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Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States, 7Department of
Medicine, University of Washington, Seattle, WA, United States, 8Department of Epidemiology,
University of California, Los Angeles, Los Angeles, CA, United States, 9Department of Clinical
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Background: Pregnancy is known to induce extensive biological changes in the

healthy mother. Little is known, however, about what these changes are at the

molecular level. We have examined systemic expression changes in protein-

coding genes and long non-coding (lnc) RNAs during and after pregnancy,

compared to before pregnancy, among healthy women with term pregnancies.

Methods: Blood samples were collected from 14 healthy women enrolled in our

prospective pregnancy cohort at 7 time-points (before, during and after

pregnancy). Total RNA from frozen whole blood was used for RNA

sequencing. Following raw read alignment and assembly, gene-level counts

were obtained for protein-coding genes and long non-coding RNAs. At each

time-point, cell type proportions were estimated using deconvolution. To

examine associations between pregnancy status and gene expression over

time, Generalized Estimating Equation (GEE) models were fitted, adjusting for

age at conception, and with and without adjusting for changes in cell type

proportions. Fold-changes in expression at each trimester were examined

relative to the pre-pregnancy baseline.

Results:Numerous immune-related genes demonstrated pregnancy-associated

expression, in a time-dependent manner. The genes that demonstrated the

largest changes in expression included several that were neutrophil-related

(over-expressed) and numerous immunoglobulin genes (under-expressed).

Estimated cell proportions revealed a marked increase in neutrophils, and less
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so of activated CD4memory T cells, during pregnancy, while most other cell type

proportions decreased or remained unchanged. Adjusting for cell type

proportions in our model revealed that although most of the expression

changes were due to changes in cell type proportions in the bloodstream,

transcriptional regulation was also involved, especially in down-regulating

expression of type I interferon inducible genes.

Conclusion: Compared to a pre-pregnancy baseline, there were extensive

systemic changes in cell type proportions, gene expression and biological

pathways associated with different stages of pregnancy and postpartum

among healthy women. Some were due to changes in cell type proportions

and some due to gene regulation. In addition to providing insight into term

pregnancy among healthy women, these findings also provide a “normal”

reference for abnormal pregnancies and for autoimmune diseases that

improve or worsen during pregnancy, to assess deviations from normal.
KEYWORDS

pregnancy, gene expression, RNA sequencing (RNAseq), long non-coding (lnc) RNA,
healthy women
Introduction

Human pregnancy represents a period during which an intricate

series of changes occur in themother at multiple levels, leading to the

remarkable development of a fertilized ovum into a small human

being. In addition to its crucial role in protecting and supporting

growth of the fetus to term, pregnancy also appears to have other

unexpected benefits; for example, it can induce a natural

improvement of some incurable diseases such as rheumatoid

arthritis (RA) and multiple sclerosis, and the incidence of these

diseases appears to be significantly reduced during pregnancy (1–3).

While much effort has been devoted over the years to understand the

influence of pregnancy immunology on fetal survival (4–6), little is

known about systemic biological changes that pregnancy induces in

the mother at the molecular level in health or in disease. Such data

about maternal changes that occur during the course of pregnancy

among healthy women with term pregnancies could represent a

“normal baseline” to which data from abnormal or disease

pregnancies could be compared to assess deviations from normal.

As we previously demonstrated (7), monitoring systemic gene

expression over time as pregnancy progresses is one way to assess

pregnancy-induced physiologic changes. Only a few other studies

have examined gene expression in the circulation of healthy women

during pregnancy (8–13), and of those, even fewer have focused on
Rate; GEE, Generalized

ong non-coding RNAs;

lear cells; PC, Principal

3 months postpartum;

T0, Pre-pregnancy; T1,

r; WGCNA, Weighted

02
all trimesters of pregnancy (8, 12). Importantly, none of these

studies included a pre-pregnancy baseline, which is crucial to

determine what changes are brought about by pregnancy. Instead,

studies used data from unrelated non-pregnant women to represent

the “pre-pregnancy” period, although this introduces heterogeneity

in the data due to between-person variation, or late pregnancy data

were compared to those from early pregnancy.

In our previous study (7), we reported gene expression changes

observed in each trimester of pregnancy, compared to a pre-

pregnancy baseline, in a combined group of 5 healthy women and

20 women with RA. We have now built on those previous findings

by examining longitudinal gene expression patterns among 14

healthy women using RNA sequencing (RNA-seq) data from pre-

pregnancy, through each trimester, until 3 months postpartum. We

have tested the hypothesis that pregnancy-induced gene expression

changes observed in the maternal periphery are due to a

combination of changes in different cell proportions in the

bloodstream and gene regulation. Further, given the emerging

role of long non-coding (lnc) RNAs as regulators of gene

expression in numerous biological processes including pregnancy

(14–16), we have examined lncRNA expression patterns as well as

the co-expression between coding genes with pregnancy-associated

expression and lncRNAs that may be regulating their

expression epigenetically.
Subjects and methods

Study subjects

Healthy women of Danish descent who were planning a

pregnancy were enrolled in our pregnancy cohort in Denmark,
frontiersin.org
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and were prospectively followed, as previously described (7, 17).

Women who had a history of autoimmune diseases and/or who

were on fertility treatment were excluded from the cohort. A set of

14 healthy women from this cohort were included in the present

study. The study was approved by the Ethics Committee for Region

Hovedstaden (Denmark) (Protocol #: H-2-2009-150), the Danish

Data Protection Agency, the Children’s Hospital Oakland Research

Institute Institutional Review Board (IRB number: 2009-073), and

the Northwestern University IRB (IRB number: STU00217093). All

subjects provided written informed consent prior to enrollment.
Sample collection and processing

Blood samples were drawn into PAXgene tubes at 7 pre-defined

time-points before, during (i.e. once each trimester, in gestational

weeks 6-8, 24 and 32, respectively) and after pregnancy (3, 6 and 9

months postpartum), and frozen. Because conception is estimated

to happen 11-21 days after the first day of the last period, the dates

of conception were estimated as 16 days (average) after the first day

of the last period. Total RNA was manually extracted from the

blood samples using the PAXgene Blood RNA Kit according to the

manufacturer’s protocol, and RNA integrity was assayed using a

2100 Bioanalyzer. 250 ng of total RNA were first depleted of

ribosomal RNAs and globin mRNAs using the KAPA RiboErase

kit (Roche), and KAPA globin depletion hybridizing oligos (Roche),

respectively. Barcoded and stranded cDNA libraries were then

prepared using the KAPA RNA HyperPrep kit. Pooled libraries

were sequenced on an Illumina NovaSeq 6000 instrument, targeting

an average of 100 million 150 bp paired-end reads.
Bioinformatics processing

Rigorous quality control (QC) of the raw data was performed

using FASTQC (18), Picard (19) and HTSTREAM (20). Raw

FASTQ reads were trimmed using Cutadapt (v2.4) (21) and

aligned to the human genome (GRCh38; Ensembl v98) using

HISAT2 (v 2.1.0) (22). Multi-mapped reads were filtered using

Samtools (23, 24). Aligned reads were assembled into transcripts

and merged using StringTie (v 2.1.1) (25).

Novel lncRNAs in our assembled transcripts were assessed by

removing: 1) transcripts overlapping any known transcript on the

same strand (Bedtools v 2.28.0); 2) transcripts with open reading

frames (ORFs) > 100 amino acids (TransDecoder v 5.5.0); 3) any

transcripts that, when translated, had similarity to known proteins/

protein domains [blastx hits to the RefSeq Protein or Pfam

databases] (Blast+ v 2.7.1, flags: -strand plus -max_target_seqs 1

-evalue 1e-5); 4) any transcripts classified as coding by at least one

of 3 tools for detecting coding potential [CPAT (v 3.0.2) (26), CPC

(v 2.0) (27), and FEELnc (v 0.2) (28)]; 5) single-exon transcripts.

Remaining transcripts were classified as “novel lncRNAs” and

appended to the Ensembl v98 gtf file. The resulting annotation

file (gtf) containing all known and newly discovered (from our data)

transcripts was used as reference to obtain gene level counts for all
Frontiers in Immunology 03
known genes and lncRNAs as well as novel lncRNAs with

featureCounts (v 2.0.0, flags: -s 2 -p) (29).

Raw counts were loaded into R and “rRNA” and “pseudogene”

gene types were removed, along with gene types “misc_RNA”,

“Mt_tRNA”, “scaRNA”, “snRNA”, “snoRNA”, and “TEC”. Genes

with low expression were removed by keeping only genes with CPM

> 10/L in 8 or more samples, where L is the minimum library size in

millions. Library size was normalized in edgeR (v 3.30.3) (30) with

the trimmed mean of M-values (TMM) method using the

calcNormFactors function, and exported normalized counts for

downstream statistical analyses.
Statistical analysis

Deconvolution of bulk RNA-seq data
To estimate cell type proportions in the samples from different

time-points, raw reads were aligned to the Ensembl v98

transcriptome using kallisto (v 0.46.1) and aggregated to gene-

level data using tximport (v 1.18) in R. Gene-level data for each

sample were deconvolved using CIBERSORTx and the

accompanying LM22 signature matrix that is based on 22 human

immune cell types (31). We used Principal Components Analysis

(PCA) to condense the information about changes in all 22

estimated cell type proportions into principal components (PCs)

as proposed by Kong et al. (32), and tested them for association with

gene expression. The PCs significantly associated with gene

expression were included as covariates in the regression models

described below.

Longitudinal regression model
To examine associations between pregnancy status (7 time-

points: pre-pregnancy, each trimester, and every 3 months after

childbirth until 9 months postpartum) and gene expression levels

over those time points, Generalized Estimating Equation (GEE)

models were fitted, using normalized gene counts as the outcome

variable with repeated measures and pregnancy status as the main

explanatory (factor) variable, employing robust standard error

estimation (STATA v14.2). Age at conception was adjusted for in

the model. A negative binomial link function was used to handle

over-dispersion in RNA-seq gene counts. Both independent and

exchangeable correlation structures were considered. The

Benjamini-Hochberg False Discovery Rate (FDR) method was

used to correct for multiple testing. A threshold of FDR<0.05 was

used to assess statistical significance. In order to assess whether

observed changes in gene expression over time were due to changes

in cell proportions or to those genes being regulated, we repeated

the analyses, adjusting for significant PCs that were associated with

gene expression. To address whether parity influenced the gene

expression results, we re-ran the GEE models, adjusting for parity

(0, 1, 2).

Temporal changes in gene expression
For genes demonstrating a significant association with

pregnancy status in the GEE models, fold-changes in expression
frontiersin.org
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levels at each trimester were examined relative to the T0 baseline

using differential gene expression analysis in edgeR. Changes in cell

type proportions were also adjusted for in edgeR when assessing

expression changes for genes significant in the adjusted GEE model.
Functional enrichment
Enrichment of GO terms, and KEGG and Reactome pathways

were assessed using WebgestaltR (33). Interactions between

proteins encoded by the significant genes were based on data

from the STRING database (34) and visualized in Cytoscape

(v3.8.1) (35).
Transcription factor analysis
Enrichment of transcription factor targets was performed using

the fora function in the fgsea R package (36). Transcription factor-

target regulons were pulled from the DoRothEA database, using

confidence levels A, B, and C (37, 38).

Co-expression network analysis
In order to determine whether lncRNAs could be involved in

regulating the expression of genes that exhibited expression changes

due to transcriptional regulation (significant in GEE model adjusted

for cell type proportions), co-expression of those genes and

lncRNAs was examined. Co-expression analysis of normalized

gene-level counts was performed in R using the Weighted Gene

Co-expression Network Analysis (WGCNA) package (v1.69) (39)

with power=5, networkType=signedHybrid, corType=bicor,

maxPOutliers=0.1, and mergeCutHeight=0.25. Further, since

genes co-expressed within a module tend to be co-regulated and

functionally related, functional analysis of the modules that

included both protein-coding genes and lncRNAs was performed

to gain insight into potential functions of the lncRNAs being co-

expressed with specific genes within different modules. Enrichment

of pregnancy-associated genes within co-expression modules was

assessed by hypergeometric test.
Results

Study subjects

Of the 14 women included in the analyses, 7 were nulliparous, 6

had had one live birth and 1 had had two live births. Data were

available from pre-pregnancy (T0) to 9 months postpartum for 8

women, and up to 3rd trimester (T3) for the other 6, one of whom

was also missing T0 data. The average age at conception was 28.9 ±

1.0 years. The average length of gestation was 40.3 ± 0.3 weeks. The

average time between the pre-pregnancy visits and the estimated

conception dates was 83 ± 27 days.
Data

After rigorous QC, the gene expression (RNA-seq) data were

visualized on a PCA plot (Figure S1). The data clustered by time-
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point, and clusters/time-points with similar gene expression

patterns were found to overlap. All results are presented

henceforth up to the 3 months postpartum (PP3) time-point.
Changes in cell type proportions with
advancing pregnancy

Deconvolution of the RNA-seq data using the LM22 reference

produced relative cell type proportions at each time point for the 22

immune cell types present in the LM22 reference. Of those 22 cell

types, 7 showed significant changes in their proportions during

pregnancy compared to T0 (Figure 1). Among the cell types that

showed significant changes in their proportions during pregnancy,

only neutrophils and activated CD4 memory T cells showed an

increase in proportions compared to pre-pregnancy, both

increasing at the start of pregnancy and then decreasing slightly

at T3 and PP3. The cell populations that showed a significant

decrease in proportions with advancing pregnancy relative to T0

included naïve B cells, resting CD4 memory T cells, CD8 T cells,

resting NK cells, and plasma cells. Cell proportions decreased up to

2nd trimester (T2) and then increased again until PP3. There were

no significant changes observed for memory B cells, dendritic cells

(resting and activated), eosinophils, macrophages (M0, M1 and

M2), mast cells (resting and activated), monocytes, NK cells

(activated), CD4 naïve T cells, regulatory T cells, follicular helper

T cells and gamma delta T cells (Figure S2). Among the 8 women

who had postpartum data available, there were no significant

changes compared to the T0 baseline, except for plasma cells

which were at a lower proportion at PP3 (median: 0% vs

0.002%; p=0.001).
Protein-coding genes

Changes in gene expression during pregnancy
Overall, 9,266 genes demonstrated pregnancy-associated

expression (FDR<0.05) in the Generalized Estimating Equations

(GEE) model unadjusted for cell type proportions, irrespective of

fold-changes in expression. After applying our fold-change (FC)

cut-off for significance (FC>=2), 811 genes exhibited expression

patterns that were significantly associated (FDR<0.05; FC>=2) with

different stages of pregnancy, compared to the T0 baseline. As

shown in the Venn diagram of Figure 2A, different sets of genes

showed significant changes in expression at different stages of

pregnancy. In particular, for those that were the most over-

expressed by the 3rd trimester, the changes appeared early on in

pregnancy, and persisted through pregnancy, becoming more

prominent by mid- or late pregnancy. Genes whose expression

were significantly associated with pregnancy in the 1st trimester

(T1) were either 2-8-fold over-expressed (such as MMP8/9, CD177,

DEFA1, CRISP3, CAMP, ORM1, S100A8/9/12, S100P, CA4,

PGLYRP1, ARG1 and TLR5), or 2-4-fold under-expressed (such

as IL34, IDO1 and several immunoglobulin heavy and light chain

variable genes). Most of these genes became even more over- or

under-expressed by T2 and they remained so at T3. Among the
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genes whose expression patterns were significantly associated with

pregnancy at or from T2 were IL1B, IL1R1/2, IL4R, CD55, CXCL1/

6, CXCR1, CEACAM3/6/8, ELANE, FOXQ1, IFNGR1, SERPINA1/

B1/B10, DEFA3/4, IL18RAP, NLRC4, NLRP6, TLR1/4/6/8, PADI2/

4, MMP1/25, OLFM4, FOXQ1 and numerous genes from the solute

carrier (SLC) family (2-15-fold over-expressed), together with

GATA2, IFI44, IFI44L, OAS1/2/3, IL4, NLRP7 and numerous

immunoglobulin genes (2-7-fold under-expressed). Genes whose

expression were significantly modulated only in late pregnancy (T3)

included CD24, complement genes C1QA/B/C and several genes
Frontiers in Immunology 06
encoding ribosomal proteins (2-4-fold over-expressed), and

GATA6, FGFR2, IL5RA, SOX5 and some immunoglobulin

variable genes (2-12-fold under-expressed). The Gene Ontology

(GO) terms that were enriched in the genes that started to show

pregnancy-associated expression at each trimester are shown in

Figure 2A. A comprehensive list of genes with pregnancy-associated

expression at each trimester is provided in Table S1.

After adjusting for changes in cell type proportions in the GEE

model, 233 genes were found to be significantly associated with

pregnancy. Three different patterns of expression were apparent
B

C

A

FIGURE 2

Protein-coding genes with pregnancy-associated expression. (A) The Venn diagram shows the number of protein-coding genes with pregnancy-
associated expression (fold-change, FC≥2, FDR<0.05) in each trimester (vs the pre-pregnancy baseline) in the unadjusted analysis. The Gene
ontology (GO) biological processes shown in the tables are enriched in genes that started demonstrating pregnancy-associated expression at
different stages of pregnancy. (B) Of the 811 genes showing pregnancy-associated expression in the unadjusted model, 150 remained significant
after adjusting for changes in cell type proportions, and another 83 became newly significant in the adjusted model. (C) After adjusting for changes
in cell type proportions in the GEE model, the number of genes demonstrating pregnancy-associated expression that was due to gene regulation
became apparent. The GO biological processes shown are enriched in genes that started demonstrating pregnancy-associated expression at
different stages of pregnancy.
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(Figure 2B). First, the majority (661 of 811, i.e. 82%) of genes with

pregnancy-associated expression in the unadjusted model (such as

IL1B, IL1R1/R2, IL27, MMP1/9/25, PADI2/4, TLR1/4/5/6/8 and

numerous immunoglobulin genes) were no longer significant in the

adjusted model. Thus, most of the pregnancy-induced changes in

expression appeared to be due to changes in cell type proportions as

pregnancy progressed over time. Second, some genes remained

significant in the adjusted model (n=150; for example, OLFM4,

CD24, CD177, CAMP, CRISP3, IDO1, GATA2, ELANE, IL34, IL4,

DEFA1/3/4, IFI44/44L, CEACAM6/8, OAS1/2/3, MMP8, S100P,

S100A8/9/12, RPL7/23/34/39/41), indicating that changes in their

expression were due to a combination of changes in cell proportions

and transcriptional regulation. For a third group of genes (n=83),

their pregnancy-associated expression only became apparent after

adjusting for cell type proportions, which suggests that changes in

their expression during pregnancy was most likely due to

transcriptional regulation. These included the type I Interferon

inducible genes HERC5/6, OASL, IFI6, IFIH1, IFIT1/3, MX1,

CMPK2, SIGLEC1 and STAT2 (down-regulated), and some genes

encoding ribosomal proteins such as RPL9/31, RPS7/18/21 (up-

regulated), among others. As in the unadjusted model, different sets

of genes showed significant changes in expression at different stages

of pregnancy, and different GO terms enriched in those genes

(Figure 2C). Of the proteins encoded by genes whose pregnancy-

associated expression was at least in part under transcriptional

regulation, 56% (131 of 233) belonged to a common interaction

network which included 5 tightly interacting clusters (Figure 3A).

The GO terms that were enriched in the genes within these sub-

clusters are shown in Figure 3B. The list of genes with significant

pregnancy-associated expression in the adjusted model is available

as Table S2.

Overall, when we combined the results from the two GEE

models unadjusted or adjusted for cell type proportions, we found

that a large number of genes (n=12,694) demonstrated significant

pregnancy-associated expression (FDR<0.05) when fold-changes in

expression were not included in the criteria for significance. Those
Frontiers in Immunology 07
were enriched in numerous biological pathways as can be expected

during pregnancy (Table 1).

The results did not change when the GEE models were adjusted

for parity (Pearson correlation > 0.98).

Postpartum changes in expression
Compared to T3, 558 genes showed significant changes in

expression at PP3 (FC≥2, FDR<0.05) in the model unadjusted for

cell type proportions. Of these, 70% (n=390) were among those

whose expression were significantly associated with pregnancy in

one or more trimesters. These genes were reverting to pre-

pregnancy expression levels as suggested by the inverse

correlation between their expression changes from T3 to PP3 and

from T0 to T3 (pairwise correlation=-0.96, p<0.00005). The genes

showing the largest changes in expression at PP3 (vs T3) included

OLFM4, MMP8/9, CD177, DEFA1/3/4, CEACAM6/8, CRISP3,

CAMP, FOXQ1, ELANE, S100A8/9, S100P, C1QA/B, among

others (2-45-fold under-expressed), and IL4, GATA2/6, IL5RA,

IL34, and some T cell receptor genes (2-31-fold over-expressed).

After adjusting for cell type proportions, 359 of the 558 genes (64%)

were no longer significantly associated with the PP3 time-point

while another 17 became newly associated. Compared to T0, 36

genes showed significant changes in expression at PP3 (FC≥2,

FDR<0.05) in the unadjusted model, all being under-expressed at

PP3 and most (24 of 36, i.e. 67%) being immunoglobulin genes.

Transcription factor analysis
Transcription factor (TF) target enrichment analysis revealed

that the genes showing pregnancy-associated expression at/from T1

(n=26) were significantly enriched in target genes of STAT2

(CMPK2, EPSTI1, OAS2, OAS3; fold-enrichment=15.5,

FDR=0 .04 ) and IRF9 (OAS2 , OAS3 , RSAD2 ; fo ld -

enrichment=25.7, FDR=0.04). Genes that became associated with

pregnancy at or from T2 (n=136) were significantly enriched in

additional target genes of STAT2 (DDX60, DHX58, EIF2AK2, IFI6,

IFIH1, IFIT1, IFIT3, ISG15, MOV10, MX1, OAS1, OASL, PARP10,
BA

FIGURE 3

Protein interactions and functional enrichment of genes whose expression are regulated during pregnancy. (A) The protein products of the genes
with pregnancy-associated expression in the adjusted analyses were part of a common protein-protein interaction network. Five distinct clusters
were observed within the network. (B) The GO terms that were the most significantly enriched in genes from clusters 1-4 are shown. No GO term
enrichment was found for genes in cluster 5. [T1, 1st trimester; T2, 2nd trimester; T3, 3rd trimester].
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TABLE 1 KEGG pathways enriched in genes with pregnancy-associated expression.

KEGG Pathway No. of genes identified
(No. of genes in pathway) FDR*

Pathways enriched in genes over-expressed during pregnancy:

Metabolism

Carbohydrate metabolism

Starch and sucrose metabolism 14 (24) 1.0E-02

Pentose phosphate pathway 12 (22) 4.0E-02

Galactose metabolism 12 (22) 4.0E-02

Energy metabolism

Oxidative phosphorylation 55 (115) 2.0E-04

Genetic Information Processing

Translation

Ribosome 55 (85) 4.0E-09

Folding, sorting and degradation

Ubiquitin mediated proteolysis 62 (128) 7.0E-05

Environmental Information Processing

Signal Transduction

MAPK signaling pathway 95 (206) 9.0E-06

JAK-STAT signaling pathway 49 (102) 5.0E-04

ErbB signaling pathway 34 (72) 6.0E-03

VEGF signaling pathway 29 (59) 6.0E-03

mTOR signaling pathway 22 (44) 1.0E-02

TGF-beta signaling pathway 28 (64) 4.0E-02

Cellular Processes

Transport and catabolism

Endocytosis 83 (164) 7.0E-07

Lysosome 59 (116) 3.0E-05

Regulation of autophagy 11 (19) 3.0E-02

Cell growth and death

Apoptosis 40 (80) 7.0E-04

Cellular community - eukaryotes

Focal adhesion 63 (154) 8.0E-03

Adherens junction 29 (63) 2.0E-02

Cell motility

Regulation of actin cytoskeleton 76 (161) 3.0E-05

Organismal Systems

Immune system

Fc gamma R-mediated phagocytosis 52 (89) 7.0E-07

Chemokine signaling pathway 74 (142) 7.0E-07

Leukocyte transendothelial migration 47 (83) 8.0E-06

(Continued)
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TABLE 1 Continued

KEGG Pathway No. of genes identified
(No. of genes in pathway) FDR*

NOD-like receptor signaling pathway 33 (55) 4.0E-05

Toll-like receptor signaling pathway 45 (84) 5.0E-05

B cell receptor signaling pathway 38 (70) 1.0E-04

Fc epsilon RI signaling pathway 35 (64) 2.0E-04

Complement and coagulation cascades 23 (40) 1.0E-03

Natural killer cell mediated cytotoxicity 47 (101) 1.0E-03

T cell receptor signaling pathway 44 (99) 6.0E-03

Endocrine system

Insulin signaling pathway 55 (114) 2.0E-04

Adipocytokine signaling pathway 27 (56) 1.0E-02

Progesterone-mediated oocyte maturation 33 (73) 1.0E-02

GnRH signaling pathway 33 (74) 2.0E-02

Nervous system

Neurotrophin signaling pathway 58 (109) 7.0E-06

Long-term potentiation 26 (48) 2.0E-03

Human Diseases

Cancer: overview

Pathways in cancer 109 (260) 1.0E-04

Cancer: specific types

Pancreatic cancer 36 (65) 1.0E-04

Non-small cell lung cancer 29 (49) 2.0E-04

Chronic myeloid leukemia 36 (67) 2.0E-04

Renal cell carcinoma 35 (65) 3.0E-04

Prostate cancer 39 (78) 8.0E-04

Acute myeloid leukemia 29 (54) 1.0E-03

Endometrial cancer 25 (47) 3.0E-03

Glioma 26 (52) 7.0E-03

Melanoma 24 (49) 1.0E-02

Colorectal cancer 27 (58) 2.0E-02

Small cell lung cancer 32 (73) 2.0E-02

Infectious disease: bacterial

Epithelial cell signaling in Helicobacter pylori infection 34 (59) 9.0E-05

Vibrio cholerae infection 24 (43) 2.0E-03

Pathogenic Escherichia coli infection 24 (47) 7.0E-03

Infectious disease: parasitic

Leishmaniasis 33 (66) 2.0E-03

Neurodegenerative diseases

Alzheimer disease 69 (144) 4.0E-05

(Continued)
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PARP12, PML, PNPT1, RNF213, RTP4, XAF1; fold-

enrichment=19.9, FDR=4.6E-17) and IRF9 (IFIT1, IFIT3, ISG15,

MX1, PML; fold-enrichment=11.6, FDR=1.4E-2). No significant TF

target enrichment was observed among the genes that started

showing pregnancy-associated expression only at T3 (n=71) and

those with expression associated with PP3. A list of TFs and their

target genes that were among those demonstrating pregnancy-

associated expression in the adjusted GEE model is provided in

Table S4, irrespective of whether those target genes were

significantly enriched or not.
lncRNAs

The patterns of expression of lncRNAs during pregnancy,

including known and novel ones and a few microRNAs

(miRNAs) identified in our data, were similar to those for

protein-coding genes. As shown in Figure 4A, most of the

lncRNAs that demonstrated significant changes in expression in

early pregnancy (T1) continued to show significant changes in mid-

(T2) and late pregnancy (T3). Furthermore, for the majority of
Frontiers in Immunology 10
lncRNAs that were the most over-expressed (3- to 24-fold) by T3,

the changes were already significant in early pregnancy, persisting

through pregnancy, and becoming more prominent by mid- or late

pregnancy. After cell type proportions were adjusted for in the GEE

model, many of these lncRNAs were no longer associated with

pregnancy, while others became newly associated, similar to the

coding genes (Figure 4B). Similar results were also obtained at 3

months postpartum.
Co-expression network analysis

Weighted Gene Co-expression Network Analysis (WGCNA) of

all genes analyzed in the adjusted GEE model identified 25 co-

expression modules, i.e. densely connected sub-networks of genes

with highly correlated expression. Of the protein-coding genes and

lncRNAs with pregnancy-associated expression, those that

clustered together within a co-expression module showed similar

patterns of expression, as expected (Figure 5A). Additionally, within

each module, we profiled enrichment of pregnancy-associated genes

and lncRNAs (Figure 5B). Genes and lncRNAs showing pregnancy-
TABLE 1 Continued

KEGG Pathway No. of genes identified
(No. of genes in pathway) FDR*

Huntington disease 71 (156) 2.0E-04

Parkinson disease 52 (114) 1.0E-03

Amyotrophic lateral sclerosis 22 (39) 2.0E-03

Endocrine and metabolic disease

Type II diabetes mellitus 17 (35) 5.0E-02

Pathways enriched in genes under-expressed during pregnancy:

Metabolism

Carbohydrate metabolism

Citrate cycle (TCA cycle) 19 (27) 0.03

Amino acid metabolism

Valine, leucine and isoleucine degradation 27 (42) 0.03

Glycan biosynthesis and metabolism

N-Glycan biosynthesis 29 (44) 0.01

Genetic Information Processing

Translation

Aminoacyl-tRNA biosynthesis 16 (22) 0.03

Replication and repair

DNA replication 23 (36) 0.04

Human Diseases

Immune disease

Primary immunodeficiency 24 (31) 0.001
Numerous KEGG pathways were enriched in genes that were significantly associated with pregnancy in the GEE model adjusted for cell type proportions and/or the unadjusted model (without
any fold-change cut-off). These have been grouped under broad functional categories. KEGG pathways enriched in genes that were over-expressed are shown separately from those enriched in
genes that were under-expressed. (* FDR: FDR-adjusted p-value).
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associated expression were enriched in specific modules in a time-

dependent manner. For example, the time-points at which they

were associated with pregnancy and the modules in which they were

enriched were as follows - T1 only: darkred module (enrichment

FDR=0.002); T1 and T2: darkgreen module (FDR=2E-06); T2 only:

lightyellow module (FDR=6E-10); T2 and T3: darkgrey (FDR<2.2E-
Frontiers in Immunology 11
16) and orange (FDR<2.2E-16) modules; T3 and PP3:

darkturquoise module (FDR=7E-05); and finally, PP3 only: black

module (FDR=3E-04). Because genes clustered within a module are

strongly co-expressed, modules are often related to biological

function. The GO terms that each module was enriched in are

shown in Table S3. While the darkturquoise and darkgrey modules
BA

FIGURE 4

Long non-coding RNAs with pregnancy-associated expression. The Venn diagrams show the number of lncRNAs that started to show pregnancy-
associated expression at the different stages of pregnancy in the (A) unadjusted analyses, and (B) adjusted analyses.
BA

FIGURE 5

Co-expression of protein-coding genes and/or long non-coding RNAs within functional modules. (A) The patterns of expression of the protein-
coding genes and lncRNAs whose expression were significantly associated (FC≥2, FDR<0.05) with one or more trimesters of pregnancy in the model
adjusted for changes in cell type proportions are shown in the heatmap. Many of the functional modules identified through Weighted Gene Co-
expression Network Analysis (WGCNA) [sidebar labeled Module] included lncRNAs that were co-expressed with the coding genes [shown in sidebar
labeled Type]. (B) The total number of genes (among all genes analyzed) that clustered within each WGCNA co-expression module (with color
labels) are shown in the left-most column. For each module, the four columns to the right indicate the number of genes (protein-coding/lncRNAs)
that become significantly associated with pregnancy at different stages. The modules highlighted in red were significantly enriched in genes/lncRNAs
whose expression were associated with pregnancy in specific trimesters or at 3 months postpartum (FDR values shown). Co-expression of protein-
coding genes and lncRNAs was also observed in several modules (darkred, darkgrey, blue, green, magenta, darkgreen, black, orange, red, turquoise
and grey). [T1, 1st trimester; T2, 2nd trimester; T3, 3rd trimester; PP3: 3 months postpartum].
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were not enriched in any specific GO terms, darkturquoise

consisted mostly of immunoglobulin V and C genes (45/58, 78%)

and, based on cell type signature gene sets downloaded from the

molecular signatures database, darkgrey was enriched in markers of

mast cells (FDR=1.1E-05).

Since the genes with expression changes significant in the

adjusted GEE model were likely being transcriptionally regulated,

their co-expression with any lncRNAs that could potentially be

regulating their expression was examined. There were 11 modules

in which both protein-coding genes and lncRNAs were co-

expressed: darkred, darkgrey, blue, green, magenta, darkgreen,

black, orange, red, turquoise and grey (Figure 5B). The specific

genes and lncRNAs co-expressed in those modules, together with

GO terms associated with the modules are shown in Table S3. Of

interest, the Darkgreen module that was functionally related to type

I interferon signaling included Type I interferon-inducible genes

co-expressed with lncRNA AC131011.1. Within the Orange

module, several neutrophil-related genes were co-expressed with

lncRNAs LINC00900 and LINC02009. In the Turquoise module,

some other neutrophil-related genes were co-expressed with several

lncRNAs including known and novel ones identified in our data.
Discussion

Wepresent here the findings from our unique pregnancy cohort of

healthy women with term pregnancies that, unlike previous cohorts,

includes a pre-pregnancy baseline. The women were enrolled in our

cohort while they were still planning a pregnancy and they were

prospectively followed through pregnancy and postpartum. Thus, this

is the first report of systemic changes in the expression of protein-

coding genes and lncRNAs that occur among healthy women with

term pregnancies from pre-pregnancy, through each trimester, until 3

months postpartum, based on RNA-seq data from the maternal

periphery. Here, we have focused only on healthy Danish women

(n=14), demonstrating progressive changes in expression patterns at

each trimester, compared to the pre-pregnancy baseline, and how

those changes relate to cell type proportion, transcriptional regulation

and biological function. We have also examined co-expression of the

protein-coding genes and lncRNAs showing pregnancy-associated

expression within functional modules.

Overall, the pregnancy-associated patterns of gene expression

from our unadjusted model were very similar to what we had

previously described for patterns that overlapped between healthy

women and women with RA (7). In our present dataset, the small

degree of overlap in the findings from the unadjusted and adjusted

GEE models provide evidence that, to a large extent, pregnancy-

related changes that occur in the maternal periphery result from

changes in the proportions of different cell populations during the

course of pregnancy. Nonetheless, there was also evidence that a

small proportion of pregnancy-associated changes were the result of

transcriptional regulation. Several of the genes that appeared to be

transcriptionally regulated were also found to be target genes for

transcription factors. These included several type I interferon-

inducible genes whose expression were down-regulated during

pregnancy. We speculate that this is a mechanism to maintain
Frontiers in Immunology 12
“normal” levels of these genes and their products, and promote a

healthy pregnancy, since high levels of type I interferons and

interferon-inducible genes during pregnancy have been associated

with preeclampsia and other fetal complications (40–42). Co-

expression network analysis showed that many of the

transcriptionally regulated genes were highly co-expressed and

functionally related within different modules, and these genes

within a module were being modulated during pregnancy in a

time-dependent manner. Another interesting finding was that, for a

large proportion of genes that showed significant changes in

expression by 3 months postpartum, those postpartum changes

were inversely correlated with their changes during pregnancy.

Thus, clearly, these genes reverted their expression back to pre-

pregnancy levels after childbirth.

There were many neutrophil-related genes among those that

showed the largest increases in expression during pregnancy (2- to

27-fold) compared to the T0 baseline. This neutrophil signature is

consistent with the notable increase in our estimated proportions of

neutrophils in the maternal periphery during pregnancy. This

pregnancy-related increase in neutrophils is supported by

previous reports (13, 43). Additionally, our results from the GEE

models demonstrate that many of the neutrophil-related genes

(such as CD177, OLFM4, CEACAM6/8, DEFA1/3/4, S100A8/9/

12, S100P, MMP8, CRISP3, CAMP and ELANE) were significantly

associated with pregnancy in the models unadjusted and adjusted

for cell type proportions. These findings suggest that, while the

increasing prominence of the neutrophil expression signature

during pregnancy was in part due to increasing numbers of

neutrophils in the bloodstream, these genes were also being more

actively transcribed (2- to 15-fold compared to T0) as a result of

transcriptional regulation. Yet, little is known about the function of

neutrophils in the context of pregnancy. It has been postulated that,

in general, neutrophils can assume pro- or anti-inflammatory, as

well as immune-regulatory roles (43). Thus, while they have been

implicated in pregnancy pathologies (44, 45), our findings in the

circulation of healthy mothers with term pregnancies show that

they also have important roles in maintaining a healthy pregnancy.

We found numerous lncRNAs to be expressed during and after

pregnancy, in a trimester-associated pattern. While we do not know

what regulated the expression of these specific lncRNAs in a

temporal manner, it is of interest that expression of some

lncRNAs can be modulated by estrogen (46). Further, co-

expression within a module has been shown to correlate with

functional relatedness (47). Thus, the co-expression of lncRNAs

within the same functional modules as protein-coding genes whose

expression are associated with pregnancy suggests that those genes

and lncRNAs likely share similar functions. Additionally, the

lncRNAs could potentially be involved in regulating expression of

the co-expressed genes, especially since we demonstrated that the

expression changes among those genes were, at least in part, due to

transcriptional regulation. Although the lncRNAs did not map to

the regulatory regions of the genes that they were co-expressed with

(data not shown), there still remains a possibility that they may be

epigenetically regulating the expression of those genes.

There is some overlap between our findings and what others

have previously reported, although differences in study design and
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the lack of a pre-pregnancy baseline in those studies did not allow

direct comparisons. Using RNA from whole blood collected in

PAXgene tubes, Gomez-Lopez et al. (12) had observed increased

expression (>1.5-fold) of CD177, ARG1, CAMP, MMP8, DEFA4,

S100A12 and OLFM4, among others, and decreased expression of

some immunoglobulin genes during pregnancy. The magnitudes of

the expression changes were modest compared to what we

observed, probably because the reported changes were relative to

a baseline of late first trimester (gestational week 10) in that study,

whereas we report here changes relative to a pre-pregnancy

baseline. Additionally, this study also found that expression of

genes that were the most highly modulated increased with

advancing gestational age, which we also observed in our data.

Another observation from that study was that a large number of

genes associated with pregnancy mapped to chromosome 14. While

this was replicated in our data (not shown), we did not consider that

to be a significant finding because that was due to the large number

of immunoglobulin genes, which map to chromosome 14, being

significantly modulated by pregnancy. Based on cell type

proportions estimated from DNA methylation data from

peripheral blood mononuclear cells (PBMCs), Knight et al. (11)

reported a significant decrease in the proportion of B cells and

natural killer (NK) cells during uncomplicated term pregnancies,

which is consistent with the decrease in estimated naïve B cells and

NK cells in our data. There was some degree of overlap in genes

with pregnancy-associated expression between that study and ours

(for example, CEACAM6/8, CRISP3, DEFA1/3/4, ELANE, IFIT1B,

IFI27, MMP8/9, OLFM4, S100P and S100A12), although the

specific changes were not comparable since that study used data

from only 2 broad time-points during pregnancy (gestational weeks

6-15 and 22-33). Hong et al. (13) reported an increase in

neutrophils during pregnancy and a decrease postpartum, using

cell sorting, thus supporting our observations. While gene

expression results were not directly comparable between that

study and ours, reduced expression of interferon-related genes

and increased expression of neutrophil-related genes were

observed during pregnancy in both studies. Some of the genes

that had pregnancy-associated expression in our data (OLFM4,

CEACAM6/7, DEFA3/4, MMP8/9, CD177, IFI44, IFI27, ELANE,

among others) were reported by Heng et al. (9) to be the most

differentially expressed between T2 and T3 in healthy term

pregnancies, although fold-changes were very modest (1.2-1.9), as

can be expected between T2 and T3. We found little overlap

between the most up- or down-regulated genes in our data and

those reported by Al-Garawi et al. (T3 vs T1) (10).

Our study has many strengths: (1) The availability of time-

dependent data from the same women at different time-points

before, during and after pregnancy allowed pregnancy-induced

gene expression changes to be compared to a pre-pregnancy

baseline, while at the same time controlling for unmeasured

confounders; (2) The homogeneous genetic background of the

study population was an advantage for the gene expression

studies performed; (3) The use of RNA-seq technology to assess

gene expression was a significant advantage over microarray data

used in previous studies; (4) Using RNA from whole blood (rather

than PBMCs only) enabled us to examine overall systemic gene
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expression changes that occur in the maternal periphery during and

after pregnancy, and to identify the neutrophil signature during

pregnancy. Further, since the RNA samples were stabilized in

PAXgene tubes right at the time of each blood draw, the

expression profiles are likely to reflect those in vivo; (5) Adjusting

for cell type proportions in the GEE model and comparing to the

unadjusted model enabled us to tease out which pregnancy-induced

expression changes were due to changes in cell type proportions and

which were brought on by epigenetic regulation of transcription. (6)

The use of total RNA enabled us to examine both protein-coding

and lncRNAs from the same sample. Furthermore, in addition to

providing insight into gene expression changes that happen during

pregnancy and postpartum among healthy women, these findings

also bear significance for studies of abnormal pregnancies or

autoimmune diseases that improve or worsen during pregnancy,

such as rheumatoid arthritis. That is, using the expression changes

observed in normal healthy pregnancies as a baseline makes it

possible to assess which genes in disease conditions show

expression changes that deviate from normal. Our findings

presented here from healthy women with term pregnancies

provide the first such normal reference. There are also limitations

in our study. First, the sample size was relatively small. However,

the availability of longitudinal data from the same women enabled

us to overcome some of the limitations of having a small sample

size. Furthermore, to our knowledge, this is the only pregnancy

cohort of healthy women currently available with a pre-pregnancy

baseline. Thus, even though the sample was small, our findings add

new knowledge to the current literature, advancing this field

forward. Second, while the ethnic homogeneity of the study

subjects was a strength for gene expression studies, that limits the

extent to which the findings can be generalized to non-Caucasian

populations. Third, the use of total RNA from whole blood could

imply that expression profiles of neutrophils dominated a large part

of the observed expression patterns. However, the sensitivity of

RNA-seq technology enabled us to also detect transcripts that were

not neutrophil-specific, including those specific to cell types present

in low proportions in blood. Fourth, RNA from whole blood

originates from a heterogeneous mixture of cells, and therefore, it

was not possible to identify cell type-specific expression changes

associated with pregnancy. Last, we did not collect data on whether

the pregnancies were uncomplicated or not.
Conclusion

In summary, our results demonstrate that, compared to a pre-

pregnancy baseline, there are extensive systemic changes in cell type

proportions, expression of genes and lncRNAs, and biological

pathways that are associated with each trimester of term

pregnancies and postpartum among healthy women. The

expression changes in the maternal bloodstream are in large part

due to changes in cell type proportions, although epigenetic control

of transcriptional regulation also appears to play an important role.

Whether lncRNAs are partly responsible for this transcriptional

regulation is not clear. Nonetheless, those lncRNAs co-expressed

with genes showing pregnancy-associated expression are excellent
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candidates as epigenetic regulators of their expression. Overall, our

findings represent a “normal reference” to which data from

abnormal or disease pregnancies can be compared to assess

deviations from normal.
Data availability statement

The datasets presented in this article are not readily available

because the data and materials are protected by the General Data

Protection Regulation (GDPR) of the European Union (2016/679),

and by the Danish Data Protection Act enacted in May 2018 to

supplement the GDPR. Requests to access the analyses of the

dataset should be directed to Damini.Jawaheer@northwestern.edu.
Ethics statement

The studies involving human participants were reviewed and

approved by Ethics Committee for Region Hovedstaden

(Denmark), the Children’s Hospital Oakland Research Institute

Institutional Review Board (IRB), and the Northwestern University

IRB. The patients/participants provided their written informed

consent to participate in this study.
Author contributions

MW analyzed the data, interpreted the results and contributed

in writing the original draft of the manuscript. JLN and JO

contributed to the conceptualization and design of the study. MS

was responsible for acquisition of the data. MH and VZ contributed

to the data acquisition. DG and NJ contributed to the methodology

for the longitudinal data analyses and interpretation of the results.

DJ contributed to the conceptualization and design of the overall

study and the experiments, to the analysis and interpretation of the

data, and to writing the original draft of the manuscript. All authors

contributed to the article and approved the submitted version.
Funding

This work was supported by funds from: the National Institutes

of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), USA

(grants R21AR057931 and R01AR073111); Gigtforeningen,

Denmark (grant R87-A1477-B512); and The Juliane Marie

Center, Rigshospitalet (Denmark). These funders did not have

any role in conducting this study or in interpretation and

reporting of results.
Acknowledgments

We are immensely grateful to the study subjects for their

participation in the study. We acknowledge our gratitude towards

Dr. Hanne Kjærgaard for all her efforts in setting up the logistics for
Frontiers in Immunology 14
this study in Denmark; Dr. Kjærgaard passed away in 2013. We also

thank the leadership team at the Juliane Marie Center in Denmark

for their support. The Rheumatology departments at the following

hospitals in Denmark facilitated collection of data and samples:

Rigshospitalet (Glostrup), Odense Universitetshospital, Dansk

Gigthospital (Sønderborg), Aarhus University Hospital (Skejby)

and Regionshospitalet Viborg. We thank all members of our

project team for making this work possible: Anne-Grethe

Rasmussen, Charlotte Schön Frengler, Dorte Heide, Randi

Petersen, Tove Thorup Rasmussen, Lone Thomasen, Britta

Hvidberg Nielsen, Irene Tarp Jørgensen, Teresa Rozenfeld,

Debbie Nadelmann, Kirsten Junker, Lis Kastberg Schubert, Lis

Lund, Jette Barlach, Charlotte Drachmann, Dorte Meinke, Helle

Bendtsen, Helle Andersen, Marjo Westerdahl and Jane Alrø

Bøtkjær for their contribution with data and sample collection;

Rikke Godtkjær Andersen, Mie Rams Rasmussen, Katrine

Elmgaard Jensen, Pia Pedersen, Stine Birkelund, Louise Mielke,

Andreas Smed, Sofie Ohlsson Svangren and Emma Sofie Nielsen for

management of data and samples; Pia Hynne, Majbritt Norman

Nielsen, Mie Rams Rasmussen, Emma Victoria Hatley, Thea

Guldmann, Trang Xuan Minh Tran and Isabel Lorenz Gradert

for administrative assistance. We also greatly appreciate valuable

assistance provided by DANBIO personnel. Dr. Damini Jawaheer

accepts responsibility for the integrity and validity of the data

collected and analyzed.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1161084/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

PCA plot of normalized counts for all samples. Principal Components Analysis

(PCA) plot of z-score estimates for the 500 genes with the highest variance,
for all samples included in the analysis at all time-points (T0 to PP9), following

rigorous quality control of the data. PC1 (x-axis) separates the non-pregnancy

samples on the left (i.e. T0, PP3, PP6 and PP9) from the mid- to late-
pregnancy samples on the right (T2 and T3), with early pregnancy (T1)

samples being in the middle. Extensive overlap was observed between T2
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and T3 clusters, as may be expected, while the postpartum sample clusters
overlapped partly with the T1 cluster and partly with the T0 cluster. [T0: Pre-

pregnancy; T1: 1st trimester; T2: 2nd trimester; T3: 3rd trimester; PP3: 3

months postpartum; PP6: 6months postpartum; PP9: 9months postpartum].

SUPPLEMENTARY FIGURE 2

Changes in relative proportions of different cell populations from pre-

pregnancy to 3 months postpartum. The box plots show how the relative
Frontiers in Immunology 15
proportions of different cell types estimated using CIBERSORTx changed
from pre-pregnancy (T0) to 3 months postpartum (PP3) among healthy

women in our dataset. Only cell types included in the LM22 reference

dataset are shown. For some LM22 cell types, proportion estimates were
not obtained from CIBERSORTx; those are not shown here (resting dendritic

cells, eosinophils, macrophages M1, activated mast cells, activated NK cells,
follicular helper T cells, gamma delta T cells). [T0: Pre-pregnancy; T1: 1st

trimester; T2: 2nd trimester; T3: 3rd trimester; PP3: 3 months postpartum].
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