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Background: Tuberculosis (TB) is the deadliest communicable disease in the

world with the exception of the ongoing COVID-19 pandemic. Programmed cell

death (PCD) patterns play key roles in the development and progression of many

disease states such that they may offer value as effective biomarkers or

therapeutic targets that can aid in identifying and treating TB patients.

Materials and methods: The Gene Expression Omnibus (GEO) was used to

gather TB-related datasets after which immune cell profiles in these data were

analyzed to examine the potential TB-related loss of immune homeostasis.

Profiling of differentially expressed PCD-related genes was performed, after

which candidate hub PCD-associated genes were selected via a machine

learning approach. TB patients were then stratified into two subsets based on

the expression of PCD-related genes via consensus clustering. The potential

roles of these PCD-associated genes in other TB-related diseases were

further examined.

Results: In total, 14 PCD-related differentially expressed genes (DEGs) were

identified and highly expressed in TB patient samples and significantly correlated

with the abundance of many immune cell types. Machine learning algorithms

enabled the selection of seven hub PCD-related genes that were used to

establish PCD-associated patient subgroups, followed by the validation of

these subgroups in independent datasets. These findings, together with GSVA

results, indicated that immune-related pathways were significantly enriched in

TB patients exhibiting high levels of PCD-related gene expression, whereas

metabolic pathways were significantly enriched in the other patient group.

Single cell RNA-seq (scRNA-seq) further highlighted significant differences in

the immune status of these different TB patient samples. Furthermore, we used

CMap to predict five potential drugs for TB-related diseases.

Conclusion: These results highlight clear enrichment of PCD-related gene

expression in TB patients and suggest that this PCD activity is closely

associated with immune cell abundance. This thus indicates that PCD may play

a role in TB progression through the induction or dysregulation of an immune

response. These findings provide a foundation for further research aimed at
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clarifying the molecular drivers of TB, the selection of appropriate diagnostic

biomarkers, and the design of novel therapeutic interventions aimed at treating

this deadly infectious disease.
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programmed cell death, tuberculosis, immune cell enrichment, single cell RNA-seq,
machine learning, biomarkers
Introduction

Tuberculosis (TB) is among the deadliest forms of chronic

infectious disease in the world, with an estimated 10.6 million

affected individuals and 1.4 million TB-related deaths in 2021 alone

(https://www.who.int/teams/global-tuberculosis-programme/tb-

reports/global-tuberculosis-report-2022). Despite extensive

ongoing international efforts, an estimated 1.5 million individuals

are expected to die annually of TB, caused by Mycobacterium

tuberculosis (Mtb), through the year 2030 (1). Prior to the

COVID-19 pandemic, TB was the deadliest infectious disease in

the world, causing higher levels of mortality than HIV/AIDS (2).

Strikingly, up to 25% of the global population is infected with the

infectious Mtb pathogen, highlighting a clear need for further

transcriptomic studies seeking to elucidate the molecular basis for

morbidity and mortality in affected individuals (3–6). Given the

lack of effective treatment options for most TB cases, there is a

pressing need to better improve patient prognostic outcomes, and

the design of more reliable models has the potential to better

facilitate targeted therapeutic interventional efforts (7, 8).

Programmed cell death (PCD) is an umbrella term that refers to a

range of processes including apoptosis, pyroptosis, ferroptosis, and

other less well-studied mechanisms such as alkaliptosis or oxeiptosis

(9). Apoptotic cell death has been studied in detail and consists of the

spontaneous, ordered death of cells through mechanisms controlled by

particular regulatory pathways (10). While traditionally regarded as an

unregulated process, a growing body of evidence suggests that necrotic

cell death is also inducible and can be maintained through specific

mechanisms (11). Pyroptotic cell death is a particularly caustic form of

PCD that results in the activation of a robust inflammatory response

(12). The ferroptotic and cuproptotic cell death processes are

respectively iron- and copper-dependent, and have been tied to a

range of diseases (13, 14). Entotic cell death is related to active living cell
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invasion (15). The release of neutrophil extracellular traps (NETs) has

been linked to so-called netotic cell death (16), while excessive PARP-1

nuclease activity can result in the form of PCD known as parthanatos

(17). Lysosome-dependent cell death is controlled by hydrolase activity,

which increases in the cytosol following the penetration or

permeabilization of cellular membranes (18). Autophagy-dependent

cell death is a multi-stage regulated process through which lysosomal

degradation is tied to mechanisms associated with nutrient cycling and

metabolic adaptation (19). Alkaliptosis is a recently defined form of

PCD related to alkalization (20), while oxeiptosis is a PCD subtype that

is induced throughmechanisms related to the ability of KEAP1 to serve

as a sensor of oxidative stress (21). The advancement of PCD-related

research has led to the development and clinical implementation of a

growing number of pharmacological agents associated with these

disparate mechanisms.

PCD has been firmly established as an important mediator of the

pathogenesis of a range of conditions including specific autoimmune

diseases, cancers, neurodegenerative diseases, immunodeficiencies,

and developmental disorders (22–24), with analyses of these genes

thus providing opportunities for prognostic assessment and targeted

therapeutic interventions. Comprehensive details regarding the

association between PCD and the pathogenesis of TB, however, are

still lacking such that further research is warranted fully documenting

the roles of particular PCD-related genes and pathways in individuals

infected by Mtb. As such, in the present study a series of machine

learning tools were employed to ultimately select seven key PCD-

related genes that were associated with TB. The expression patterns of

these genes were then used to group TB patients into two subsets, and

immune cell abundance was then compared between these groups of

patients. Other TB-related diseases were additionally explored, and

the association between PCD and immune cell abundance was

examined in detail to gain novel insight regarding the molecular

basis for the pathogenesis of TB. Together, these results provide new

opportunities to more reliably develop diagnostic or therapeutic

regimens that can be leveraged to improve TB patient outcomes.
Materials and methods

Dataset selection and PCD-related gene
identification

The TB-related datasets used for the present study (GSE83456

(25), GSE28623 (26), GSE62525 (27), GSE157657 (28), GSE93272
frontiersin.org
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(29), GSE162635 (30), GSE47460 (31), GSE130499 (32),

GSE166253 (33), GSE31210 (34), GSE50772 (35)) were

downloaded from the NCBI Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/) database. PCD-related genes

were collected from GSEA gene sets, KEGG, review articles,

manual collation (9) and are shown in Table S1.
Differentially expressed gene identification
and analysis

The R “limma” package was used for DEGs identification based

on the following cut-off criteria: P < 0.05, |log 2(fold change [FC]) >

1|. DEGs were arranged in volcano plots and heat maps, and were

subjected to Gene Ontology (GO) and KEGG enrichment analyses

performed using the DAVID online tool (ncifcrf.gov). The R

“GSVA” and “GSEABase” packages were used for GSVA analyses

assessing different biological functions among clusters with

“h.all.v7.5.1.symbols”, “c2.cp. Reactome.v7.5.1.symbols” ,

and “c2.cp.kegg.v7.5.1.symbols”.
Immune cell enrichment analyses

Gene expression data and LM22 files were used with the R

CIBERSORT algorithm to evaluate immune cell abundance in

individual samples (36).
Single-cell data preprocessing, gene
expression quantification and cell-type
determination

Raw sequencing reads were obtained from NCBI Short Read

Archive (SRA) with the accession numbers SRR11038989,

SRR11038990, and SRR11038994 (37). Raw sequencing reads

were processed by Cell Ranger (6.1.2) and aligned to the human

reference genome (GRCh38). The unique molecular identifier

(UMI) count matrices were then imported into the “Seurat” R

package. Cells expressing <200 or >3500 genes or a high

mitochondrial transcript ratio (> 0.07) were removed. For the

remaining cells, NormalizedData, Seurat indVariableFeatures,

ScaleData, JackStraw, and FindNeighbors in the Seruat package

were used for processing. The principal component analysis (PCA)

was performed, and the dimensionality reduction cells were

represented by Uniform Manifold Approximation and Projection

(UMAP), and the clusters was identified and annotated according

to the marker gene composition. The marker genes comes from

previous studies (37, 38).
Machine learning analyses

A Least Absolute Shrinkage and Selection Operator (LASSO)

regression approach was employed to improve the regularity,

interpretability, and predictive accuracy of predictive models and
Frontiers in Immunology 03
to select associated variables for model incorporation (39). For these

analyses, a support vector machine (SVM) method was

implemented which allows for the establishment of a threshold

between categories such that sample labeling predictions can be

performed based on one or more feature vectors (40). Random

forest (RF) approaches, which enable high levels of accuracy,

specificity, and sensitivity without being limited by variable

conditions, were employed to predict continuous variables

without major fluctuations (41). The eXtreme Gradient Boosting

(Xgboost) ensemble learning algorithm utilizes decision trees as

base learners (42). These LASSO, SVM-RFE, RF, and Xgboost

machine learning analyses were implemented using the R

“glmnet”, “kernlab”, “randomForest”, and “xgboost” packages.

For RF and Xgboost , we selected the top 10 genes in terms of

ranking. Intersecting genes among these analyses, as identified with

the R “circle” package, were considered to represent hub PCD-

related genes.
Construction and validation of
the nomogram

The R “rms” package was used to establish a diagnostic

nomogram for TB< while calibration plots and decision curve

analyses (DCA) were conducted using the “rmda” and “caret”

packages in R. The “pROC” R package was used to evaluate the

predictive capabilities of the established model using receiver

operating characteristic (ROC) curves.
Subclustering analyses

Subclusters of TB patients in the analyzed datasets were identified

via consensus clustering based on hub PCD-related gene expression

using the R “ConsensusClusterPlus” package using the following

settings: maxK = 9, clusterAlg = pam, distance = euclidean.
Quantitative reverse transcription
polymerase chain reaction

Seven hub PCD-related genes were further identified for

validation. A total of 20 subjects were recruited in this study,

including 10 TB patients from Weifang Second People’s Hospital,

and 10 healthy volunteers. All patients gave informed consent

before the start of the study.

Samples were collected from each participant prior to initial

treatment. Total RNA was then extracted from each sample with

TRIzol (Invitrogen). Reverse transcription was performed using the

HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazume).

Next, qPCR was performed using ChamQ Universal SYBR qPCR

Master Mix (Vazume) based on LightCycler® 480 II Real-Time

PCR System (Roche). U6 served as an internal control. The 2-DDCt

method was used to determine the relative expression between TB

and HCs for each selected hub genes. The primer sequences used in

this study are listed in Table S2.
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Identification of potential therapeutic
compounds

The connectivity map (CMap) is based on the relationship

between genes or drugs to discover potentially effective molecules

for certain diseases (https://clue.io/) (43). Through this database, we

used the CMap tool in the “query” module through the L1000

platform to identify the DEG, 100 up-regulated and 100 down-

regulated genes (select the appropriate number if the number of

genes is insufficient) between the high PCD related gene expression

group and the low expression group as effective genes, and

selected the five potential therapeutic compounds for this

disease with the highest CMap score for each disease, Five

compounds with the lowest enrichment fraction ≤ 0 were selected

as candidate inhibitors.
Statistical analysis

R v4.2.2 was used for all statistical testing. Figure panels were

pieced together by Adobe Illustrator (CC 2020). The significance of

the correlation between the two groups was tested by Spearman’s

correlation analysis. Data were compared using Student’s t-tests or

Wilcox tests, with P < 0.05 as the significance threshold.

Visualization of data was performed with GraphPad Prism v.9.5

and R v4.2.2.
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Results

Differentially expressed gene identification

The GSE83456 dataset consisting of 61 healthy control (HC)

individuals and 92 TB patients was obtained from the GEO

database. A PCA plot (Figure 1A) revealed clear differences in

gene expression between HC and TB samples, including 138 and 11

genes that were respectively up- and downregulated (P < 0.05, |log2

(FC) > 1|). These DEGs were arranged into volcano plots

(Figure 1B) and heat maps (Figure 1C) for visualization purposes.
Functional enrichment analyses

The DAVID online tool was next used for GO and KEGG

enrichment analyses of identified DEGs. These genes were enriched

in GO biological process terms including the following: defense

response to virus, innate immune response, response to virus 17,

negative regulation of viral genome replication, interleukin-27

mediated signaling pathway, and immune response were enriched

(Figure 2A). They were also enriched in the GO cellular component

terms cytoplasm, cytosol, cytoplasmic vesicle, blood microparticle,

extracellular region, and cell surface (Figure 2B), as well as the GO

molecular function terms double-stranded RNA binding, 2’-5’-

oligoadenylate synthetase activity, protein binding, identical
A

B

C

FIGURE 1

(A) PCA diagram showing the distribution of gene expression in HC and TB samples. (B, C) DEGs identified between HCs and TB patients were
compared with a volcano plot (B) and a heat map (C). DEGs, differentially expressed genes; HC, Healthy control; TB, Tuberculosis.
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protein binding, single-stranded RNA binding, and GTP binding

were discovered (Figure 2C). These DEGs were also enriched in the

Influenza A, NOD-like receptor signaling pathway, hepatitis C,

coronavirus disease-COVID-19, Epstein-Barr virus infection, and

measles KEGG pathways (Figure 2D).
Immune cell enrichment analyses

Given that the majority of the enriched terms identified above

were associated with immunological function, this strongly

suggested a role for immune function in the pathogenesis of TB.

Accordingly, immune cell enrichment analyses were used to

compare HC and TB samples. This approach revealed that TB

patients exhibited higher levels of gamma delta T cell, monocyte,

M0 macrophage, M1 macrophage, M2 macrophage, activated

dendritic cell (DC), and neutrophil abundance, whereas they

exhibited fewer naïve CD4+ T cells and follicular helper T (Tfh)

cells relative to HC samples (Figure 3A). Correlation analyses for 22

immune cell subtypes revealed strong negative correlations between

naïve B cells and memory B cells, Tfh cells and neutrophils, naïve

CD4+ T cells and activated memory CD4+ T cells, activated mast

cells and activated NK cells, and resting mast cells and activated

memory CD4+ T cells. In contrast, M1 macrophages and activated

DCs, M0 macrophages and neutrophils, activated mast cells and
Frontiers in Immunology 05
neutrophils, resting mast cells and activated NK cells, and resting

mast cells, monocytes, and eosinophils were strongly positively

correlated (Figure 3B). Targeting these immune cell types may aid

in the identification of viable therapeutic targets for TB.

We also performed scRNA-seq analysis on peripheral blood

mononuclear cells (PBMCs) derived from two individuals,

including HC and TB. In total, 20880 cells were taken into

analysis (10373 cells from HC and 10507 cells from TB). As

shown in Figures 3C, S1, three clusters were identified, including

myeloid cells expressing S100A9, S100A8, S100A12, CD14 and

LYZ, T cells expressing CD3D, CD3E, IL32 and CD2, and B cells

expressing CD79A, CD79B and MS4A1. We found higher

frequencies of myeloid and a lower frequency of B cells in TB

compared to HC, which were consistent with the Immune cell

enrichment results. Subsequently, the myeloid cells cluster

mainly included DC, monocytes, platelets (Figures 3C, S2) and

granulocytes clusters and T cells were marked by NK, other CD8+

T cells, naïve CD4+ T cells and activated CD4+ T cell clusters

(Figures 3C, S3). As shown in Figure 3D, monocytes, platelets,

granulocytes and activated CD4+ T cells had higher frequencies and

NK cells and naïve CD8+ T cells had lower frequency, which were

also consistent with the Immune cell enrichment results. Howerer,

naïve CD4+ T cells and DC had an inconsistent results. These

findings strongly underline the significant role of immune cells in

TB development and were further confirmed by additional single

cell data analysis (Figure S4).
A B

DC

FIGURE 2

DEG functional enrichment analyses of GO BP (A), GO CC (B), GO MF (C), and KEGG pathway terms (D). GO, Gene Ontology; BP, biological process;
CC, cellular component; MF, Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Hub PCD identification

Next, fourteen PCR-related DEGs (STAT1, AIM2, TRIM22,

ZBP1, PLAUR, TNFSF10, SEPTIN4, SORT1, CASP5, FAS, TRIM5,

CD38, IFI27, and ELANE) were identified based on the intersection

between 149 DEGs and 1254 PCD-related genes (Figures 4A, B).

A LASSO regression analysis, SVM-RFE, random forest, and

Xgboost machine learning approaches were next used to construct a

seven PCD-related gene signature (Figures 5A–E). Three of these

genes (FAS, SEPTIN4, PLAUR) were apoptosis-related, while two

(ZBP1 and STAT1) were necroptosis-related, one (AIM2) was

pyroptosis-related, and one (SORT1) was lysosome-dependent cell

death-related. Figure 5F presents correlations among these hub genes.

These genes were further used to construct a nomogram

(Figures 6A, B), which exhibited a C-index value of 0.975 (95%

CI: 0.952-0.998). In a DCA analysis with a threshold of 0.06–1, this
Frontiers in Immunology 06
model offered good clinical benefit (Figure 6C), and its value was

further confirmed through ROC analyses (Figure 6D). These

findings thus highlighted the excellent diagnostic utility of these

seven PCD-related hub genes.

Associations between PCD-related genes
and immune cell enrichment

We utilized scRNA-seq to analysis the expression level and

location of PCD-related genes. As shown in Figures 7A, B, ZBP1

and SIDT1 were dominantly expressed in T and B cells. PLAUR and

SORT1 were primarily expressed in myeloid cells. AIM2 was enriched

in B cells, while FAS and SEPTIN4 showed lower expression in all cells.

To more fully understand the relationships between these hub

PCD-related genes and immune cell enrichment, further correlation

analyses were conducted. This approach revealed a strong negative
A B

C

D

FIGURE 3

Immune cell enrichment in patients with TB. (A) Comparison of 22 immune cell subtypes between patients with TB and HCs. (B) Correlations among
all 22 analyzed immune cell subtypes. Size and coloration of the circles are proportional to the corresponding Pearson correlation coefficients. (C)
UMAP visualization of major cell types across three groups (left), Myeloid clusters (middle), and T cells (right). (D) Proportion of each defined cell type
across major groups (left), Myeloid clusters (middle), and T cells (right). B, B cells; T, T cells; M, Myeloid. NK, Naturel killer.
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A B

FIGURE 4

Screening of PCD-related genes in TB. (A) The overlap between DEGs and PCD-related genes. (B) Overall expression levels for PCD-related genes in
TB patients.
A B

C D

E F

FIGURE 5

Machine learning-based selection of a PCD-related gene signature. (A–D) Use of LASSO regression, SVM, RF, and Xgboost approaches to construct
a PCD-related gene signature associated with TB. (E) A Venn diagram highlighting overlap among candidate genes identified with these four
machine learning algorithms. (F) A Circos plot displaying the relationship between the overlapping PCD-related genes. LASSO, least absolute
shrinkage and selection operator; SVM, support vector machine; RF, random forest; Xgboost, eXtreme Gradient Boosting.
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association between six of these PCD-related genes (AIM2, ZBP1,

SEPTIN4, SORT1, PLAUR, FAS) and the levels of Tfh cells and CD8+ T

cells (Figure 7C).

These same six genes were also significantly positively correlated

with the abundance of neutrophils, activated DCs, monocytes, M0

macrophages, M1 macrophages, M2 macrophages, and regulatory T

cells. SIDT1 expression, in contrast, exhibited the opposite correlations

with all of these immune cell subsets. Additionally, our findings

strongly underline the significant role of seven PCD-related genes in

immune infiltration in TB and indicate that Tfh cells, CD8+ T cells,

neutrophils, activated DCs, monocytes, M0 macrophages, M1

macrophages, M2 macrophages, and regulatory T cells are factors

related to the cumulative rate of TB.

Consistently, GSEA approaches indicated that these seven

PCD-related genes were enriched in pathways associated with

viral infection and immune-related activity (Figure 8).

PCD-related gene signature-based
consensus clustering analyses

To identify novel TB patient subgroups, these seven hub PCD-

related genes were utilized for a consensus clustering analysis. At a
Frontiers in Immunology 08
k-value of 2, TB samples were effectively divided into two distinct

clusters (Figures 9A, B), revealing significant differences between

these two groups with respect to gene expression patterns

(Figure 9C). Similar findings were also evident in the GSE28623,

GSE62525, and GSE157657 datasets.
Gene set variation analyses of PCD-based
patient subsets

The distinct biological processes active in these two subsets of

patients were next examined via a GSVA approach. This approach

revealed that the phenylalanine metabolism, ribosome, and pyruvate

metabolismKEGG pathways were enriched in subgroup B, whereas the

cytosolic DNA sensing and chemokine signaling pathways were

enriched in subgroup A (Figure 10B). Relative to cluster A, the

Hallmark Wnt/b-catenin signaling, MYC targets v2, MYC targets v1,

and E2F targets pathways were significantly enriched in subgroup B,

whereas the coagulation, complement, and TNF-a signaling via NFkB
pathways were enriched in subgroup B (Figure 10A). Reactome

pathway analyses also indicated that the top 20 pathways were more

enriched in subgroup A relative to subgroup B (Figure 10C).
A B

C D

FIGURE 6

(A) Construction of a nomogram model based on seven PCD-related genes. (B) Calibration plot assessing the robustness of nomogram predictions.
(C) Decision curve analysis for the established nomogram. (D) ROC curve of the PCD-related signature when used for the diagnosis of TB. ROC,
receiver operating characteristic.
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Functional and immune signature-related
analyses of the established PCD-related
gene signature

Functional differences between these two identified subgroups of

TB patients were further examined through comparisons of gene

expression patterns. Relative to subgroup A, subgroup B exhibited 77

DEGs of which 71 and 6 were respectively down- and upregulated

(Figure 11A). These DEGs were enriched in GO BP terms including

defense response to virus, innate immune response, response to virus,

negative regulation of viral genome replication, etc. (Figure 11B), as

well as in the systemic lupus erythematosus, NOD-like receptor

signaling, Staphylococcus aureus infection, coronavirus disease-

COVID-19, and pertussis KEGG pathways (Figure 11C).

CIBERSORT analyses of immune cell enrichment revealed that

relative to subgroup B, samples in subgroup A exhibited a higher

proportion of CD8+ T, CD4+ memory activated T, CD4+ memory

resting T and Tfh cells together with lower proportions of monocytes,

M1 macrophages, activated DCs, and neutrophils (Figure 11D).

Associations between PCD-related gene expression and immune

cells were further examined, revealing positive correlations between
Frontiers in Immunology 09
PCD-related gene expression and neutrophils, activated mast cells,

and M1 macrophages, as well as negative correlations between these

genes and naïve CD4+ T cells, CD8+ T cells, resting memory CD4+ T

cells, and Tfh cells (Figure 11E).

PCD-related signature-based subclustering of
other TB-related diseases

The pathogenesis of TB shares many characteristics with a

range of other diseases including rheumatoid arthritis (RA), chronic

obstructive pulmonary disease (COPD) (44), interstitial lung

disease (ILD), asthma (Asm) (45), COVID-19 (46, 47), lung

adenocarcinoma (LA) (48–50), and systemic lupus erythematosus

(SLE) (51). Accordingly, subclustering analyses were performed

based on the PCD-related signature established above, revealing

that at a k-value of 2, patients for all diseases other than Asm were

clearly stratified into two clusters (Figure 12). Clear differences in

the expression of most PCD-related genes were observed when

comparing these two patient subgroups in the analyzed diseases.

The CIBERSORT algorithm was further used to evaluate the

enrichment of 22 immune cell types in these diseases, revealing
A B

C

FIGURE 7

(A) scRNA-seq analysis of the expression of PCD-related genes. (B) Dot plot showing the PCD-related genes in each cell type. (C) Correlations
between immune cell enrichment and seven PCD-related genes. *p < 0.05, ***p < 0.01.
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significant differences in immune cell enrichment when comparing

subgroups A and B. Specifically, there were significant differences in

the abundance of plasma cells, CD8+ T cells, M1 macrophages, and

activated DCs in cluster A relative to cluster B in these five diseases,
Frontiers in Immunology 10
whereas no differences in regulatory T cell enrichment were

observed (Figure 13). These findings thus confirmed the broader

relevance of this PCD-related gene signature in different

pathological settings.
FIGURE 8

GSEA for samples with high and low PCD-related gene expression expression. The top seven enriched pathways in the high-low groups are shown.
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Verification of hub PCD-related genes expression
by qPCR

The expression of the seven hub PCD-related genes was then

verified in TB plasma samples by qPCR. Consistent with the

prediction, the results showed that the expression levels of the

hub genes in the plasma of TB patients were significantly higher

than those of the HCs (Figure 14).
CMap predicted potential therapeutic agent for
patients with TB-related diseases

To investigate potential drugs for high-risk patients with TB

-related diseases, the anti-disease small molecule compounds

were predicted by CMap analysis. As shown in Figure 15, these

drugs Score higher and they were TB -related diseases inhibitor.

The results showed that they might have an intervening effect on

TB-related diseases progression (Figure 15).
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Discussion

TB is the deadliest infectious disease in the world, and

patient morbidity and mortality continue to rise (52).

However, the molecular drivers that contribute to negative TB

patient outcomes remain incompletely understood. A range of

drug combinations has been employed to treat TB over the last

four decades, with treatment for a minimum of six months often

being necessary. A 12-18 month treatment course is generally

required for XDR-TB patients, achieving positive outcomes in

just half of cases and subjecting patients and their families to

serious economic hardship (53). These anti-TB drugs are also

limited by their interactions with other drugs and their potential

to cause aberrant inflammatory reactions in treated hosts that

can result in permanent lung tissue damage (54). Novel

treatment strategies are thus warranted to treat TB patients

and to design novel drugs that can target particular pathways
A

B

C

FIGURE 9

Identification of PCD-related subtypes in TB. (A, B) Subclustering analyses were performed based on differentially expressed genes in different
datasets. (C) Differential PCD-related gene expression in the two established PCD subtypes.
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linked to the pathophysiological basis of TB. Accordingly, this

study was designed to explore the relationship between PCD

activity and TB and to better define key genes and therapeutic

target candidates through a series of bioinformatics analyses.

Comparisons of gene expression patterns in TB patients and

healthy controls led to the selection of 149 DEGs, and GO

enrichment analyses indicated that these genes were primarily

enriched in the defense response to virus, internal immune

response, response to virus 17, negative regulation of viral

genome replication, interleukin-27 mediated signaling pathway,

and immune response GO term categories. Innate immune

activity plays an important role in shaping pathogenic bacterial

elimination and inducing adaptive immune responses mediated by

central memory and effector T cells) (55). IL-27 is a cytokine that

exhibits a range pro- and anti-inflammatory properties and thereby

acts as a key mediator of bacterial infection-related immune

responses (56).

Immune cell enrichment analysis demonstrated that T cells

gamma delta, monocytes, M0, M1, and M2 macrophages,

activated DCs and neutrophils had higher proportions in TB

samples. Mtb diversifies its niche by infecting neutrophils, DCs,
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and macrophage groups resident and recruited by various

tissues; Neutrophils create a good environment for the

replication of Mtb, and the disease progress is closely related

(2, 57–59). Both CD4+T and CD8+T cells have been found to

have protective effects against Mtb infection and the lower

proportion of them make patient was easy to be infected by

Mtb (60, 61). Except for the results of DCs and navie CD4+ cells,

almost all the results were consistent with the results of single-

cell sequencing analysis. This further demonstrates the

importance of immunity in the development of TB.

PCD is an umbrella term that refers to a variety of complex,

interrelated processes governed by a range of mechanisms. PCD

activities have increasingly been shown to be linked to a variety

of disease states (11, 22, 23, 62). As such, the association between

PCD-related genes and TB phenotypes was herein examined,

with multiple machine learning algorithms being used to

establish a predictive signature comprised of seven PCD-

associated genes (STAT1, AIM2, ZBP1, PLAUR, SEPTIN4,

SORT1, FAS) that exhibited excellent diagnostic utility for TB.

STAT1 serves as a central mediator of interferon signaling and

the induction of anti-TB immune responses (63), with higher
A B

C

FIGURE 10

GSVA analysis of key pathways in different PCD-related patient subgroups. (A) HALLMARK pathway enrichment results. (B) KEGG pathway
enrichment results. (C) Reactome pathway enrichment results. GSVA, gene set variation analysis.
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levels of unphosphorylated STAT1 reportedly decreasing

macrophage sensitivity to apoptotic death induced by FAS in

the context of Mtb infection (64). The cytosolic sensor protein

AIM2 can detect the dsDNA released by damaged cells,

whereupon it induces the upregulation and secretion of

various cytokines such that it drives the pathogenesis of

various inflammatory diseases (65). ZBP1 is capable of binding

RIPK3 and activates it to induce necrotic death (66), while also

complexing with pyrin and AIM2 to coordinate host defense

responses (67). The SEPTIN3 protein has previously been shown

to be ectopically expressed in TB, colorectal cancer, and urologic

cancers such that it can be leveraged as a valuable diagnostic

biomarker (28, 68). The three-domain PLAUR protein is capable

of binding to cell membranes via glycolipid anchor motifs, and

exhibits a range of regulatory roles in particular pathological

settings (69, 70). The sortilin protein encoded by SORT regulates

LDL uptake in addition to having been used as a biomarker in

several forms of disease (71, 72). The results of the enrichment

analysis also indicated a possible association between the seven

hub genes and immunity. Thus, correlations between these genes
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and immune cell levels were also analyzed. SORT1 has been

shown to promote the proliferation and migration of liver cancer

cells by regulating immune cell infiltration (73). AIM2, ZBP1,

STAT1, and FAS mediate the immune response and play

important roles in a variety of diseases, cancers, and infections

(65, 74–76). Although there is no clear research indicating their

role in immune cell infiltration in TB, changes in their levels

have been shown to have an impact on immune cell levels.

Relative to HC samples, these genes were upregulated in samples

from individuals with TB, emphasizing potentially key roles for

these PCD-associated genes as mediators of TB pathogenesis.

However, further direct experimental validation of this

hypothesis will be required.

Based on these seven PCD-related genes, consensus

clustering was used to define two PCD-related clusters, with all

seven of these hub PCD-related genes being upregulated in

subgroup A relative to subgroup B. Subgroup A exhibited

immune-related gene enrichment in a GSVA analysis, and

identified DEGs were found to be enriched in the response to

virus and innate immune response GO terms. Samples from
A B E

C D

FIGURE 11

Functional enrichment analysis and immune cell enrichment analyses in different PCD-related patient subgroups. (A) DEGs arranged in volcano
plots. (B) Enriched GO terms. (C) Enriched KEGG pathway analysis results. (D) Correlation matrix of all 22 immune cell subtype compositions. (E)
Heatmap showing the relationship between gene expression levels and immune cell enrichment.
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individuals in subgroup A also exhibited enriched plasma cells,

M1 macrophages, and activated DCs. Macrophages are

important innate immune cells that can detect Mtb-derived

pathogen-associated molecular patterns through the Toll-like,

NOD-like, and C-type lectin receptor pathways and the cGAS-

STING pathway, enabling these cells to rapidly react to these

mycobacteria by engaging an appropriate immune response (2).

M1 macrophages, in particular, are important mediators of pro-

inflammatory responses (77). In this study, a positive correlation
Frontiers in Immunology 14
between PCD-related gene expression and proinflammatory

response activity was detected. However , the M2/M1

proportion in Subgroup A was reduced, in contrast to prior

reports suggesting a link between PCD activity and anti-

inflammatory activity (24). Mycobacterial antigens are

transferred to DCs, which can then present these antigens on

MHC class I molecules to CD8+ T cells (78). Both CD4+ and

CD8+ T cells, in turn, coordinate anti-mycobacterial immunity

(79). The potential drugs predicted by CMAP based on the high-
A

B

C

D

E

F

FIGURE 12

Identification of PCD-related subtypes in TB-related diseases. (A, B, D, E) Subclustering analyses were performed based on differentially expressed
genes in different diseases. (C, F) PCD-related gene expression in different subtypes.
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and low- PCD-related groups may be used to treat these TB-

related diseases. In summary, the PCD-related genes identified

in the present study offer value as diagnostic indicators and

possible therapeutic targets in both TB and a range of

other diseases.

There are some limitations to this analysis. For one, these results

remain to be validated through further experimental analyses and

clinical trials. Moreover, these results were derived from large public

databases and the original sequencing data were unavailable,

potentially introducing some degree of selection bias. The

sample sizes were also relatively small such that additional TB

patients will be required to confirm these findings. Functional

verification of the importance of these PCD-related genes in TB

will also be important.
Conclusion

In summary, these results highlight a clear relationship

between PCD-related gene expression and immune cell

infiltration in TB, while also revealing differences in the immune

responses engaged in different PCD-related gene-based TB patient

subgroups. The use of machine learning models enabled the

effective selection of the optimal PCD-related genes capable of

evaluating TB patient subtypes and guiding the diagnosis of this

disease. Accordingly, these results offer novel evidence in support
FIGURE 13

Differences in the relative enrichment of 22 different immune cell
subtypes in TB-related disease subclusters.
FIGURE 14

qPCR results showed that the expression levels of seven hub PCD-related genes. * = p < 0.05; **=p<0.01; **** = p < 0.001.
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of the involvement of these PCD-associated genes in the

progression of TB while offering new insights regarding the

pathogenic basis for this disease and potential approaches to

improving infected patient outcomes.
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