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The role of dendritic cells and
their immunometabolism in
rheumatoid arthritis
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Dendritic cells (DCs) play crucial roles in the pathogenesis of rheumatoid arthritis

(RA), a prototypic autoimmune disease characterized by chronic synovitis and

joint destruction. Conventional dendritic cells (cDCs) with professional antigen-

presenting functions are enriched in the RA synovium. In the synovium, the cDCs

are activated and show both enhanced migratory capacities and T cell activation

in comparison with peripheral blood cDCs. Plasmacytoid dendritic cells, another

subtype of DCs capable of type I interferon production, are likely to be

tolerogenic in RA. Monocyte-derived dendritic cells (moDCs), once called

“inflammatory DCs”, are localized in the RA synovium, and they induce T-

helper 17 cell expansion and enhanced proinflammatory cytokine production.

Recent studies revealed that synovial proinflammatory hypoxic environments are

linked to metabolic reprogramming. Activation of cDCs in the RA synovium is

accompanied by enhanced glycolysis and anabolism. In sharp contrast,

promoting catabolism can induce tolerogenic DCs from monocytes. Herein,

we review recent studies that address the roles of DCs and their

immunometabolic features in RA. Immunometabolism of DCs could be a

potential therapeutic target in RA.

KEYWORDS

rheumatoid arthritis, immunometabolism, dendritic cell (DC), glycolysis (glycolytic
pathway), OXPHOS (oxidative phosphorylation)
Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic

synovitis and sometimes accompanied by progressive bone destruction (1). Joint

deformities lead to a loss of mobility in RA patients, and treatment-related adverse

events including cardiovascular events and infections can be fatal (2–5). While various

anti-rheumatic drugs have been established in recent years, 5 - 20% of RA patients have

poor responses to those medications (6). The pathogenesis of RA is thought to involve a

reduced tolerance of the autoimmune system resulting from genetic and environmental
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backgrounds (7, 8). Synovitis in RA is induced by complex

interaction of various cell types, including T and B lymphocytes

involved in adaptive immunity, myeloid cells involved mainly in

innate immunity, osteoclasts and synovial fibroblasts directly

responsible for joint destruction. The complexity of disease

pathogenesis is a primary cause of the difficulties in treatment (9–

11). Dendritic cells (DCs), a subtype of the myeloid lineage, could

be related to the clinical treatment response in RA. Recently, we

have reported that the proportion of precursor DCs (pre-DCs) in

RA peripheral blood has a strong association with treatment

resistance, and their gene signature is a better predictor of

response than established clinical parameters such as anti-

citrullinated peptide autoantibodies (ACPA) and duration of

disease (12). Understanding DCs is essential for elucidation of RA

pathogenesis and developing new treatment strategies.
The role of dendritic cells in
rheumatoid arthritis

DCs are cells with specialized antigen-presenting capabilities

(13). Flow cytometry and single cell analysis has permitted the

classification of various subsets of DCs (Figure 1). Conventional

DCs (cDCs) bearing a specific marker (CD11c) and plasmacytoid

DCs (pDCs) expressing CD123, constitute the two major subsets of

human DCs. cDCs are further classified into cDC1 and cDC2. cDC1

express high levels of CD141 and possess an intrinsic capacity for

cross-presentation viaMHC class I to activate CD8+ T cells. cDC2 is

the dominant subtype of cDC, with high expression of CD1c and a

robust capacity for activating CD4+ T cells (14). On the other hand,

the pDC subset is specialized to respond to viral infection by rapid

production of high quantities of type I interferons (IFNs) and

secretion of cytokines. Several reports have shown that cDCs

promote joint inflammation in RA. For example, transient
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depletion of cDCs reduced arthritis in CD11cDTR transgenic

mice (15). In human RA synovial fluid (RASF), the frequency of

cDC2s is higher than in peripheral blood. They have increased

expression of antigen-presenting and co-stimulatory molecules, and

coculture with T cells induced the latter to proliferate and secrete

IFNg, interleukin-4 (IL-4) and IL-17 (16). On the other hand, the

role of pDCs in RA is only partially understood. Several reports

have suggested that pDCs act in a preventive manner, reducing

inflammation. Depletion of pDCs in a Balb/c mouse model

promoted arthritis (17). Single-cell RNA-sequencing (scRNA-seq)

analysis of RA peripheral blood revealed a pDC cluster with an

activated transcriptomic profile (high gene expression associated

with TLR, IFN regulatory factors and chemokine receptors).

However, its proportion was not correlated with disease activity.

Instead, patients with inactive RA had higher frequencies of a pDC

cluster with a “healthy transcriptomic profile” than did patients

with active RA (18). In RASF, pDC has been reported to exhibit an

immature phenotype. The pDC found in SF demonstrated low

expression of the co-stimulation markers CD40, CD80 and CD83,

comparable to that found in peripheral blood, whereas SF cDC

displayed higher expression of these markers compared to

peripheral blood cDC (19).

In addition to those two major subsets, several new subsets have

been described. Monocyte-derived DCs (moDCs) are induced from

monocytes in vivo. They have proinflammatory functions and are

positive for monocytic marker CD14. They likely correspond to

“inflammatory DC” observed in local inflamed tissue, including the

RA synovium (20). Human moDCs were reported to induce naïve

CD4+ T cells to become helper T17 cells (Th17) and cause synovitis

(21). Conversely, tolerogenic DCs (tolDCs) can be generated from

monocytes during exposure to growth factors, cytokines or

pharmacologic agents (22). In Balb/cAnNCrl model mice, tolDCs

reduced arthritis scores via modulation of naïve CD4+ T cells and

induced expansion of regulatory T cells (Treg) (23).
FIGURE 1

Altered function of DC subsets in RA synovium. Metabolic features in RA synovium alter phenotype of DC subsets. Enhanced glycolysis and reduced
OXPHOS induce pro-inflammatory function in cDCs and moDCs, while they may suppress activation of pDCs. Modification of metabolism in RA
synovium may induce differentiation of monocytes to tolDCs instead of moDCs. DCs, dendritic cells; RA, rheumatoid arthritis; tolDCm, tolerogenic
DC; pDC, plasmacytoid DC; moDC, monocyte-derived DC; cDC, conventional DC; OXPHOS, oxidative phosphorylation; Treg, regulatory T cell;
Th17, T-helper17 cell; IFN, interferon.
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Single-cell analysis has revealed the dynamics of DC in RA

synovia. Wu et al. performed scRNA-seq analysis of ACPA+ and

ACPA- RA patients before treatment, and they identified eight DC

subtypes. Those subtypes in RA synovia included three cDC

subtypes, two pDC subtypes, and “DC_macrophages” (a CD14

positive subset). HLA-DR5, CCL3, SPP1 and BRI3 expression was

upregulated in synovial DC of ACPA+ RA. CCL13, CCL18 and

MMP3 expression was upregulated in synovial DC of ACPA-

RA (24).

As described above, each DC subset has a distinct function and

a different phenotypic feature in RA. The mechanism by which DC

functions are altered in RA is likely linked to disease pathogenesis.

Previous studies showed that the metabolism of immune cells

closely affects the pathogenesis of autoimmune diseases (25, 26).

RA is also reported to have some metabolic features. Here, we focus

on metabolic features of RA joints and their relation to

DC function.
Metabolic features of joints in
rheumatoid arthritis

Altered cellular metabolism in the microenvironment of joints in

RA has been described. The serum metabolite signatures differed

when healthy controls (HCs) were compared to RA patients (27). In

another report, the activities of metabolic enzymes differed in RA

synovia. Activities of glyceraldehyde 3- phosphate dehydrogenase

(GAPDH) and lactate dehydrogenase (LDH) were higher in RA

synovial cells than those collected during trauma surgery. Moreover,

metabolic profiles were associated with disease activity of RA. The

lactate/glucose ratio of SF was higher in RA than in both ankylosing

spondylitis (AS) and psoriatic arthritis (PsA) patients, and it

correlated with joint symptoms (28). The metabolite signature of

RASF had different features than other arthritic diseases (AS, Behçet’s

disease and gout), with increased metabolites of the tricarboxylic acid

(TCA) cycle and decreased lipid metabolites (29). The specific state of

the microenvironment in RA joints gives rise to these metabolic

features. For example, the RA synovium is exposed to elevated

hypoxia (30). Consequently, there is a higher production of

hypoxia inducible factor alpha (HIFa) than in HCs (31). HIFa
promotes glycolysis by increasing the expression of enzymes and

transporters involved in the glycolytic pathway, such as glucose

transporter 1 (GLUT1) and hexokinase 2 (HK2) (32, 33). Altered

metabolism affects the functions of cells present in RA joints. The

metabolites of glycolytic pathways activate pro-inflammatory

processes of immune cells (34), and HIFa activation promotes

inflammation and bone destruction in vitro (35, 36).

In addition to glycolysis, several other metabolic changes

associated with mitochondrial dysfunction have been reported in

RA (37). The hypoxic state in RA joints results in a disturbance of the

TCA cycle, with an accumulation of succinate (29). Hypoxia also

induces production of reactive oxygen species (ROS) (38). RA

synovial fluid had higher levels of ROS and mitochondrial DNA

mutations, and the extent correlated with inflammation and the level

of SF tumor necrosis factor alpha (TNFa) (39). In vitro, the hypoxic
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state elevated glycolytic enzymes and mitochondrial dysfunction in

synovial cells from RA, both of which were ameliorated by TNFa
inhibitors (36). Genes involved in mitochondrial fission were also

upregulated in RA synovia (40). Mitochondrial fission results in

enhanced glycolysis instead of mitochondrial respiration (oxidative

phosphorylation [OXPHOS]) (41). Indeed, the RA synovium had

lower OXPHOS than did that from HCs (42).

Compared to glucose and mitochondrial metabolism, less is

known about lipid metabolism. However, several studies described

lipid metabolic features of RA. In individuals who had a high risk of

developing RA, the serum lipidome profile resembled that of patients

with active RA (43). In transcriptomic analysis of synovial tissues of

high-risk individuals, genes involved in lipid metabolism were down-

regulated only in the individuals who developed RA, whereas the

expression levels of genes involved inmitochondrial respirations were

not altered (44). In addition, mitochondrial fatty acid oxidation

(FAO), which is necessary for lipid utilization in the TCA cycle,

was significantly impaired in both RA and RA-high risk synovia, with

an increased dependence on glucose oxidation (45). Therefore, lipid

metabolism may be involved in the pathogenesis of RA. These

various metabolic features in the joints of RA patients may affect

immune cell functions.
Immunometabolism of DC is relevant
to the pathogenesis of RA

Metabolism plays an important role in the activation of DCs. In

general, anabolism enhances immunogenicity, whereas catabolism

induces tolerogenicity (46). In cultured murine DCs, activation via

stimulation of toll like receptors (TLRs) caused stable DCs to

change their energy dependence from OXPHOS to glycolysis,

which allowed them to immediately obtain the energy needed for

inflammatory mediator production and their antigen-presenting

capacities (47). Impaired OXPHOS and FAO and enhanced

glycolysis by hypoxic RA synovia may lead to anabolism and

enhance immunogenicity of synovial DCs. Several reports on

cDCs and moDCs in RA synovia support that hypothesis. cDC1

in RA synovia had higher gene expression of the hypoxia marker

TREM-1, and induced higher levels of T cell activation that

subsequently enhanced secretion of pro-inflammatory cytokines

and activated synovial fibroblasts, compared to peripheral blood

cDC1 (48). With respect to cDC2, gene expression of glycolytic

pathways was upregulated in cDC2 of RA synovia compared to

peripheral blood cells (49). Synovial cDC2 of RA and PsA patients

had enhanced migratory capacity, and had higher levels of both

costimulatory and coinhibitory markers in another report (16).

MoDCs, treated with supernatants from cultured RA synovia ex

vivo, also showed upregulated glycolytic pathways with higher IL-1

and IL-12 production, and expression of adhesion and co-

stimulation molecules (ICAM and CD83) (49). Furthermore, DCs

also responded to metabolites and altered their immunogenicity

(50, 51). Succinate, which is an intermediate metabolite of the TCA

cycle, is higher in RA synovia than in other types of inflammatory

arthritis (29). DCs can sense succinate via succinate receptor
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(GPR91) in synergy with TLRs to activate their inflammatory

functions (52). DCs with GPR91 deficiency reduced Th17

expansion and reduced the development of arthritis in mice (53).

If the environment of RA synovia inhibits mitochondrial

respiration (OXPHOS) and enhances glycolysis, these changes

may explain why cDCs and moDCs have proinflammatory roles

whereas pDCs have a less inflammatory role in RA joints (40).

Upon activation by stimulated TLR7/8, human cDC2s and pDCs

depend on different metabolic pathways as energy sources. For

example, cDC2s expressed genes that are associated with

mitochondrial fission and glycolysis, whereas pDCs expressed

genes associated with mitochondrial fusion and OXPHOS (54).

Similarly, human moDCs displayed lower gene expression levels

associated with catabolic pathways including FAO and OXPHOS

compared to induced tolDCs (55). These reports suggest that the

metabolic features of RA joints modulate DC functions (Figure 1).
Immunometabolism of DC as
candidate therapeutic targets of RA

Various therapeutic agents have been developed to block

chemical signals or proteins involved in the inflammatory

pathway in RA, e.g., TNF inhibitors (TNFi), IL-6 receptor

inhibitors (IL-6Ri), Janus kinase inhibitors (JAKi), anti-CD20

drug and co-stimulation molecules (CD80/86) inhibitor.

However, the number of cases who reached disease remission

with response to each agent is limited from 10% to 50% (56).

Some RA patients have limited treatment choices because of adverse

events and co-morbidities. The patient population in which RA

does not reach low disease activity or remission even after switching

treatments is called “difficult-to-treat” (D2T) RA, which is a

challenge for clinical settings in rheumatology (57).

Some immunologically targeted agents for RA show a

correlation between treatment response and immunometabolism.

A recent study examined the characteristics of synovial biopsies and

clinical responsiveness to treatment with tocilizumab (IL-6Ri) or

rituximab (anti-CD20 monoclonal antibody) for TNFi-resistant

RA. In tocilizumab responders, the PPARg signaling pathway,

which is involved in lipid metabolism, was enhanced together

with upregulation of myeloid cell cytokine module (58).

Tofacitinib (TOF), a JAKi, enhanced mitochondrial OXPHOS

and suppressed glycolysis, a response consistent with a decrease

in inflammatory cytokines in RA synovial explants (59). Clinical RA

improvement by TOF correlated with the reduction of activated

STAT-3 in RA synovium, which is known to play a role in DC

maturation (49, 60). TOF reduced the T cell stimulatory capacity of

human moDC in vitro (61). In SKG mice, a genetic model of RA,

TOF induced tolDCs and ameliorated arthritis (62). Thus,

metabolism plays an important role in the function of immune

cells, and may become a new therapeutic target of RA.

Glycolysis is essential for activation of proinflammatory DCs. In

SKG mice, inhibition of HK2, which is an initiator of glycolysis,

suppressed DC activation via st imulation of TLR by

lipopolysaccharide, inhibited T cell differentiation to Th17 with
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Treg expansion and ameliorated ongoing arthritis (63). Although

the immunometabolism of tolDCs is not adequately understood,

control of metabolism can induce tolerogenicity in DCs.

Metformin, a drug for diabetes, induces DCs to enter a catabolic

state (activate OXPHOS and PI3K/Akt/mTOR pathway as well as

glycolysis) via the AMPK pathway, and promotes an anti-

inflammatory process (64). The use of metformin slightly

improved DAS-CRP28 in RA patients compared to placebo (65).

Vitamin D also activates AMPK pathway and induces a catabolic

state in DCs, promotes the formation of tolDCs (66). Deficiency of

the active form of vitamin D has been reported to correlate with

disease activity in systemic lupus erythematosus (SLE) (67), and its

supplementation improved disease activity in SLE patients (68).

TolDCs, which were derived from peripheral blood monocytes of

RA patients with the use of vitamin D, suppressed activation of CD4

+ T cells (69, 70). Therefore, supplementation with the active form

of vitamin D may have beneficial effects on RA through induction

of tolDCs.

Heterogeneous aspects of RA, such as age of onset,

comorbidities, extra-articular organ involvement, seropositivity of

rheumatoid factor or ACPA, limit treatment options. These disease

characteristics cause populations of D2T RA, regardless of the many

available therapeutic agents (57). Metabolism of RA joints has

unique characteristics that differ from those of peripheral blood

in RA or from synovia of other types of inflammatory arthritis (29,

49). In addition, some metabolic enzymes have an isotype whose

expression is upregulated in specific immune cells (71). Regulating

the immunometabolism of cell populations that are found only in

inflamed RA joints may avoid excessive suppression of normal

immune cells. Therefore, agents targeting immunometabolism can

be disease- and organ- specific treatments.
Conclusion

DCs play a crucial role in the pathogenesis of RA. Herein, we

summarized each subset of DCs and the alteration of their functions

by metabolic changes (Figure 1). In the RA synovium, hypoxia,

enhanced glycolysis, suppression of OXPHOS and decreased lipid

metabolism induce pro-inflammatory activity in DCs. The

immunometabolism of DCs may represent a new target for

precision medicine, since some RA patients have myeloid-

dominant cell infiltrations in the synovium (58).

However, we need to be careful in the interpretation of current

studies of the immunometabolism of RA. Typical studies of the

metabolism of RA patients had small sample sizes. Moreover, most

reports showing a link between modulation of metabolism and

amelioration of arthritis have been conducted in vitro or in

murine models of RA. There have been no therapeutic agents

reported which target specifically the immunometabolism of DCs,

and ameliorate arthritis. Furthermore, the immunometabolism in

actual RA synovium may be more intricate than previously thought,

as it is influenced by various biological pathways, metabolites and

cells in the microenvironment and their effects with one another

(72). In the RA synovium, each space and layer possesses resident
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immune cells and fibroblasts that have specific functions and

different frequencies due to different tissue microenvironments

(73). Increased understanding of immunometabolism in RA will

be achieved by combining single cell analysis, description of the

metabolome and three-dimensional special transcriptomics using

human samples (74–77).
Author contributions

YS, YN, SY, KF designed the study and contributed to writing

the manuscript. KF supervised the study. All authors were involved

in drafting the article or revising it critically for important

intellectual content, and all authors approved the final version to

be published. All authors contributed to the article and approved

the submitted version.
Funding

This work was supported by JSPS KAKENHI Grant Number

22K16339, and The JCR Grant for Promoting Research for D2T RA,
Frontiers in Immunology 05
and The Mochida Memorial Foundation for Medical and

Pharmaceutical Research.
Conflict of interest

YN belongs to the Social Cooperation Program, Department of

functional genomics and immunological diseases, supported by

Chugai Pharmaceutical.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be constructed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Minichiello E, Semerano L, Boissier MC. Time trends in the incidence,
prevalence, and severity of rheumatoid arthritis: a systematic literature review. Joint
Bone Spine (2016) 83:625–30. doi: 10.1016/j.jbspin.2016.07.007
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