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CXCL8 and the peritoneal
metastasis of ovarian and
gastric cancer

Xuanrong Fu, Qimeng Wang, Hang Du and Huifang Hao *

School of Life Sciences, Inner Mongolia University, Hohhot, China
CXCL8 is the most representative chemokine produced autocrine or paracrine

by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal

tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling

pathways after combining with CXCR1/2. The incidence of peritoneal metastasis

in ovarian and gastric cancer is extremely high. The structure of the peritoneum

and various peritoneal-related cells supports the peritoneal metastasis of

cancers, which readily produces a poor prognosis, low 5-year survival rate, and

the death of patients. Studies show that CXCL8 is excessively secreted in a variety

of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8

and the peritoneal metastasis of ovarian and gastric cancer to provide a

theoretical basis for the proposal of new methods for the prevention,

diagnosis, and treatment of cancer peritoneal metastasis.
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1 Introduction

Cancer is one of the leading causes of death in the global population. In 2020, globally,

there were 19,292,789 cancer cases and 9,958,133 cancer deaths (1). Cancer cases and

deaths in China have increased year by year since 2000 (2). Statistics show that in 2022, the

top five cancers diagnosed in China are lung cancer, colorectal cancer, stomach cancer, liver

cancer, and breast cancer (3). Among these, gastric cancer and colorectal cancer are the

third and fifth leading causes of cancer death in China, respectively, and breast cancer is the

most common cancer among women (3).

The incidence of peritoneal metastasis is extremely high in ovarian and gastric cancer,

while in other cancers (including breast and colorectal cancer) is relatively low, which is

shown in Table 1 (4–9). Classical peritoneal metastasis can be divided into tumor cell

shedding, migration, adhesion, invasion, angiogenesis, and other processes. The patients

with peritoneal metastastic cancer often experience symptoms, such as nausea, vomiting,

abdominal pain, refractory ascites, and adhesive intestinal obstruction. There is currently a

lack of effective means for cancers with peritoneal metastases, which leads to the short-term

death of patients (10).
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Tumor microenvironment (TME) provides favorable support

for tumor growth and life, including tumor cells, endothelial cells,

adipocytes, lymphocytes, dendritic cells, chemokines and cytokines

(11). Tumor cells interact with surrounding cells through the

circulation and lymphatic system to promote their autocrine or

paracrine growth factors and inflammatory factors, making the

surrounding environment more conducive to tumor development

(12). On the other hand, TME can promote immune suppression

and immune escape, then further promote the survival and

proliferation of tumor cells. Studies show that the occurrence and

development of various cancers are closely related to inflammation,

and inflammatory factors and immunosuppression in TME play an

important regulatory role (13).

CXCL8 is an important pro-cancer inflammatory factor in TME

which overexpressed in gastric cancer, ovarian cancer, colorectal

cancer, breast cancer, and prostate cancer (14–19). CXCL8 was first

discovered to be secreted by monocytes and macrophages and

triggers chemotactic eosinophils and T lymphocytes (20). CXCL8

activates multiple downstream signaling pathways by binding to the

cell membrane surface receptor CXCR1/2 of various cells (tumor

cells, T cells, mast cells), which promotes tumor cell proliferation,

migration, invasion, epithelial-mesenchymal transition (EMT) and

angiogenesis, further leading to tumor progression (21–24).

After CXCL8 binds to its receptor CXCR1/2, it can directly act

on vascular endothelial cells or enhance the activity of matrix

metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9

(MMP-9), promote the secretion of vascular endothelial growth

factor (VEGF), induce the formation of new blood vessels and

increase vascular permeability, which further provides nutritional

support for the proliferation and migration of tumor cells (25).

Taking CXCL8 and cancer peritoneal metastasis as the starting

point, we aim to explain the important role of CXCL8 in ovarian

and gastric cancer peritoneal metastasis and provide a theoretical

basis for the proposal of new methods for the prevention, diagnosis,

and treatment of cancer peritoneal metastasis.
2 CXCL8

2.1 CXCL8

CXCL8, also known as Interleukin-8 (IL-8), belongs to typical

glutamic acid-leucine-arginine (ELR)+CXC chemokines, which can

promote angiogenesis (26, 27). The gene encoding CXCL8 is located
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on chromosome 4q13.3 and consists of 4 exons and 3 introns (28).

CXCL8 is a small soluble peptide with a molecular weight of 8-10

kDa. A precursor protein of CXCL8 with 99 amino acids is

generated first. Then, a variety of active CXCL8 subtypes form

after differential cleavage, including 79, 77, 72, 71, and 69 amino

acids (29).

CXCL8 is a multicellular chemokine and is generally produced

by monocytes, macrophages, neutrophils, lymphocytes, vascular

endothelial cells, and various tumor cells (30–35). CXCL8 recruits

neutrophils and other immune cells to inflammatory regions. The

aberrant regulation of the CXCL8 pathway has been implicated in

many inflammatory mediated diseases, including inflammatory

bowel diseases, rheumatoid arthritis, psoriasis, asthma, and cystic

fibrosis (36–39). Moreover, it is involved in the occurrence and

development of various cancers (40–42).
2.2 CXCR1 and CXCR2

After binding to two GTP-binding proteins (G protein)

coupled receptors (GPCR), CXC chemokine receptor 1 (CXCR1)

and CXC chemokine receptor 2 (CXCR2), CXCL8 induces

different biological effects (43, 44). CXCR1 and CXCR2, with

approximately 77% amino acid sequence homology, are both

located on chromosome 2q35 (45). CXCR1 and CXCR2 were

identified and cloned by two research groups at nearly the same

time (46, 47). There are 7 transmembrane domains in the middle,

including 3 extracellular loops and 3 intracellular loops (48). The

N-terminal is located outside the cell and the C-terminal is located

inside the cell. CXCR1 consists of 350 amino acids (NCBI

Genbank NP_000625.1), and its N-terminal identifies and

combines with ligands, such as CXCL6 and CXCL8. The C-

terminal and the 3 intracellular loops have the ability to couple

to G protein. CXCR2 consists of 360 amino acids (NCBI Genbank

NP_001161770.1), and the N-terminal is used for ligand binding,

such as CXCL2, CXCL3, CXCL6, and CXCL8. The C-terminal and

third intracellular loop are coupled to G proteins (49,

50) (Figure 1).

CXCR1 and CXCR2 are widely expressed on the surface of

leukocytes including neutrophils, monocytes, T cells, mast cells,

basophils natural killer cells, etc. (21, 51, 52). They are also

expressed on various tumor cells, such as breast cancer,

malignant melanoma, pancreatic cancer, colon cancer, prostate

cancer, gastric cancer, and epithelial ovarian cancer (49, 53–57).
2.3 CXCL8-CXCR1/2 signaling pathways

The 72-amino-acid dimer that forms CXCL8 is the basic

structure that recognizes and binds to the N-terminal of CXCR1/

2. Several reports have indicated that CXCR1 binds to CXCL8 with

greater affinity than CXCR2, and the binding of CXCR1/2 and

CXCL8 can allosterically activate downstream signaling pathways

through G protein (44, 58).
TABLE 1 The incidence of peritoneal metastasis in several cancers.

Type of cancer Incidence of peritoneal
metastases Reference

Ovarian cancer/Epithelial
ovarian cancer

62%/70%-75% (4)/(5)

Gastric cancer 53%-66% (6, 7)

Breast cancer 7.6% (8)

Colorectal cancer 5%-15% (9)
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G proteins are composed of three subunits: a, b, and g. In a

resting state, the Ga subunit, Gb subunit, and Gg subunit form a

complex, in which GDP binds to the Ga subunit. The binding of

CXCL8 to CXCR1/2 promotes the release of bound GDP by the Ga
subunit. Then, GTP binds to the Ga subunit, which results in the

dissociation of the Gb-g subunits within the complex (27). The

GTP-bound Ga and free Gb-g subunits initiate signals by

interacting with different downstream effector molecules. As

shown in Figure 2, the following three signaling pathways will be

discussed in detail below.

2.3.1 PI3K signaling pathway
After CXCL8 binds to CXCR1/2, G protein is activated. Then,

phosphatidylinositol 3 kinase (PI3K) can phosphorylate

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate the

phosphatidylinositol 3,4,5-triphosphate (PIP3), which is a

secondary messenger and mediator of the PI3K pathway (59).

Then PI3K binds to protein kinase B (PKB), which contains PH

domains in the cell. PKB regulates various downstream effectors

through phosphorylation (60). Therefore, the CXCL8/PI3K/PKB

pathway plays an important role in cell cycle regulation, cell

survival, growth, proliferation, differentiation, migration, anti-

apoptosis, protein translation and processing, glucose

transportation, lipid synthesis, DNA damage regulation,

angiogenesis, and other basic physiological activities (59, 61–65).

In addition, the CXCL8/PI3K/PKB signaling pathway is also

over-activated in gastric cancer, ovarian cancer, colorectal cancer,
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which can promote cell proliferation, metabolic reprogramming,

regulate angiogenesis, induce EMT, and improve the infiltration

ability of cancer cells (22, 62, 66–70).

2.3.2 PLC signaling pathway
When the CXCL8-CXCR1/2 axis is established, it activates G

protein and further induces the phospholipase C (PLC) to

hydrolyze PIP2, which is on membrane phospholipids, into

two secondary messengers: diacylglycerol (DAG) and inositol-

1,4,5-triphosphate (IP3) (71), followed by the activation of the

downstream specific protein kinase C (PKC) (71–73). The PLC

pathway plays a significant role in many biological activities,

such as cell cycle, cell proliferation, cell differentiation

(especially bone formation, blood cell, and muscle production),

cell apoptosis, cell membrane permeability, and cytoskeleton

reconstruction (74–77). Moreover, it is involved in the

regulation of infant brain development, vision, and nervous

system (78).

Abnormal PLC signaling can be related to brain diseases, such

as schizophrenia and Alzheimer’s disease, and cardiovascular

diseases, such as cardiac hypertrophy, hypertension, and

atherosclerosis (79–81). Various studies have shown that PLC is

overexpressed in breast cancer, colon cancer, gastric cancer,

hematopoietic malignancies. Therefore, the CXCL8/PLC pathway

promotes tumor cell proliferation, migration, and invasion of

normal tissues and angiogenesis, which makes cancer worsen and

further develop (23, 82–84).
A B

DC

FIGURE 1

Structures of CXCR1/2. (A, B) The 2D structural domains of CXCR1 and CXCR2. The N-terminal of CXCR1/2 is extracellular, while the C-terminal is
intracellular. CXCR1/2 contains 7 transmembrane domains, which shown in different colors. The C-terminal and the third intracellular loop are
coupled to the G protein, and the N-terminal is the key region for CXCR1/2 to recognize the ligand. CXCR1 binds to CXCL6 and CXCL8, while
CXCR2 interacts with CXCL2, CXCL3, CXCL6, CXCL8, etc. (C, D) (51). SWISS MODEL online site was used to model all the amino acids of CXCR1 and
CXCR2 first. Then, we built tertiary structure of CXCR1 and CXCR2 based on the above 2D structure using the PyMOL Molecular Graphics System. C.
Transmembrane regions of CXCR1. The seven transmembrane regions are marked by different colors that correspond to the 2D structural domains
of CXCR1. The N-terminal and C-terminal are represented in pink, and the 3 extracellular loops and 3 intracellular loops are shown in white.
(D) Transmembrane regions of CXCR2. The regions are labeled with different colors that correspond to the 2D structure domains of CXCR2,
showing the seven transmembrane domains. The N- and C-terminal are shown in pink, and the 6 loops (3 extracellular loops and 3 intracellular
loops) are in white.
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2.3.3 JAK-STAT signaling pathway
G protein activation leads triggers the Janus kinase-signal

transducer and activator of transcription (JAK-STAT) signaling

pathway when CXCL8 binds to its receptors. STAT stays in the

cytoplasm when it is inactive. After encountering the excitation

signal, JAK is phosphorylated and activated. Then, JAK recruits and

phosphorylates the transcription factor STAT (85), leading to the

regulation of the transcription of downstream genes, cell

proliferation, cell differentiation, cell apoptosis, etc. (86).

Studies have confirmed that a large number of cytokines and

soluble factors send signals through the JAK-STAT signaling pathway

to play an important role in inflammation and cancer. For example,

these signals affect immunosuppression in prostate cancer, improve

the proliferation and invasion ability of cancer cells, enhance

angiogenesis in hematopoietic-related malignant tumors, and

promote the further development of tumors (24, 86, 87).
Frontiers in Immunology 04
3 Peritoneal metastasis of ovarian and
gastric cancer

3.1 Structure and function of
the peritoneum

As the surface of the abdominal wall, the peritoneum can be

divided into two layers: the inner and outer layer. The outer layer is

covered by a monolayer of mesothelial cells with different shapes,

such as flat, stretched, squamous-like, and cuboidal mesothelial cells

(88). The surface of mesothelial cells has numerous microvilli that

have different sizes, shapes, and densities (89). The inner layer is full

of tightly arranged cells, which are made up of two parts: the

basement membrane and the underlying mesothelial membrane

(90). All of these form the niche of peritoneal metastasis. The

basement membrane is composed of a thin laminar network and a
frontiersin.or
FIGURE 2

Three important signaling pathways after the binding of CXCL8 to CXCR1/2 and their role in normal tissues and cancer cells. PI3K signal pathway
(left): CXCL8 binding to CXCR1/2 activates the G protein, PIP2 is phosphorylated into PIP3 under the effect of PI3K. Then, the combination of PI3K
and PKB induces various downstream effectors. In normal tissues, the CXCL8/PI3K/PKB pathway plays a significate role in cell cycle regulation, cell
survival, growth, proliferation, differentiation, and migration, anti-apoptosis, protein translation and processing, glucose transportation, lipid synthesis,
DNA damage regulation, angiogenesis, etc. In cancer cells, the CXCL8/PI3K/PKB pathway promotes cell proliferation, invasion, metabolic
reprogramming, and angiogenesis. PLC signaling pathway (middle): when the CXCL8-CXCR1/2 axis has been triggered, it activates G protein and
induces PLC to hydrolyze PIP2 into DAG and IP3. Then, PKC is activated to regulate the cell cycle, cell proliferation, differentiation, apoptosis, cell
membrane permeability, cytoskeleton reconstruction, and the brain, vision, and nerve system. In cancer cells, the PLC pathway promotes cell
proliferation, migration, invasion, and angiogenesis. JAK-STAT signaling pathway (right): G protein is activated when CXCL8 binds to CXCR1/2. Then,
JAK is phosphorylated and activated, further recruiting and phosphorylating STAT. Thus, JAK-STAT pathway regulates cell proliferation,
differentiation, and apoptosis in normal cells and improves cell proliferation, invasion, and angiogenesis in various cancers.
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specialized extracellular matrix (ECM), which contains type I and

IV collagen, glycoproteins, and proteoglycans. The underlying

mesothelial membrane consists of connective tissues, stromal

cells, and ECM. There are some fibroblasts, mast cells,

macrophages, blood vessels, and lymphatic vessels in the

connective tissues. The ECM includes large amounts of laminin,

collagen, fibronectin, and elastin (Figure 3) (91–93).

The outer and inner layers of the peritoneum constitute the

peritoneal cavity, which has multiple functions: (1) Immobilize the

visceral organs and provide them with vascularization and

innervation (94); (2) Lubricate both the peritoneum surfaces,

which allows for frictionless movements of the viscera, using the

interaction of various cells that make up the peritoneal cavity (92,

94); (3) Mediate transmembrane transport. The peritoneum is a

semipermeable membrane so that water and dissolved particles can

pass between the blood and the peritoneal cavity (92, 95, 96); (4)

Promote the inflammation reaction. Peritoneal cells interact with

each other by their autocrine or paracrine secretion products to

regulate inflammation (92, 97). In this process, peritoneal

macrophages (PMs) generate a great amount of tumor necrosis

factor-a (TNF-a) first. Then, peritoneal mesothelial cells (PMCs)

are also able to secrete a large amount of cytokines (CXCL1,

CXCL6) and chemokines (CXCL8), monocyte chemotactic

protein 1 (MCP-1), growth factor (transforming growth factor-b
(TGF-b), VEGF) and adhesion molecules (E-cadherin) into the

inflammatory microenvironment (98–100).
3.2 Peritoneum-associated cells

3.2.1 Peritoneal mesothelial cells
PMCs are unique cells with dual mesenchymal-epithelial

characteristics that are located on the inner wall of the peritoneal

cavity (94). PMCs are typical fibroblasts that originated from the
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mesoderm. However, their appearance and function are more

similar to epithelial cells. Thus, PMCs express the typical protein

markers of mesoderm and epithelial cells, including vimentin and

keratins, respectively (100, 101).

PMCs have multiple functions: (1) Make up the peritoneum.

PMCs are the largest cells among all the components that form the

peritoneal cavity; (2) Maintain homeostasis of the intraperitoneal

(102); (3) Form a smooth surface to reduce the friction of the

internal organs (98, 101); (4) Tissue repair. PMCs can secret various

growth factors, including TGF-b, platelet-derived growth factors

(PDGF), fibroblast growth factors (FGF), and VEGF, to promote

cell proliferation and recovery at the site of injury (103);(5)

Inflammation regulation. As metabolically active cells, PMCs

secret various mediators to participate in inflammation

regulation. It is demonstrated that bacteria attached to the PMCs

can be phagocytosed (104), which further activates the PMCs and

releases CXCL8 (105). On the other hand, PMCs will generate

growth-related oncogene-a(GRO-a)to let T cells secret cytokine IL-

17 (106). Other studies have also shown that PMCs secret IL-6,

which plays an important role in promoting inflammation

(106, 107);

3.2.2 Peritoneal macrophages
PMs are generally concentrated on milky spots,which are

actually primitive lymphoid tissue (108). As the entrance to the

lymphatic vessels, milky spots are abundant on the surface of the

omentum and lower peritoneum. Their primary role within the

structure is associated with the absorption and elimination of debris

and bacteria from the peritoneum.

Under normal circumstances, an important role of PMs

concerns the regulation of the immune reaction within the

peritoneal cavity. PMs have the capacity to secret C-C motif

ch emok ine l i g and 22 (CCL22 ) , wh i ch can r e c ru i t

immunosuppressive Treg cells into tumors (109). It has also been
FIGURE 3

Structure of the peritoneum (85). The peritoneum is divided into the outer layer (mesothelium) and inner layer (basement membrane and
submesothelium). In the mesothelium, there are various cells, such as squamous cells, cuboidal cells, pinacocytes, and tanycytes. The basement
membrane consists of type I and IV collagen, glycoproteins, and proteoglycans. The submesothelium is composed of ECM, including elastin, and
macrophages, mast cells, fibroblasts, fibronectin, blood vessels, lymph vessels, laminin, and so on.
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demonstrated that the CCL22 level in ovarian cancer patients is

higher than in benign tumor patients (110).
3.3 Formation of ovarian and gastric
cancer peritoneal metastasis

Ovarian cancer is the most common cancer-causing death in

gynecological malignancies (111). Ovarian cancer cells have the

ability to metastasize throughout the peritoneal cavity, including the

liver, gallbladder, uterus, spleen, and other parts. However, in addition

to the fallopian tube and lateral ovary, the peritoneum and omentum

are the most common secondary sites (112), the incidence of peritoneal

metastasis in ovarian is about 62% (4). At the same time, that peritoneal

metastatic spread is an integral part of FIGO staging of ovarian cancer

(113). All cells in the ovary can cause malignant tumors, of which

epithelial ovarian cancer (EOC) is the most common and lethal,

accounting for about 80% of ovarian cancers (114, 115). About 70%-

75% of women patients with epithelial ovarian cancer are found to have

cancer cells metastasized to the peritoneal cavity and the five-year

survival rate is only 30% (5, 116).

Gastric cancer is a malignant tumor originating from the gastric

mucosal epithelium, with the third-highest mortality rate in the

world (117). Peritoneal metastasis is common in the recurrence and

metastasis of gastric cancer, about 53%-66% (6, 7). Studies have

demonstrated that cancer recurrence in about 50% of gastric cancer

patients was confined to the peritoneal cavity. Peritoneal metastasis

of gastric cancer is often accompanied by symptoms, such as

refractory ascites and adhesive intestinal obstruction, which

causes patients to die in a short period of time (118).

The peritoneum has an extensive area, which makes it an

excellent site for the development of secondary tumors (114). Yet,

when peritoneal fluid, which is in the peritoneal cavity, flows in the

cavity, it can gather tumor cells and distribute them to some extent

in a stochastic manner throughout the whole cavity (119).

Peritoneal metastasis can be described vividly by Stephen Paget’s

“seed and soil” theory. Only the cancer cells (the “seeds”) that
Frontiers in Immunology 06
transfer to a usable environment (the “soil”) can they survive and

proliferate rapidly (120). Peritoneal metastasis mainly includes the

following processes, as shown in Figure 4. The free cancer cells

formed by the shedding of the metastatic primary tumor gain

motility in the peritoneal cavity and avoid anoikis first. The

surviving free cancer cells contact and adhere to the monolayer of

mesothelial cells in the peritoneal. Then, the peritoneal deposits are

formed on the surface of the peritoneal. Meanwhile, the tumor cells

and immune cells within the peritoneal cavity produce and release

inflammatory factors, which further changes the structure of the

peritoneum, facilitates the proliferation, migration invasion of

tumor cells and promotes angiogenesis (91, 121).

(1) Shedding. Metastatic primary ovarian and gastric cancer

cells can become free by spontaneous shedding (122, 123).

Alternatively, epithelial cells increase their motility to promote

spontaneous shedding through EMT, with the upregulation of N-

cadherin and downregulation of E-cadherin (124, 125).

(2) Acquisition of anoikis resistance. Free cancer cells are

suspended in peritoneal fluid and cannot attach to other cells or

the ECM. Thus, avoiding anoikis is a necessary condition for the

survival of ovarian and gastric cancer cells (115). Protein-L-

isoaspartate (D-aspartate) O-methyltransferase (PCMT), which is

localized to various regions, including the cytosol, extracellular

space, exosomes, and possibly vesicles (126, 127). PCMT interacts

with the carboxymethylation of the tumor suppressor protein p53 at

residues 29 and 30 of isoaspartate and downregulates its expression,

thereby inhibiting the anoikis of tumor cells and promoting tumor

development (128). Studies have shown that knocking out the

PCMT gene in ovarian cancer significantly leads to anoikis (129).

In addition, related research shows that PMCs display poor

proliferative capacity and fast entry into senescence. Senescent

PMCs will secrete senescence-associated secretory phenotype

(SASP) into the surrounding environment, which usually includes

cytokines, chemokines, growth factors, and matrix-related basic

proteases (101). Many biologically active substances make the

senescent PMCs more effective than vigorous cells to promote the

adhesion of ovarian cancer, colon cancer, and pancreatic cancer
FIGURE 4

Molecular mechanism of peritoneal metastasis. After the cancer cells fall off the primary tumor, they escape anoikis, survive in the abdominal cavity,
and further adhere to the peritoneum and omentum, thereby promoting the proliferation, migration, invasion, and angiogenesis of tumor cells.
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cells. At the same time, senescent PMCs can secret some related

proteins that have the ability to promote cell proliferation,

angiogenesis, inflammation, and EMT, simultaneously improving

the motility of cancer cells, and finally further promoting the

peritoneal metastasis of cancer (130–133).

(3) Adhesion. Surviving free cancer cells contact and adhere to

PMCs. Adhesion can be divided into two mechanisms:

transmesothelial and translymphatic. During transmesothelial

dissemination, free cancer cells adhere directly to the innermost

mesothelial layer of the peritoneum (134). Adhesion among tumor

cells, mesothelial monolayers, and ECM components is achieved

through interactions between integrins, cadherins, and cell

adhesion molecules, including integrin a2b1, proteoglycan CD44,

and mucin 16 (MUC16). Several studies have shown that integrin

a2b1 and proteoglycan CD44 are overexpressed in ovarian and

gastric cancers (135–137). Integrin a2b1 promotes ovarian cancer

cells to form spheres and enhances their adhesion ability to facilitate

peritoneal metastasis (138). CD44 can enhance cell adhesion and

cell migration (139). MUC16 is involved in mediating the adhesion

of free tumor cells, which is mainly achieved by interacting with

mesothelin on mesothelial cells (140).

(4) Invasion. Adhering tumor cells must cross the mesothelial

monolayer to invade the peritoneum. The single cells or spheroids

formed after ovarian cancer cells break through the body’s immune

defenses and invade the peritoneal stroma (115). In gastric cancer,

PMCs can synthesize inflammatory factors and angiogenic factors,

such as VEGF, fibroblast growth factors (FGF), etc. (141), which

further promotes matrix remodeling and angiogenesis to change the

peritoneal structure, destroying the intact mesothelial monolayer

and leading to the formation of a large number of matrix deposits in

the submesothelial dense area. All of the above are beneficial to the

invasion of gastric cancer cells (142).

(5) Proliferation and angiogenesis. One of the typical

characteristics of tumor cells is the ability to proliferate

indefinitely. Cancer cells produce various growth factors through

autocrine activators or stimulate the relevant stromal paracrine

factors in TME and integrate with the corresponding receptors to

further promote tumor cell survival, proliferation and angiogenesis

(143). When the ovarian and gastric cancer cells colonizes the

peritoneum and grows to a certain size, VEGF will play a significate

role in increasing the formation of new blood vessels by stimulating

the proliferation and migration of endothelial cells, enhancing

vascular permeability, and inhibiting the apoptosis of endothelial

cells to provide the nutrients needed for tumor growth (142, 144).

Another role of the PMs is their contribution to angiogenesis, as

they produce various proangiogenic stimuli, such as VEGF, (matrix

metalloproteinase-1) MMP-1, and so on (145).

4 CXCL8-CXCR1/2 axis promotes the
peritoneal metastasis of ovarian and
gastric cancer

Paracrine or autocrine CXCL8 in TME can promote the

occurrence and development of the peritoneal metastasis of

various cancers in multiple ways, as shown in Figure 5 (146–148).
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(1) Shedding. In the process by which tumor cells separate and

shed from the primary tumor, it is necessary to adjust the

expression of adhesion molecules on the surface of the tumor

cells (125). CXCL8 mediates EMT in ovarian and gastric tumor

cells by binding to its receptor so that the down-regulation of E-

cadherin and up-regulation of N-cadherin reduce the adhesion

between tumor cells and induce tumor cell shedding (149). This

reversible biological process also enhances the anti-anoikis ability of

cells and give the cells more mobility, so the free tumor cells can

find the most suitable adhesion position in the peritoneal

environment. In all, one of the main ways that ovarian and

gratric tumor cells can shed and acquire invasiveness and motility

is through EMT (124).

(2) Acquisition of resistance to anoikis. CXCL8 can enhance the

anti-anoikis function by activating the PI3K-Akt signaling pathway

in ovarian cancer [210]. Further, Adapyin-2(AP-2) can promote the

hexaphosphorylation of serine residues on CXCR2, which then

improves the migration ability of tumor cells while avoiding anoikis

(150). Moreover, CXCL8 recruits myeloid-derived suppressor cells

(MDSCs) to TME, which enhances the motility of tumor cells,

endothelial cells, or tumor-associated leukocytes and promotes the

immune evasion of tumor cells (151–153). Under the action of

exogenous chemotherapeutic drugs, excessive CXCL8 can inhibit

the apoptosis of ovarian and gastric cells induced by

chemotherapeutic drugs and improve the drug resistance of

cancer cells (18, 154–156).

(3) Adhesion and invasion. The increase in autocrine or

paracrine production of tumor cells with degrading collagen

fibers (matrix metalloproteinases, (MMPs)) leads to the

contraction and lysis of ECM cells, which facilitates tumor cell

adhesion. In addition, CXCL8 can enhance the activity of MMPs

and promote the degradation of ECM by MMPs, which is beneficial

for the invasion of gastric cancer cells (157). Grb2-associated

binding protein 2 (GAB2), a scaffolding protein necessary for

ovarian cancer peritoneal metastasis, is overexpressed in cancers.

GAB2 can activate CXCL8 and induce the expression of zinc-finger

E homeobox-binding-1 (ZEB1) through the activation of the PI3K

signaling pathway, which directly inhibits the transcription of E-

cadherin, further promoting the migration and invasion of ovarian

cancer cells (158, 159). GAB2 protein can also undergo tyrosine

phosphorylation after binding to receptors and interact with the

p85 regulatory subunit of PI3K containing Src homology 2 domain

molecules, improving the survival rate of tumor cells and promoting

their proliferation and migration (160). Further, when CXCL8

binds to CXCR1/2, it can activate transforming growth factor

beta-activated kinase 1/Nuclear factor-kappa B (TAK1/NFkB)
signaling and enhance the migration and invasiveness of ovarian

cancer cells. In addition, it can also activate the EFGR/Akt signaling

pathway to inhibit apoptosis and angiogenesis (49).

(4) Proliferation and angiogenesis. After CXCL8 binds to the

receptor CXCR1/2, it can directly act on vascular endothelial cells or

enhance the activity of MMP-2/9, which promotes the secretion of a

large amount of VEGF and enhances its activity, inducing the

formation of new blood vessels and increasing vascular

permeability, further providing nutritional support for the

proliferation and migration of ovarian cancer cells (161, 162). At
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the same time, CXCL8 derived from gastric cancer have the ability

to activate endothelial cells in cancer vessels, promote angiogenesis

(163). In conclusion, angiogenesis is essential for tumor cell

invasion and colonization in mesothelial or stromal cells during

peritoneal metastasis (164, 165).

To summarize, the overexpression of CXCL8 promotes tumor

cell proliferation, migration, invasion, EMT, and angiogenesis and

accelerates peritoneal metastasis. peritoneal-associated cells also

upregulate CXCL8 expression. CXCL8 interacts with peritoneal

metastases to accelerate tumor progression and leads to a

dramatic deterioration of patients.
5 Conclusions

Peritoneal metastasis frequently occurs in ovarian and gastric

cancer, resulting in poor prognosis and a low five-year survival rate,

which is the main reason for patients’ death. This paper details the

structure and roles of autocrine or paracrine chemokine CXCL8,

which is in the TME, and the membrane receptor CXCR1/2. We

further describe the specific process of peritoneal metastasis in

ovarian and gastric cancers. Finally, the CXCL8-CXCR1/2 axis

greatly affects the promotion of ovarian and gastric cancer

peritoneal metastasis, further facilitating the development and

progression of cancer. It is expected to indirectly reduce the

probability of peritoneal metastasis by developing a series of

drugs targeting CXCL8 or CXCR1/2, or by improving the

treatment effect of intraperitoneal chemotherapy on patients,

slowing the deterioration of cancer after peritoneal metastasis.
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FIGURE 5

CXCL8 and cancer peritoneal metastasis. CXCL8 promotes the occurrence, development, and peritoneal metastasis of cancers in multiple ways.
CXCL8 accelerates tumor cell shedding via EMT (E-cadherin decreased, N-cadherin increased). Moreover, EMT and MDSCs, which are recruited
by CXCL8, free tumor cells to enhance motility and to acquire anoikis resistance. AP-2 promotes the hexaphosphorylation of serine residues on
CXCR2 and then, improves the migration of tumor cells while avoiding anoikis. After that, the CXCL8-CXCR1/2 axis enhances the anoikis ability by
the PI3K-Akt signaling pathway. In the next step, CXCL8 induces MMPs to degrade ECM for the adhesion and invasion of free tumor cells.
Then, CXCL8 facilitates the expression of ZEB1 through the PI3K signaling pathway, which directly inhibits EMT, further promoting the migration and
invasion of cancer cells. Furthermore, CXCL8 can activate TAK1/NFkB signaling and further enhance the tumor cells’ migration and invasion abilities.
Finally, CXCL8 can active the EFGR/Akt signaling pathway and enhance the activity of MMP-2/9 to promote the secretion of VEGF, which further
induces the formation of new blood vessels and provides nutritional support for the proliferation and migration of tumor cells.
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Á, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat
Rev (2017) 60:24–31. doi: 10.1016/j.ctrv.2017.08.004

147. Jia X, Lu M, Rui C. Consensus-expressed CXCL8 and MMP9 identified by
meta-analyzed perineural invasion gene signature in gastric cancer microarray data.
Front Genet (2019) 10:851. doi: 10.3389/fgene.2019.00851
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