhermore, we analyzed the expression levels

and diagnostic values of the three genes in other rheumatologic

disorders and inflammatory myopathies. We observed prominent

upregulation of all three genes in PM patients, with all of them

exhibiting high diagnostic value. In contrast, only one or two genes

were significantly diagnostic in other diseases. These results imply a

plausible link between IBM and PM due to similar pathogenic

molecular mechanisms. The overarching question remains whether

PM and IBM are distinct disease entities or part of a shared spectrum

of idiopathic inflammatory myopathies (IIMs) (16). When taken as a

whole, these three hub genes serve as relatively specific biomarkers for

SS and IBM, which may enable new breakthroughs in the areas of

diagnosis and drug therapy.
4.4 Similar immune infiltration landscapes
in SS and IBM

Since lymphocytic infiltration in corresponding tissues is a

common pathological feature in SS and IBM, we used the ssGSEA

algorithm to analyze the immune cell infiltration landscape in both

diseases. A remarkable similarity was observed between SS and IBM

in terms of immune infiltration. CD4 T cells, CD8 T cells, B cells,

DCs, MDSCs, and NK cells were significantly upregulated in both

groups. In line with our findings, previous studies have shown that

SS is a lymphoproliferative disease with a predominance of T and B

lymphocyte infiltration in salivary glands. A variety of NK cells and

DCs are also present during the progression of SS (65). Similar

scenarios have also been reported in IBM. In IBM muscle biopsy

samples, CD8 T cells were detected in the endomysium, as well as

macrophages (3, 66). Interestingly, abnormal clonal expansion of T

cells in both SS and IBM was recently described (16, 24, 25). In light
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of the similarity of SS and IBM in terms of immune landscape and

histopathology, we hypothesize that similar immune cell infiltration

and disturbed immune homeostasis after viral infection in

individuals with a genetic predisposition can contribute to the

pathogenesis of SS and IBM.

In conclusion, the findings of our work suggest that viral infection

and antigen processing and presentation dysregulation might be

common susceptibility factors for the coexistence of SS and IBM.

Three key genes (PSMB9, CD74 and HLA-F) might be used as

biomarkers or therapeutic targets in the future. Nevertheless, our

study has a few limitations that need to be acknowledged. Firstly, we

were unable to collect salivary gland tissue samples from SS patients,

and as a result, blood specimens were used for validation instead.

Secondly, SS and IBM are uncommon diseases, which makes it

challenging to obtain tissue samples from patients with both

conditions. Limited availability of such samples in the pathology

library made it difficult to verify our bioinformatic findings. Future

experimental studies with larger sample sizes should be conducted to

elucidate the potential mechanisms of hub genes and related pathways.
5 Conclusion

In our study, we discovered that IBM shares similar

immunologic and transcriptional pathways with SS, including

viral infection and antigen processing/presentation. The three hub

genes (PSMB9, CD74 and HLA-F) might be relatively specific

biomarkers for the two diseases. Additionally, both IBM and SS

exhibit nearly identical immune infiltration microenvironments,

potentially indicating that similar immune responses may be

involved in their pathogenesis.
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