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PM10 promotes an inflammatory
cytokine response that
may impact SARS-CoV-2
replication in vitro
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Natalia Taborda2,3, Maria T. Rugeles2 and Juan C. Hernandez1,2*

1Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellı́n, Colombia, 2Grupo
Inmunovirologı́a, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellı́n, Colombia, 3Grupo
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Introduction: In the last decades, a decrease in air quality has been observed,

mainly associated with anthropogenic activities. Air pollutants, including

particulate matter (PM), have been associated with adverse effects on human

health, such as exacerbation of respiratory diseases and infections. High levels of

PM in the air have recently been associated with increased morbidity and

mortality of COVID-19 in some regions of the world.

Objective: To evaluate the effect of coarse particulate matter (PM10) on the

inflammatory response and viral replication triggered by SARS-CoV-2 using in

vitro models.

Methods: Peripheral blood mononuclear cells (PBMC) from healthy donors were

treated with PM10 and subsequently exposed to SARS-CoV-2 (D614G strain, MOI

0.1). The production of pro-inflammatory cytokines and antiviral factors was

quantified by qPCR and ELISA. In addition, using the A549 cell line, previously

exposed to PM, the viral replication was evaluated by qPCR and plaque assay.

Results: SARS-CoV-2 stimulation increased the production of pro-inflammatory

cytokines in PBMC, such as IL-1b, IL-6 and IL-8, but not antiviral factors. Likewise,

PM10 induced significant production of IL-6 in PBMCs stimulated with SARS-

CoV-2 and decreased the expression of OAS and PKR. Additionally, PM10

induces the release of IL-1b in PBMC exposed to SARS-CoV-2 as well as in a

co-culture of epithelial cells and PBMCs. Finally, increased viral replication of

SARS-CoV-2 was shown in response to PM10.

Conclusion: Exposure to coarse particulate matter increases the production of

pro-inflammatory cytokines, such as IL-1b and IL-6, andmay alter the expression

of antiviral factors, which are relevant for the immune response to SARS-CoV-2.

These results suggest that pre-exposure to air particulate matter could have a

modest role in the higher production of cytokines and viral replication during

COVID-19, which eventually could contribute to severe clinical outcomes.
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1 Introduction

COVID-19 is an acute respiratory illness caused by Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a

pathogen that emerged in late 2019 and rapidly spread and

became a global public health problem (1, 2). As of March 2023,

SARS-CoV-2 has resulted in over 760 million infections and around

6.87 million deaths (3).

Although most individuals experience an asymptomatic or mild

SARS-CoV-2 infection, some patients develop severe disease

characterized by tissue damage and cytokine storm and may even

develop acute respiratory distress syndrome (ARDS), which can

lead to pulmonary failure and death (2). Severe forms of COVID-19

have been correlated with massive inflammatory cell infiltration and

uncontrolled production of inflammatory mediators (2, 4); in fact,

an association has been described between plasma IL-6 levels and

hospitalization, intensive care unit (ICU) admission and mortality

rates, suggesting that this cytokine may be a predictive factor of

disease severity (5).

Risk factors contributing to severe forms of COVID-19 include

older age, male gender (4), and comorbidities such as diabetes,

hypertension and obesity (6). In addition, it has been suggested an

association between exposure to environmental factors, such as air

pollution, with the airborne transmission of SARS-CoV-2 and the

severity of COVID-19 (7). In this regard, epidemiological studies

carried out in three of the most affected areas by COVID-19, China,

the USA, and Italy (8), have described an association between high

levels of pollutants and increased morbidity and mortality (8–10).

Air pollution is another major public health problem in recent

decades and has been associated with about 7 million deaths per

year by the World Health Organization (WHO) (11). Among the

primary pollutants is particulate matter (PM), a complex mixture of

compounds derived from anthropogenic and natural sources. PM

can be classified according to its aerodynamic diameter into coarse

particles (with diameter between 10 and 2.5 µm; PM10), fine

particles (with diameter < 2.5 µm; PM2.5) and ultrafine particles

(with diameter < 0.1; PM0.1) (12). PM10 is mainly deposited in the

upper respiratory tract and has been associated with diseases such

as asthma (13), chronic obstructive pulmonary disease (COPD)

(14), cardiovascular diseases (15, 16), neurologic diseases (17),

tuberculosis (18) and cancer (19–21). An epidemiological study

showed an association between increased lung cancer mortality (3.4

and 6%) and increased PM10 concentration by 10 µg/m3 (22).

In addition, previous studies have indicated that PM10 exposure

is associated with increased incidence, viral transmissibility and

severity of different respiratory viral infections (23), such as

influenza A (24), measles (25), rhinovirus (26) and respiratory

syncytial virus (RSV) (27–29). For example, an association between

high levels of PM and a higher rate of hospitalization for bronchiolitis

caused by RSV has been reported. Furthermore, PM concentrations

have been correlated with epidemics caused by RNA viruses in recent

decades, such as SARS-CoV in 2003 (30), dengue in 2007 (31),

Influenza H1N1 in 2009 (32), Measles in 2019 (25) and recently the

SARS-CoV-2 pandemic (10).

Although these associations have been described, the

mechanisms by which PM contributes to the susceptibility or
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severity of respiratory viral infections are still unclear. Studies have

described the ability of PM to induce oxidative stress and sustained

inflammatory response, which promotes epithelial cell damage and

cell recruitment to the lung; thus, contributing to lung tissue damage

and impaired immune response to subsequent viral infections (33–

36). Consistent with this, Xie et al. found that PM pre-exposure of

Coxsackievirus-infected mice induced an increase lung and heart

tissue damage, and an increase in cellular infiltrate (37). Likewise, it

has been described that pre-exposure of mice to diesel particles

increases susceptibility to influenza A infection, related to an

increase in neutrophil recruitment and, IFN-b and IL-6 high levels

(38). However, it is essential to consider factors such as the dose and

time of exposure to PM on the effects that it can induce. In this

regard, a study reported that chronic exposure to PM reduced IL-6

and IFN-b levels and increased Influenza A replication (33). Likewise,

a study described that the immune response against high

concentrations of PM10 and RSV, simultaneously, is less effective

than the response against the virus alone, suggesting that exposure to

PM alters the ability of cells to respond against viral infection, thus

contributing to viral pathogenesis (39). Besides, it has been proposed

that PM exposure predisposes towards the development of SARS-

CoV-2-related immunopathology. However, the mechanisms

involved in this relationship are still unclear; thus, this study aimed

to evaluate the effect of PM on viral replication and the inflammatory

response triggered by SARS-CoV-2.
2 Materials and methods

2.1 Cells and virus

Peripheral blood mononuclear cells (PBMC) were isolated by a

Ficoll-histopaque density gradient method (Sigma-Aldrich

Chemical Co., St. Louis, MO, USA) from each healthy donor (n =

3-7). The A549 cell line was grown in Dulbecco’s Modified Eagle

Medium (DMEM, Sigma-Aldrich, St Louis, MO, USA)

supplemented with 2% heat-inactivated fetal bovine serum (FBS)

(GIBCO- Thermo Fisher Scientific Inc, Waltman, MA, USA), 2mM

L-glutamine (Sigma-Aldrich Chemical Co., St. Louis, MO, USA)

and 1% penicillin-streptomycin at 37°C with 5% CO2. The viral

stock was produced from a Colombian SARS-CoV-2 isolated:

D614G strain (EPI_ISL_536399) (40). The virus was used at 0.1

multiplicity of infection (MOI) and incubated for 8, 24 or 48h at 37°

C with 5% CO2 (according to the experimental results). Unexposed

cells were used as a negative control.
2.2 PM10 stock preparation

The PM10 was obtained through the local environmental

agency (Sistema de Alerta Temprana - SIATA), a monitoring

project established by the authority of the Valle de Aburrá -

Colombia. Briefly, PM10 samples were obtained from quartz

filters by sonication in deionized water. Then, the mixture was

filtered and lyophilized. The working stock was prepared in sterile

water at 10 mg/mL, sonicated and stored at -20°C until used.
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2.3 PM10 and SARS-CoV-2
exposure in PBMC

The effect of PM10 in the inflammatory and antiviral response

to SARS-CoV-2 was evaluated using a pre-exposure strategy.

Briefly, PBMC were seeded (3x106 cells/well) in RPMI-1640

supplemented with 5% FBS, exposed to PM10 (10 and 100 µg/

mL) and incubated for 24 h at 37°C with 5% CO2. Then, the virus

was added to wells and incubated for 24h. Supernatant and cells

were harvested and stored at -70°C until processing. Untreated cells

were used as a negative control. Seven independent experiments

were conducted.
2.4 PM10 and SARS-CoV-2 exposure in co-
culture of epithelial cell line and PBMC

The effect of PM10 in the production of IL-1b in a co-culture

model of epithelial cell line and PBMC was evaluated. Briefly, A549

or VERO E6 cell line were seeded in DMEM supplemented with 2%

FBS for 24 h at 37°C with 5% CO2. Then cells were exposed to PM10

(50 µg/mL for A549; 10 and 20 µg/mL for VERO E6) and incubated

for 24 h at 37°C with 5% CO2. After incubation, supernatants were

removed, and the virus (MOI 0.1 and 0.01, for A549 and VERO E6,

respectively) was added and incubated at 37°C for 1h. PBMC freshly

isolated were added to respective wells and incubated for 24h. The

supernatant was harvested and stored at -70°C until processing.

Untreated cells were used as a negative control. Three independent

experiments were carried out.

Cytotoxic effect of PM10 on A549 and VERO E6 cells was

eva l u a t ed u s ing 3 - ( 4 , 5 -d ime thy l th i a zo l - 2 - y l ) - 2 , 5 -

diphenyltetrazolium bromide (MTT) reduction assay, as

previously reported (41). Briefly, cell lines were exposed to

increasing concentrations of PM10 (1-400 µg/mL) for 48 h. The

supernatant was removed and cells were incubated in fresh serum-

free medium containing 0.5mg/mL MTT for 3h at 37°C in the dark.

The formazan product was dissolved in DMSO and the absorbance

was measured at 570nm using a microplate reader (Multiskan FC

Microplate Photometer; Thermo Scientific). The data were

normalized to the absorbance of the untreated control cells

(Supplementary Figure 1).
2.5 Evaluation of the effect of PM10 in
SARS-CoV-2 replication on A549 cells

A549 cells were cultured and exposed to PM10 for 24 h at 37°C

with 5%CO2. After incubation, supernatants were removed, and the

virus (MOI 0.1) was added and incubated at 37°C for 1h. Then, the

virus inoculum was removed and DMEM (PM10 replenished) was

added and incubated for 24h. The supernatant was harvested and

stored at -70°C until processing. Infected cells without treatment

were used as infection control. Cells without treatment nor

infection were used as a negative control. Five independent

experiments with two replicates each were performed.
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2.6 RNA extraction, cDNA synthesis, and
real-time PCR

The mRNA quantification of IL-1b, IL-6, IL-8, TNF-a, IFN-b,
PKR (protein kinase R) and OAS (2'-5'-oligoadenylate synthetase 1)

was carried out from PBMC by real-time PCR. Briefly, for total

RNA extraction the Direct-zol RNA Miniprep kit was used (Zymo

Research, Orange, CA, USA) following the manufacturer’s

instructions. Then, RNA concentration and purity were

determined by spectrophotometry at 260-280 nm and the cDNA

was constructed using the iScript cDNA synthesis kit (BIO-RAD,

Hercules, CA, USA). Real-time PCR was performed using Maxima

SYBR Green qPCR master mix kit (Fermentas, Glen Burnie, MD,

USA). The amplification protocols were standardized for each gene.

PGK (phosphoglycerate kinase) was used as the housekeeping gene

to normalize the RNA content; primer sequences for each gene are

shown in Supplementary Table 1. The real-time PCR analysis was

performed in the CFX Manager Version 1.5.534.511 software (Bio-

Rad, Hercules, CA, USA). Data are expressed as fold change,

normalized against the constitutive gene and the untreated

control, using the DDCt method, as previously reported (42).
2.7 Quantification of IL-1b, IL-6
and IL-8 by ELISA

Quantification of IL-1b, IL-6, and IL-8 levels in culture

supernatants was carried out using ELISA kits (437004,

Biolegend, Thermofisher; 555220, BD Biosciences, San Jose, CA,

USA; and 431504 Biolegend, Thermofisher, respectively) as

previously reported (42) and following manufacturer’s instructions.
2.8 Quantification of viral replication by
qPCR and plaque assay

To quantify the viral RNA copies from supernatants, viral RNA

extraction was performed using the commercial Quick-RNA Viral

Kit (Zymo Research, Orange, CA) according to the manufacturer’s

instructions. Viral RNA copies were quantified from 5uL of RNA by

real time PCR using the Luna® Universal Probe One-Step RT-

qPCR Kit (New England Biolabs) in the CFX-96 thermo-tracer

(Biorad), following the Berlin protocol, version 2 (available at

https://www.who.int/docs/default-source/coronaviruse/protocol-

v2-1.pdf). Molecular degree water was used as a negative control

and a plasmid that expresses each of the amplified genes (gene E,

RdPp and RNASE P) were used as a positive control. The number of

viral copies per mL was calculated using a standard curve of the

plasmids containing the amplified genes (43).

The viral titer in supernatants was determined by plaque assay,

as previously reported (44). Briefly, 1.2 x 105 Vero E6 cells/well were

seeded for 24h at 37°C, with 5% CO2. Then, 10-fold serial dilutions

of the supernatants, obtained from assays in A549 cells, were added

to cells and incubated for 1h. After incubation, the viral inoculum

was removed and 1mL of 1.5% carboxymethyl-cellulose in DMEM
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1X was added. Cells were incubated for 4 days at 37°C with 5% CO2,

then washed twice with PBS and fixed/stained with 4%

Formaldehyde/1% crystal violet solution; finally, the viral plaques

were counted. The difference between viral titer of cells pre-exposed

to PM10 and untreated control was expressed as an

infection percentage.
2.9 Statistical analysis

GraphPad Prism 9.0.2 (La Jolla, CA, USA) was used for

data analysis. Normality was assessed using Shapiro-Wilk test.

ANOVA or Kruskal-Wallis tests were used to compare two or

more groups; in case of statistical differences post hoc test (or

multiple benchmarks) HDS of Tukey and Dunn, respectively,

were applied. Data were presented as median ± IQR

(Interquartile range).
2.10 Ethics

All experiments were carried out following the principles of the

Declaration of Helsinki. Donors were adults, read and signed and

informed consent, previously reviewed, and approved by the

research ethics committee of the Universidad Cooperativa

de Colombia.
3 Results

3.1 SARS-CoV-2 induces inflammatory
cytokines in PBMC

Increased IL-1b, IL-6, IL-8 and TNF-a mRNA expression were

observed in PBMC exposed to SARS-CoV-2 compared to control

cells (Figure 1A). Furthermore, the peak of increase in IL-1b and IL-
6 was observed at 24 h. No statistical differences were observed for

IL-8 and TNF-a during the experimental times.

In addition, SARS-CoV-2 also induced the secretion of IL-6 and

IL-8 into cell culture supernatants. A significant increase in IL-6 and

IL-8 was observed at 24h and 48h compared to 8h exposure

(Figure 1B). In our experimental conditions, for IL-1b, a

production peak was observed at 8h with a drop-in protein levels

at 24h and 48h. Additionally, gene expression of common antivirals

factors was evaluated. However, no changes in IFN-b, PKR and

OAS (Figure 1B) were observed in response to SARS-CoV-2.
3.2 PM10 alters the expression of
inflammatory cytokines and antiviral
factors in SARS-CoV-2-exposed PMBC

The effect of previous exposure to PM10 on the gene expression

of inflammatory and antiviral factors induced by SARS-CoV-2 was
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evaluated. A significative decrease in the fold change of IL-1b was

observed in cells exposed to PM10 (100 µg/mL) and SARS-CoV-2

compared to cells exposed only to the virus. A significant difference

in IL-6, IL-8 and TNF-a between cells co-stimulated with PM and

SARS-CoV-2, compared to PM-treated cells, was observed.

However, there were no significant differences in IL-6, IL-8, TNF-

a and IFN-b when PBMC with both stimuli or only exposed to

SARS-CoV-2 were compared (Figure 2). In addition, a trend

towards the decreased expression of OAS and PKR was observed

in PBMCs exposed to both stimuli compared to cells exposed to the

virus alone; therefore, a statistical comparison was made only

between these two groups, and it was found that there are

statistically significant differences (Supplementary Figure 2).
3.3 PM10 increased the production of IL-6
in SARS-CoV-2-exposed PBMC

The IL-6 production was significantly increased in cells exposed

to both PM10 and SARS-CoV-2 compared to cells individually

exposed to PM10 (100µg/mL; p = 0.0006) or SARS-CoV-2 (p <

0.0001; Figure 3A). For IL-1b and IL-8, no additive effect was

observed; however, the levels of these two cytokines were

significantly higher in cells exposed to both PM10 (100µg/mL)

and SARS-coV-2 compared to cells only exposed to SARS-CoV-2 (p

< 0.0001) (Figures 3B, C). Likewise, no significant differences were

observed in the production of IL-1b and IL-6 at PM10

concentrations of 20 and 50µg/mL. Although a trend towards an

increase was observed with the 50mg/mL dose of PM10 for the

production of both cytokines (Supplementary Figure 3).
3.4 PM10 induce IL-1b production in a
SARS-CoV-2-exposed co-culture model of
A549 and PBMC

Significant production of IL-1b was observed in a co-culture

model of A549 cells and PBMC exposed both to PM10 and SARS-

CoV-2 compared to co-culture only exposed to SARS-CoV-2 (p <

0.0001; Figure 4A). Although no significant differences were found

in the co-culture of VERO E6 and PBMCs, a trend toward an

increase in the production of IL-1b was observed in co-culture

exposed to both stimuli compared to co-culture exposed only to

SARS-CoV-2 (Figure 4B). Therefore, a comparison was made only

between these two groups, and it was found statistically significant

differences (p = 0.0041; Supplementary Figure 4).
3.5 Pre-exposure to PM10 increases SARS-
CoV-2 replication in A549 cells

Finally, an increase in RNA viral copies of SARS-CoV-2 was

observed in A549 cells pre-exposed to PM10 compared to infection

control (p < 0.0001; Figure 5A). Furthermore, infectious viral
frontiersin.org
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particles were also increased in cells pre-exposed to 50µg/mL of

PM10 (p = 0.0238; Figures 5B, C).
4 Discussion

Although most individuals experience asymptomatic or mild

SARS-CoV-2 infections, some patients develop severe clinical

conditions characterized by an exacerbated inflammatory

response, known as a cytokine storm, which leads to tissue

damage and multi-organ failure. In this study, we found that

SARS-CoV-2 could induce an inflammatory response in PBMC,

evidenced by the production of IL-1b, IL-6, IL-8 and TNF-a.
Although respiratory epithelial cells are the main target cells of

SARS-CoV-2, the acute immune response generated during

infection is mediated mainly by immune cells, including (but not

limited to) alveolar macrophages and monocyte-derived

macrophages, in response to stimuli derived from infected cells
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(45). Monocytes from COVID-19 patients exhibited activated

phenotype and increased production of pro-inflammatory

cytokines compared with those from healthy individuals,

indicating that these cells have an important role in the

dysregulation of the inflammatory response during SARS-CoV-2

infection (46). Although many of the mechanisms involved in the

development of the cytokine storm are still unknown, positive

regulation of pro-inflammatory genes has been found in critical

patients. This leads to recruitment of neutrophils and macrophages

to the lung, thus increasing the cytokines and chemokines in BALF

and blood and leading to a systemic inflammatory response with

harmful effects in different tissues and organs.

In addition to the exacerbated production of inflammatory

mediators, some studies have described a delayed antiviral

response in COVID-19 patients that contributes to an unbalanced

immune response and increased viral replication (47, 48). Our

results did not show a significant increase in the production of

antiviral molecules, even after 48 hours of stimulation. In general,
BA

FIGURE 1

SARS-CoV-2 induces gene expression and secretion of inflammatory cytokines and antiviral factors in PBMC. Gene expression of inflammatory
cytokines and antiviral factors was quantified by real-time PCR from PBMC exposed to SARS-CoV-2 (MOI 0.1). In addition, cytokine secretion in
supernatants was evaluated by ELISA. Results of gene expression are presented as fold change of (A) IL-1bIL-6, IL-8, TNF-a, IFN-b, PKR and OAS
compared with the unstimulated cells. Cytokine production is presented as pg/mL of (B) IL-1b, IL-6 and IL-8. Unexposed cells were used as a
negative control. Data were represented as median ± IQR (n = 3 - biological replicates). Statistical comparison was made using the ANOVA or
Kruskal-Wallis test, according to normality test, with a confidence level of 95% and post hoc tests (or multiple benchmarks) HDS of Tuckey or Dunn
were applied. Significant differences *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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the recognition of viral RNA by different intracellular pattern

recognition receptors (PRRs) such as TLR3, TLR7/8, MDA5 or

RIG-I leads to the production of IFN-I, inducing the transcription

of ISGs (interferon-stimulated genes) which interfere with viral

replication, constituting the primary antiviral mechanism. Several

viruses have developed immune evasion strategies that counteract

the IFN-I pathway, thus increasing viral fitness. In this regard,

Scagnolari et al. found that patients requiring mechanical
Frontiers in Immunology 06
ventilation had a decreased expression of IFN-I and ISGs

compared to those COVID-19 patients without ventilation

requirements (48). In addition, an ex vivo study found that SARS-

CoV-2 limits the response of interferons, despite its efficient

replication in the lungs, suggesting the presence of immune

evasion mechanisms, thus favoring viral transmissibility and

pathogenesis (49). In line with this study, Yuen and colleagues

found that SARS-CoV-2 proteins nsp13, nsp14, nsp15, and orf6 can
B

C D

E F

A

G

FIGURE 2

Effect of the PM10 in gene expression of inflammatory and antiviral factors in PBMC exposed to SARS-CoV-2. Gene expression of inflammatory and
antiviral molecules was quantified by real-time PCR from PBMC exposed to PM10 and SARS-CoV-2 (MOI 0.1) after 48h of total treatment. Results
are presented as fold change of (A) IL-1b, (B) IL-6, (C) IL-8, (D) TNF-a, (E) IFN-b, (F) PKR and (G) OAS. Cells unexposed were used as a negative
control. Data were represented as median ± IQR (n = 7 - biological replicates). Statistical comparison was made using the Kruskal-Wallis test with a
confidence level of 95% and post hoc tests (or multiple benchmarks) HDS of Dunn, were applied. Significant differences *p ≤ 0.05; **p<0.01.
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suppress primary interferon production and its STAT-1-mediated

signaling. In addition, neutralizing antibodies against IFN-I have

been detected in patients with COVID-19, especially in those

patients admitted to the ICU or with a fatal outcome (50–52).

Taken together, peripheral blood cells contribute to the

pathogenesis of SARS-CoV-2, through high production of pro-

inflammatory cytokines and delayed antiviral response, which may
Frontiers in Immunology 07
lead to increased viral replication, which may ultimately trigger in

the most severe forms of COVID-19.

Different risk factors have been described for developing severe

forms of COVID-19, including environmental factors such as

exposure to air pollutants. In this context, several studies have

shown a relationship between air pollutants, such as PM, and

susceptibility to respiratory viral infections, including those
BA

FIGURE 4

PM10 induce IL-1b production in a SARS-CoV-2-exposed co-culture model of A549 and PBMC. IL-1b production was quantified by ELISA from
supernatants of co-culture of A549 or VERO E6 with PBMC and pre-exposure to PM10 and the infected with SARS-CoV-2. Results are presented as
pg/mL of (A) co-culture A549 and PBMC, (B) VERO E6 and PBMC. Cells unexposed were used as a negative control. Data were represented as
median ± IQR (n = 3 - biological replicates). Statistical comparison was made using the Kruskal-Wallis test with a confidence level of 95% and post
hoc tests (or multiple benchmarks) HDS of Dunn, were applied. Significant differences ***p ≤ 0.001.
B

C

A

FIGURE 3

Effect of pre-exposure to PM10 in proinflammatory cytokine production in PBMC exposed to SARS-CoV-2. Production of inflammatory cytokines
was quantified by ELISA from supernatants of PBMC exposed to PM10 and SARS-CoV-2 (MOI 0.1). Results are presented as pg/mL of (A) IL-6, (B) IL-
1b y (C) IL-8. Cells unexposed were used as a negative control. Data were represented as median ± IQR (n = 7 - biological replicates). Statistical
comparison was made using the Kruskal-Wallis test with a confidence level of 95% and post hoc tests (or multiple benchmarks) HDS of Dunn, were
applied. Significant differences **p ≤ 0.01, ***p ≤ 0.001.
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caused by RSV (28), rhinovirus (26), influenza A (24), measles (25),

and coronaviruses (30). Although the mechanisms involved in the

increased susceptibility and severity of viral infections remain

unclear, it has been proposed that the oxidative and inflammatory

response triggered by PM may contribute to viral pathogenesis.

Likewise, it has been suggested that PM serves as a vehicle for virus

transmission since viral RNA has been detected in PM samples;

however, this hypothesis remains controversial and has not been

proven (53). We found that cells previously exposed to PM10 have a

higher production of IL-6 in response to SARS-CoV-2 compared to
Frontiers in Immunology 08
cells only exposed to the virus, suggesting that PM10 can potentiate

the inflammatory response during COVID-19.

The increase in IL-6 production could contribute to the

pathogenesis of SARS-CoV-2 infection, considering that critically

ill patients show up to 10 times higher levels of IL-6 than patients

with common disease (54). COVID-19 and these levels of IL-6 are

positively correlated with the detection of viral RNA (55). In fact,

patients who did not survive COVID-19 had higher levels of IL-6

than those who did survive (56). Likewise, Han et al. reported that

critical COVID-19 patients had higher levels of IL-6 compared to
A

B

C

FIGURE 5

PM10 pre-exposure increase SARS-CoV-2 replication. Viral RNA copies and infectious virions were quantified by real time-PCR and plaque assay,
respectively, from supernatants of A549 cells pre-exposed to PM10 and infected with SARS-CoV-2 (MOI 0.1). Results are presented as (A) viral RNA
copies/mL, (B) percentage of infection from plaque assay, and (C) representative plaque assay. Infected cells and without treatment were used as
infection control. Data were represented as median ± IQR (n = 7 - biological replicates). Statistical comparison was made using the Kruskal-Wallis
test with a confidence level of 95% and post hoc tests (or multiple benchmarks) HDS of Dunn, were applied. Significant differences *p < 0.05, **p <
0.01, ***p < 0.001.
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those with moderate infections. In addition, a univariate logistic

regression analysis, determined that IL-6 levels could be used as a

predictor of severity (57).

Furthermore, this cytokine could be used as a predictor for

mechanical ventilation requirement (58). On the other hand, Zhu

et al. found a pathogenic Th1 response with high GM-CSF

production in conjunction with highly inflammatory monocytes

expressing high levels of IL-6 (59). It could be suggested that the

significant increase in the production of inflammatory mediators

such as IL-6, in response to the simultaneous stimulation of PM10

and SARS-CoV-2, may lead to an excessive immune response,

accelerating the inflammatory process, greater recruitment of cells

and favoring the tissue damage.

Interestingly, we observed that SARS-CoV-2 could induce IL-

1b gene expression with a peak at 24h. However, when quantifying

the cytokine in supernatant, we found moderate production at 8h

and undetectable at 24h. Consistent with these results, Ma et al.

reported that the SARS-CoV-2 nucleocapsid could interfere with

the cleavage of Gasdermin D (60). This protein binds to

phospholipids, forming pores in the membrane and triggering a

form of death known as pyroptosis. When this process is inhibited,

there is no release of the mature form of IL-1b, evidenced by lower

production of IL-1b in infected monocytes (60). Moreover, when

quantifying IL-1b in PBMC exposed to PM10, we found lower

mRNA expression and higher cytokine release compared to those

PBMC exposed only to the virus. Furthermore, a recent study shows

that the interaction between epithelial cells and PBMC is necessary

to induce IL-1b release in response to SARS-CoV-2 infection (61).

In this sense, a significant increase in IL-1b production was found in
the co-culture of A549 cells and PBMCs pre-exposed to PM10 and

infected with SARS-CoV-2 compared with cells in co-culture but

only exposed to SARS-CoV-2. Together, these findings indicate

that, although the observed effect in cells exposed to both stimuli is

due to PM10 exposure and not an additive effect, this PM-induced

retained IL-1b release could contribute to the cytokine storm

observed in the most critical patients. Furthermore, the

production of IL-8 was higher in PBMC exposed to PM10 than

exposed only to the SARS-CoV-2, suggesting that pre-exposure to

PM can in general increased the production of pro-inflammatory

cytokines and contribute to the imbalance inflammatory response

observed in COVID-19 patients.

In contrast, we observed a decrease in PKR and OAS in cells

exposed to SARS-CoV-2 and PM10 compared with PBMC exposed

to virus. These results are according to previous reports of decrease

IFN-b expression in cells treated with PM and then infected with

the New-castle disease virus (NDV) and a highly pathogenic avian

Influenza virus (H5N1) (62). This indicates that exposure to PM10

not only contributes to the inflammatory response but can also

induce a dysregulation in the antiviral defense, leading to an

inadequate immune response.

Finally, we found that A549 cells (epithelial cells from the

respiratory tract) exposed to PM and infected with SARS-CoV-2

exhibit increased viral replication compared to control cells.

Although PM exposure can induce an exacerbated inflammatory
Frontiers in Immunology 09
response that contributes to tissue damage, it can affect defense

mechanisms in response to viral infections, contributing to viral

susceptibility and pathogenesis. In this regard, Mishra et al. found

that prior PM10 exposure of A549 cells prevented an adequate

antiviral and inflammatory response against the H5N1 avian

influenza virus, with increased viral RNA (62). According to the

above, a study found an increase in the cytokine secretion and viral

replication of Rhinovirus in human nasal epithelial cells exposed to

sand dust (63). Similarly, an alteration of the early antiviral response

was described in cells exposed to cigarette smoke and subsequently

infected with Rhinovirus, leading to an increase in viral replication,

which could explain how chronic exposure to air pollutants

contributes to greater susceptibility to viral infections (64).

Additionally, other factors could contribute to the effects of air

pollutants. In this sense, Ural et al. found a specifically age-related

decline in the immune function of lung-associated lymph nodes,

which is linked with the accumulation of particulate matter in them

(65). These results suggest that older people, chronically exposed to

PM, are more likely to develop an altered and less effective immune

response against viral infections such as that caused by SARS-CoV-

2. Thus, increasing the risk of developing severe forms of the disease

than younger people.

Our approach has limitations, including the use of cell lines,

which are great tools for in vitro evaluations; however, their

carcinogenic phenotype could be masking some of the effects of

PM. In addition, the pseudo-stratification of the respiratory

epithelium could also be contributing to differential response.

For this reason, it would be important to carry out studies using

primary respiratory epithelial cells under culture conditions

that allow their stratification and evaluate how PM and SARS-

CoV-2 infection interact in the different cells. In addition, the

exposure time to PM triggers different adverse effects;

accordingly, it would be appropriate to carry out new

experiments where the change in the response over time is

evaluated. Lastly, differences in the immune response related to

the age of people have been described. Likewise, a risk factor

described for the development of severe forms of COVID-19 is

age. In accordance with this, the evaluation of primary lung

epithel ial cells in different age donors could provide

information on whether there is an addictive effect between

PM and SARS-CoV-2 in older people.
5 Conclusion

In summary, our results suggest that previous exposure to

coarse PM induces a modest increase in the production of

inflammatory mediators, such as IL-1b and IL-6 and may alter

the expression of interferon response genes. These alterations in the

immune response could favor viral replication and thus contribute

to the pathogenesis of COVID-19. However, our in vitro model

shows minor changes, being necessary to perform new experiments

that confirm the role of PM pre-exposure in the development of the

severe forms of COVID-19.
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