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diseases: From mechanisms
to therapeutic potential
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Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially

identified as a chemokine mediating neutrophil migration, is a multifunctional

secreted factor involved in diverse physiological and pathological processes. The

high sequence similarity of LECT2 among different vertebrates makes it possible

to explore its functions by using comparative biology. LECT2 is associated with

many immune processes and immune-related diseases via its binding to cell

surface receptors such as CD209a, Tie1, and Met in various cell types. In addition,

the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney,

liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the

mechanisms of LECT2-mediated diverse immune pathogenic conditions in

various tissues remain to be fully elucidated due to the functional and signaling

heterogeneity. Here, we provide a comprehensive summary of the structure, the

“double-edged sword” function, and the extensive signaling pathways of LECT2

in immune diseases, as well as the potential applications of LECT2 in therapeutic

interventions in preclinical or clinical trials. This review provides an integrated

perspective on the current understanding of how LECT2 is associated with

immune diseases, with the aim of facilitating the development of drugs or

probes against LECT2 for the theranostics of immune-related diseases.

KEYWORDS

LECT2, LECT2 receptor, immune regulation, inflammation-related diseases,
comparative immunology
1 Introduction

LECT2 (leucocyte cell-derived chemotaxin 2) is a hormone-like protein that was

originally identified as a chemokine mediating neutrophil migration (1). Subsequently, it

has also been defined as chondromodulin II (CHM2 or ChM-II) due to its function in

promoting chondrocyte proteoglycan synthesis and cartilage growth (2). In fact, as a
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1158083/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1158083/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1158083/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1158083/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1158083/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1158083&domain=pdf&date_stamp=2023-03-09
mailto:chenjiong@nbu.edu.cn
mailto:jchen1975@163.com
mailto:champion2014@126.com
https://doi.org/10.3389/fimmu.2023.1158083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1158083
https://www.frontiersin.org/journals/immunology


Zhu et al. 10.3389/fimmu.2023.1158083
member of chondromodulin family, although CHM2 shares lower

sequence similarity with its family member CHM-1, both of them

function as anti-angiogenic factors (3, 4). CHM2 suppresses

angiogenesis by blocking VEGF165-VEGFR2 signaling in liver

cancer (5) and reduces endothelial cell migration and tube

formations by activating LECT2-Tie1 signaling in liver fibrosis (6).

LECT2 is also identified as a hepatokine. Hepatocyte-derived

LECT2 not only regulates hepatocyte cells in an autocrine mode,

but can also be secreted into the bloodstream to act on cells of other

tissues in a paracrine way to modulate multiple metabolic

homeostasis or disorders such as glucose metabolism, non-

alcoholic fatty liver disease (NAFLD) (7, 8), alcohol-induced liver

cirrhosis (9), obesity (10), diabetes (11, 12), and atherosclerosis (13).

LECT2 is also positively correlated with diet-induced weight cycling

in mice and humans, suggesting that LECT2 is a sensing hepatokine

for nutritional regulation-mediated metabolic homeostasis and

functions as an indicator for management of obesity in the clinic

(14, 15).

Besides its soluble functioning as a cytokine or hepatokine,

LECT2 also exists in the form of amyloidosis (aLECT2) and is

involved in renal and hepatic amyloid lesions (16–18). aLECT2 has

been found to deposit in vessels, interstitial, and glomeruli of renal

biopsies (19–21). The mutation or genetic variations of LECT2 are

responsible for the formation of aLECT2, while the misfolding

LECT2, which leads to insoluble fibrils aggregated in cells and

tissues, might be the potential pathogenesis of LECT2-mediated

amyloidosis (19, 20). However, the specific role of aLECT2 in

amyloidosis is still unclear, and there is also a disputation about

whether this protein is feasible as a diagnosis and treatment for

aLECT2-mediated amyloidosis.

Furthermore, more recent research has revealed the link

between LECT2 and the development of multiple immunological

diseases such as sepsis (22–24), atherosclerosis (13, 25–27),

osteoporosis (28, 29), arthritis (30–33), diabetes (10–12, 34),

atopic dermatitis (35), and non-alcoholic steatohepatitis (NASH)

(7, 8). Nonetheless, it is disease-dependent for the action

mechanisms and signaling of LECT2. Thus, herein, we have

analyzed the expression and roles of LECT2 and its ligand

proteins in various inflammatory diseases to provide a

comprehensive review that will help researchers examining these
Frontiers in Immunology 02
processes and determining the bioavailability of LECT2 in

the future.
2 The molecular structure and tissue
distribution of LECT2

The human LECT2 gene is located at chromosome 5q31.1–32

and consists of three introns and four exons (36). Its cDNA is 456

nucleotides (nts) in length, containing an open reading frame

encoding a polypeptide of 151 amino acid (aa) residues with a

calculated molecular weight of 16.39 kDa and a isoelectric point of

9.42 (36). The LECT2 protein is the only member of the zinc-

dependent metalloendopeptidases M23 family in vertebrates, which

contains a zinc ion as a cofactor and prefers peptides containing

polyglycine residues (37, 38). The phylogenic analysis shows that

LECT2 is highly conserved from teleosts to Mammalia (Figure 1A).

All of them have a signal peptide, three conserved disulfide bonds,

and three metal-binding sites (Figure 1B). These conserved

sequences or sites are crucial for the functioning of LECT2, and

they also provide the theoretical basis to explore the functions of

LECT2 by comparative biology.

LECT2 is primarily produced in hepatocytes and mainly secreted

to the bloodstream (16), but it is also found in other tissues or cells,

such as macrophages (8, 13), parathyroid cells (39), adipocytes (10,

40), cerebral nerve cells (39), and vascular endothelial cells (6, 26).
3 LECT2-mediated signaling

LECT2 exhibits its pleiotropic functions via its receptors,

including CD209 antigen-like protein A (CD209a) (22, 41), tyrosine

kinase with immunoglobulin-like and EGF-like domains 1 (Tie1) (6),

MET (tyrosine protein kinase Met, also called c‐Met) (37, 42, 43), L1

cell adhesion molecule (L1CAM or SAX-7) (44), MNR-1 (44), and

transferrin (Trf) (45) (Figure 2). CD209a is the first identified LECT2

receptor discovered by our group (41), and it contributes to enhancing

the bacterial clearance ability of macrophages by phosphorylating the

c-Jun N-terminal kinase (JNC) (Figure 2A) (22, 41). c-Met is the other

receptor of LECT2, and the c-Met-LECT2 protein–protein interaction
A B

FIGURE 1

Analysis of the evolution and conservation of LECT2 in vertebrates. The phylogenetic analysis (neighbor-joining) (A) and multiple alignments (B) of
the amino acid sequences of LECT2 in a variety of vertebrates. “▮” represents metal-binding sites.
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(PPI) impedes MET receptor activation to inhibit vascular invasion,

metastasis, proliferation, and stemness of several cancers by

antagonizing different cancer activation pathways (Figure 2B) (43,

46–48). In addition, Shirasaki et al. found that LECT2 functions as an

anti-viral protein against lymphocytic choriomeningitis virus (LCMV)

by binding to c-Met and thus competes with HGF-MET signaling

(Figure 2B) (42). Tie1, a well-known angiopoietin receptor in many

angiogenesis-related physiological and pathological processes (49),

was also found to interact with LECT2. LECT2 promotes the

dissociation of Tie1-Tie2 heterodimerization and the formation of

Tie1-Tie2 homodimerization, which surpasses the invasion and

metastasis of endothelial cells by activating PARP signaling

(Figure 2E) (6). In Caenorhabditis elegans, muscle-secreted LECT-2

is an orthologue of vertebrate LECT2. It forms a multiprotein

receptor–ligand complex with two skin transmembrane ligands,

L1CAM and MNR-1, and a neuronal transmembrane receptor,

DMA-1, which guides the growth of dendritic terminal branches

(Figure 2D) (44). Trf is a glycoprotein with iron-binding and anti-

microbial activity in vertebrates (Figure 2C) (50). Our group revealed

that LECT2 interacts with Trf, and this interaction is highly conserved

from fish to mouse (45).
4 The roles LECT2 in immune diseases

4.1 Tumor immunity

LECT2 functions as a tumor suppressor in many cancers (5, 46,

48, 51–53). Apart from directly interacting with cancer cells, LECT2

also modulates cancer progression via the tumor immune

microenvironment (TIM) (51, 52). In hepatocellular carcinoma

(HCC), LECT2 expression is negatively associated with the

immune infiltration of monocyte, B cells, neutrophil, and myeloid

dendritic cells and positively associated with hematopoietic stem cells

and CD8 naive T cells. In addition, the LECT2 level is also negatively

associated with multiple immune checkpoint molecules and HLA

genes (51). Moreover, LECT2 is documented to prevent the
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recruitment of inflammatory monocytes and the acquisition of

their immunosuppressive properties, and it has the ability to inhibit

the EMT response and angiogenesis processes in b-catenin-activated
hepatocytes (52). An oncogenic b-catenin-triggering inflammatory

tumor microenvironment is indispensable for the aggressiveness of

HCC in mice, and LECT2 inhibits HCC progression by blocking b-
catenin-induced inflammation by interconnecting with invariant

NKT (iNKT) cells (54). It has been shown that during intestinal

tumorigenesis, compared to wild-type mice, LECT2-deficient mice

exhibited a reduced overall survival and a significantly increased

number of adenomas in the small intestine with increased severity

(53). Further analysis showed that the homozygous loss of Lect2

promoted intestinal tumorigenesis by changing the tumor

microenvironment, indicated by altering the balance of pro- and

anti-inflammatory cytokines and key regulators of the T-cell lineage

in the Wnt-activated colorectal cancer model. All the results show

that LECT2 is a potential anti-tumor cytokine for cancer therapy.
4.2 Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) consists of a series of

liver disorders ranging from hepatic steatosis to non-alcoholic

steatohepatitis (NASH) and ultimately may lead to cirrhosis; its

inflammatory responses are becoming the leading cause of liver-

related morbidity and mortality worldwide (55). LECT2 is involved

in all almost stages of NAFLD and is a potential diagnosis marker for

this disease (7, 8, 25, 40, 56). In NAFLD, activating transcription factor

4 (ATF4) contributes to the upregulation of LECT2 transcription by

binding to the LECT2 gene promoter under ER stress response (56).

LECT2 is also found to promote liver steatosis by shifting the liver

residual macrophage to the M1-like phenotype and to contribute to

the development of liver inflammation via JNK-mediated signaling in

NASH (8). Another study also found that LECT2 induces the

development of NAFLD by mediating the phosphorylation level of

STAT-1 and the expression of its downstream genes cluster of

differentiation 36 (Cd36), chemokine (C-X-C motif), ligand 10
FIGURE 2

The reported LECT2-mediated signaling in the literature.
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(Cxcl10), and unc-51-like autophagy-activating kinase 1 (Ulk1) (7). In

addition, LECT2 is also reported as a non-invasive diagnostic factor

for alcohol-induced liver cirrhosis (9).
4.3 Acute liver injury

Acute liver injury (ALI) is commonly caused by bacterial

endotoxin/lipopolysaccharide (LPS) or drug overdose; it causes a

systemic inflammatory response syndrome that is clinically much

like sepsis (57, 58). In ALI mouse models, LECT2 was upregulated,

and LECT2-KO mice more significantly reduced liver injuries than

wild-type mice. Another study found that LECT2 knockdown

alleviates liver injuries by regulating monocyte/macrophage

chemotaxis (59). This result suggests that LECT2 might be used

as a therapeutic target for ALI.
4.4 Sepsis

Bacterial or viral infection is one of the main causes of sepsis

(60–62). LECT2 was firstly found to be associated with bacterial and

viral infection in multiple teleosts (63–66). the anti-bacterial/anti-

viral roles of LECT2 have also been verified in Aves (67, 68),

mammals (22, 69), and human beings (23, 70). In vertebrates,

LECT2 was firstly considered to exhibit its anti-bacterial/anti-viral

activities by activating immune cells (macrophages, heterophils, and

lymphocytes) (22, 68, 71) and downregulating pro-inflammatory

factors such as TNF-a and IL-6 (22, 24). Several studies have

revealed that LECT2 relieves both bacteria- and virus- induced

sepsis in different mechanisms (22, 42, 70). In viral sepsis, LECT2

promotes retinoic acid-inducible gene I (RIG-I)-mediated anti-

virus immunity by interacting with MET receptor, and this

process can be antagonized by an original MET ligand hepatocyte

growth factor (HGF) (42). For bacterial sepsis, LECT2 enhances the

bactericidal activity of macrophages by inducing the

phosphorylation of CD209a at its residue Ser28 and then leading

to Raf-1 and NK-kB activation (22, 70). LECT2 has also been found

to shift the development of pro-inflammatoryTh1/Th17 cells to

anti-inflammatory Treg cells via the differentiation of bone

marrow-derived dendritic cells (BMDCs) into dendritic cells,

secretion of inflammatory cytokines, and differentiation of T cells

after Helicobacter pylori infection in a CD209a receptor-dependent

manner, suggesting that interrupting the LECT2-CD209a

interaction may provide a promising target for H. pylori clearance

(72). Moreover, LECT2 has direct anti-bacterial activity in teleosts,

and this activity is conserved among vertebrates apart from humans

(69). Interestingly, although LECT2 has two copies in teleosts, only

LECT2-b exhibits direct anti-bacterial activity in grass carp. Fish

LECT2-b not only exhibits conserved chemotactic and

phagocytosis-stimulating activities but also kills Gram- and

Gram+ bacteria directly in a membrane-dependent and a non-

membrane-dependent manner, respectively. Additionally, LECT2-b

impedes bacterial adherence to epithelial cells by inducing

agglutination, which is achieved by binding peptidoglycan and
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lipoteichoic acid. All these results suggest that LECT2 is a

potential drug for sepsis treatment.
4.5 Atherosclerosis

Atherosclerosis is a chronic, multifocal, lipid-driven

immunoinflammatory disease that occurs in medium-sized and

large arteries (73). LECT2 has been found to be a potential diagnosis

biomarker for atherosclerosis and correlated with the

developmental stage of atherosclerosis (25, 27). Another study

found that LECT2 induces atherosclerotic inflammatory reaction

via CD209a/JNK signaling in human endothelial cells (26). He et al.

found that LECT2 administration reduces the concentrations of

serum total cholesterol and low-density lipoprotein and the size

of atherosclerotic lesions and thus impedes the progression of

atherosclerosis (13).
4.6 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune

arthropathy and is characterized by a failure of inflammation to

resolve automatically (74). Several studies have shown that LECT2

is a potential biomarker for RA diagnosis (30–33). Multiple clinical

statistics have considered that the Val58Ile polymorphism of

LECT2 is associated with the joint destruction in RA (32, 33). In

a mouse arthritis model, LECT2-/- mice exhibited more severe

arthritic symptoms than the wild-type controls, which were

indicated by LECT2-/- mice having more severe inflammation and

erosion of cartilage and bone. It was also found that exogenous

expression of LECT2 can alleviate arthritis symptoms in LECT2

knockout mice (31), which strongly suggests that LECT2 treatment

might be a potential strategy against inflammatory arthritis such

as RA.
4.7 Osteoporosis

Osteoporosis (OS) is caused by the imbalance in the ratio

between osteoblasts and osteoclasts, which is closely associated

with osteogenic differentiation (OD) (28). LECT2 is low

expression in mesenchymal stem cells (MSCs) with OD, and it

inhibits OD in MSCs by inactivating the Wnt/b-catenin pathway.

LECT2 is also found to play a role in the upregulation in serum of

osteoporosis patients, is positively correlated with their bone loss,

and is a potential biomarker for osteoporosis diagnosis (29). All

these results suggest that LECT2 is a potential diagnosis and

therapeutic target for osteoporosis.
4.8 Allergic diseases

Allergic diseases such as atopic dermatitis and parasitic

infection are severe systemic hypersensitivity reactions that are
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rapid in onset and usually associated with skin and immune system

changes, which seriously affect a patient’s health and quality of life

(75, 76). Jeronimo et al. found that LECT2 is involved in

modulating delayed-type hypersensitivity responses resulting from

Leishmania chagasi infection, but its potential mechanism is

unclear (77). In addition, Zhao et al. revealed that serum LECT2

is positively correlated with atopic dermatitis and its severity (35),

but the mechanisms of how LECT2 mediates the progression of

atopic dermatitis remain unknown.
5 Concluding remarks and
perspectives

In its structure, LECT2 has high similarity among different

vertebrates, indicated by their high conservation of three disulfide

bonds and three metal-binding sites. The homology of LECT2

between different species provides the possibility to study its

functions using comparative immunological methods. Currently,

two of the five reported ligand proteins (CD209a and Trf) of LECT2

were firstly identified by our group in teleosts using the yeast two-

hybrid system (45, 64), and the two interactions were further

verified by our and the other groups. The LECT2-CD209a

interaction was found to mediate bacterial clearance and obesity

and drive the expansion and mobility of HSCs by modulating the

macrophages and osteolineage cells (41). For LECT2-Trf

interaction, although this protein–protein interaction (PPI) exists

from teleosts to mice (45), its specific pathophysiologic functions

are still unknown. Additionally, the complex assembled by LECT2,

L1CAM, MNR-1, and DMA-1 is indispensable for the growth of

dendritic terminal branches in C. elegans (44). Although all the

homologous components of this complex are present in vertebrates,

whether this complex exists in vertebrates and its potential roles

remain unknown. These discoveries of LECT2 receptors further

verify the feasibility of the digesting functions of novel proteins by

comparative immunology.

Mounting evidence supports that LECT2 has versatile roles in

immune diseases. It attenuates tumorigenesis by modulating TIM

(51, 52); modulates inflammatory responses in several tissues such

as liver (7, 8, 25, 40, 56, 59), bone marrow (29), joints (30–33), and

blood vessels (13, 25–27); alleviates bacteria/virus-induced sepsis

(22, 23, 42, 67–71); and accelerates the progression of allergic

diseases (35, 77). It also mediates the Wnt/b-catenin pathway to

regulate osteogenic differentiation of MSCs (28). The interaction of

LECT2 with CD209a promotes the proliferation of HSCs in the

bone marrow and mobilization to the blood, and it also regulates

HSC homeostasis by affecting the expression of TNFa in

macrophages and osteoblasts (41). Given the multifunctionality of

LECT2 and its theranostical application in multiple immune-

related diseases, there are many areas that are worth further

invest igat ing . F irs t ly , many of the LECT2-mediated

pathophysiologic roles interplay with each other, and it is

imperative to investigate whether and how LECT2 modulates the

crosstalk among different immune diseases. For example, LECT2 is

involved in the development of several liver immune diseases such

as NAFLD, insulin resistance, liver regeneration, and HCC. LECT2
Frontiers in Immunology 05
is the common mediator for them, and these liver immune diseases

can be interchangeable or occur simultaneously. However, no

related literature describes the role of LECT2 in their crosstalk.

Secondly, considering the broad spectrum of LECT2-mediated liver

immune diseases, it is theoretically feasible to construct an

algorithm using LECT2 levels to predicate the progression of

these diseases. Thirdly, LECT2 has been found to promote the

progress of several immune diseases and is considered as a

therapeutic target, but no agent with activity that reduces LECT2

levels has been identified for the moment. Further studies are

needed to screen/identify agents with functions that lower LECT2

levels. Finally, the potentially clinical applications of LECT2 in

immune diseases have been verified in a mouse model. However,

further study is still imperative to shed light on their action

mechanisms to avoid unpredicted risks before LECT2 is used

clinically in humans. For example, recombinant LECT2 (rLECT2)

administration was found to alleviate the sepsis induced by bacteria

and virus in a mouse model, and LECT2 is also negatively associated

with sepsis in humans, but there is a dearth of studies about whether

LECT2 has similar mechanisms and efficacy. Therefore, there

remains a need for studies focusing on the action mechanism and

clinical applications of rLECT2 in humans. Further exploration of

the role of LECT2 in varieties of immune diseases and its correlation

with clinical immune-related diseases will advance the development

of LECT2 as an appealing theranostical target for immune diseases.
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