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Introduction: There is increasing awareness of the role of adipose tissue in

breast cancer occurrence and development, but no comparison of adipose

adjacent to breast cancer tissues and adipose adjacent to normal breast tissues

has been reported.

Methods: Single-nucleus RNA sequencing (snRNA-seq) was used to analyze

cancer-adjacent and normal adipose tissues from the same breast cancer patient

to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from

six samples of normal breast adipose tissue (N) distant from the tumor and

tumor-adjacent adipose tissue (T) from the three patients (all surgically resected).

Results and discussion: Significant diversity was detected in cell subgroups,

differentiation status and, gene expression profiles. Breast cancer induces

inflammatory gene profiles in most adipose cell types, such as macrophages,

endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid

uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and

an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis

revealed distinct transcriptional stages. Breast cancer induced reprogramming

across many cell types in breast cancer adipose tissues. Cellular remodeling was

investigated by alterations in cell proportions, transcriptional profiles and cell-

cell interactions. Breast cancer biology and novel biomarkers and therapy targets

may be exposed.
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1 Introduction

Breast cancer is a major cause of cancer morbidity and mortality

in women worldwide and has rising incidence. Obesity is a risk

factor and has a negative impact on prognosis. The significant

association with obesity which facilitates both incidence and

progression in many tumor types, is driven by inflammatory and

metabolic alterations in adipose tissue that disrupt physiological

homeostasis both within local tissues and systemically (1, 2).

However, underlying molecular mechanisms remain unclear. A

variety of mechanisms involving, adipocytes and adipose tissue

have been proposed (3, 4). The adipose tissue around the tumor is

part of the tumor microenvironment and is able to regulate tumor

growth through production of signaling molecules and bioenergetic

substrates. The adipocyte-derived cytokines leptin, adiponectin, IL-

6 and VEGF may promote tumor proliferation and transition.

Bioenergetic substrates free fatty acids, cholesterol, lactic acids,

glycerol and nucleotides may provide nutrition to tumor cells to

support growth and mobility. It is generally believed that tumor

cells may change adipocytes in the microenvironment to meet their

growth demands, but the impact on adipocyte heterogeneity in

breast cancer remains unknown (5–7). Adipose tissue function

depends on many factors, necessitating a thorough understanding

of cell types and gene expression patterns involved.

Single-cell RNA sequencing technology allows investigation of

cell heterogeneity and functional status at the single-cell level to

address plasticity and cellular complexity of an organ/tissue and has

been used for various breast cancer and adipose cell subpopulations,

but differences between breast cancer adjacent and normal breast

adipose tissue from the same patient have not been assessed. In a

mouse study, scRNA-seq was used to study adipocyte de-

differentiation in the tumor-microenvironment (8). The results

suggested that the tumor induced de-differentiation of adipocytes

into myofibroblast- and macrophage-like cells caused extracellular

matrix remodeling in the tumor tissue. However, the impact of the

tumor on adipocytes remains to be investigated in breast

cancer patients.

In the current study, adipocyte heterogeneity was compared in

tumor- associated (tumor-adjacent) adipose tissue and normal

(tumor-distal) adipose tissue in breast cancer patients. Single-

nuclear RNA-seq (snRNA-seq) was conducted on three pairs of

tumor adjacent adipose and corresponding distant normal breast

adipose tissues in three postmenopausal breast cancer patients.

Resident cell types were characterized to illustrate changes

resulting from the proximity of breast cancer tissue. These

findings give new insights into relationships between breast

cancer and adipose tissue.
2 Methods

2.1 Enrollment of breast cancer patients

This study was approved by the ethics committee of Zhengzhou

Center Hospital. We complied with all relevant principles of ethics,
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and obtained the written informed consent from all patients in this

research. Three postmenopausal patients enrolled in this study were

diagnosed with breast cancer by laparoscopy and pathological

examination. All patients did not receive any anti-tumor

treatment before surgery. Furthermore, any patients presenting

with other malignant tumors were excluded. The clinical

characteristics were summarized in Supplementary Table S1. The

adipose tissue adjacent to the cancer foci is defined as the adipose

tissue adjacent to the tumor (T), while with the nipple as the center

point, the adipose tissue in the normal breast tissue on the opposite

side of the cancer foci is defined as the normal adipose tissue (N).

We collected fresh samples at the time of mastectomy and

immediately placed into liquid nitrogen.
2.2 Tissue processing for
single-nucleus suspension

Nucleus suspension preparation was performed on ice

throughout. Tissue samples from patients were cut into

pieces<1mm3 in 1 ml of nuclear lysis buffer (NST; 0.1% NP40,

10mM Tris-HCl, 146mM NaCl, 1mM CaCl2, 21mM MgCl2 and

40U/mL RNase inhibitor) for 7 minutes. After confirming complete

nuclear lysis by trypan blue staining and microscopy, 1ml ST Wash

buffer (10mM Tris-HCl, 146mMNaCl, 1mM CaCl2, 21mMMgCl2,

0.01% BSA (NEB B9000S) and 40U/mL RNase inhibitor) was

added. Filter through a 40µm cell sieve (BD), transfer the filtrate

to a 15mL centrifuge tube, rinse the cell sieve with ST Wash buffer,

and combine the rinse with the nuclear filtrate. Centrifuge at 500g

for 5 min at 4°C. Resuspend nuclei in 5ml PBS+1%BSA, wash and

centrifuge, and resuspend nuclei in 100µl PBS+1%BSA. Trypan blue

staining and microscopic examination.
2.3 10x genomics scRNA-seq

Nuclei were diluted to a concentration of 700-1200/µl with PBS

+ 1% BSA, and arrested via 10X Genomics system. According to the

instruction manual of 10×Genomics Chromium Next GEM Single

Cell 3′ Reagent Kits v3.1 (1000268), the machine and cDNA library

were amplified. DNA library construction was performed using the

Chromium™ Single Cell 3’/5’ Library Construction Kit (1000020).

The constructed library was sequenced on the Illumina Nova 6000

platform using PE150 sequencing mode.
2.4 Gene quantitative quality control and
downstream analysis

The quality control of samples was performed by using 10x

genomics official software Cell Ranger, which integrates STAR

software, and compared reads to the reference genome to obtain

high-quality cell counts, gene counts, and genome alignment rates

to assess the quality of each sample. Cells with retained cell gene

counts and UMI counts within the mean ± 2 times standard

deviation range, and mitochondrial gene ratios below 10% were
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considered high-quality cells for downstream analysis. The

dimensionality reduction algorithms used in this project are PCA

(Principal Components Analysis) and UMAP (Uniform Manifold

Approximation and Projection) algorithms. The dimensionality

reduction results based on PCA were visualized by UMAP to

visualize the clustering of single-cell populations, and the

clustering algorithm used SNN to finally obtain the optimal cell

clustering. Cell types were annotated based on differential

expression analysis for cluster-specific marker genes by using the

SingleR package and HPCA reference dataset.
2.5 Cell types and clusters annotation

We performed cell types and clusters annotation via marker

genes collected from public databases including Human Cell

Landscape (http://bis.zju.edu.cn/HCL/), Human Cell Atlas

(https://data.humancellatlas.org/), Human Protein Atlas (HPA,

https://www.proteinatlas.org/humanproteome/celltype) ,

SC2disease (http://easybioai.com/sc2disease/), Cell BLAST (https://

cblast.gao-lab.org/), Cell Marker (http://biocc.hrbmu.edu.cn/

CellMarker/), PanglaoDB (https://panglaodb.se/index.html), and

CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/).
2.6 Differential genes and
enrichment analysis

Differential genes were identified using the Seurat package and

the P value<0.05 and foldchange>1.5 was set as the threshold for

significantly differential expression, and applied GO and KEGG

enrichment analysis.
2.7 GSEA and GSVA

GSEA was performed with C5 GO and C2 KEGG gene sets in

MSigDB (http://www.gsea-msigdb.org/gsea/msigdb) to determine

the differential pathways.

The background gene set files were downloaded and organized

from the KEGG database (https://www.kegg.jp/) by the use of

GSEABase package (v1.44.0), and then valued the pathway

activity scores on individual cells using the GSVA package

(v1.30.0). Finally, calculated the difference in signaling pathway

activity between different groups with LIMMA software

package (v3.38.3).
2.8 SCENIC analysis

We conducted the single cell transcription factor network

inference analysis with pySCENIC (version 0.10.3) to identify

active TFs in distinct cell subtypes. The regulatory networks

activity was evaluated with AUCell step. To assess the cell type

specificity of each regulon, the Jensen-Shannon Divergence (JSD)-
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based regulon specificity score (RSS) and the Connection Specificity

Index (CSI) of all regulons were calculated using the scFunctions

(https://github.com/FloWuenne/scFunctions/) package.
2.9 ScMetabolism analysis

We quantified the metabolic activity at single-cell level via

scMetabolism (v 0.2.1) software based on the conventional single-

cell transcriptome expression matrix file, and obtained the activity

scores of cells in each metabolic pathway with the use of the

VISION algorithm.
2.10 RNA velocity analysis

Based on the output of Cell Ranger, we recounted the spliced

and unsliced reads using the Python script velocy.py[43] (https://

github.com/velocyto-team/velocy.py), and calculated RNA velocity

values for each gene from each cell with the velocyto R package and

RNA velocity vector to the UMAP two-dimensional space.
2.11 Trajectory analysis

We used the Monocle software package to perform machine

learning based on the expression patterns of key genes, and then

simulated the dynamic changes in the temporal development

process. First, selected genes with a large degree of gene

expression variation between cells, and performed spatial

dimensionality reduction according to their expression profiles,

and then constructed a minimum spanning tree (MST), and

identified the longest path represented the trajectories of cells

with similar transcription characteristics through the MST.
2.12 Cell-cell communication analysis

We systematically analyzed cell-cell communications according

to ligand-receptor database with default parameters using

cellphoneDB. Ligands or receptors expressed in at least 10% of

cells of a certain cell type and with a P value < 0.05 were

subsequently selected and we conducted ggalluvial and circlize R

package to visualize communication links.
3 Results

3.1 ScRNA-seq revealed multiple cell types
in breast cancer adjacent adipose tissue
and normal breast adipose tissue

Three postmenopausal female patients of similar age who had

received a clinical diagnosis of breast cancer were recruited. Single-
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cell RNA sequencing (snRNA-seq) was performed on six samples of

normal breast adipose tissue (N) distant from the tumor and tumor-

adjacent adipose tissue (T) from the three patients (Figure 1A;

Supplementary Figure S1; Supplementary Table S1). A total of

65,608 single cells were isolated, and after rigorous quantitative

quality control, 54513 single cells were subjected to analysis.

Normal adipose yielded 26847 cells and tumor adjacent adipose

27666 cells (Supplementary Figure S2A). Mean reads per cell were
Frontiers in Immunology 04
from 31093 to 43625, and median genes per cell from 1302 to 2285

(Supplementary Table S2).

Adipose tissue is composed of mature adipocytes and the

diverse cell-types of stromal vascular fractions (SVFs).

Overlapping marker genes from the Human Cell Atlas and

previously described scRNA-seq datasets of human adipose tissue

were used for the performance of cluster annotation and

identification of transcriptome samples. Cluster analysis divided
D

A B

E F

G

C

FIGURE 1

snRNA-seq of breast cancer adipose tissues. (A) Overview of the study workflow showing the collection and processing of samples from three patients
for scRNA-seq (B) UMAP plot of 21 clusters of all cells from the 6 samples profiled in this study, with each cell color coded to indicate the associated
subclusters and cell numbers. (C) Expression of cell-type-specific marker genes illustrated in UMAP plots. Canonical cell markers were used to label
clusters by cell identity as represented in the UMAP plot. Cell types were classified as adipocytes, endothelial cells, fibro-adipogenic progenitors,
macrophages, mural and smooth muscle cells or T cells as indicated in the legend. (D) UMAP plot of all cell types across 6 samples profiled in this study,
with each cell color coded to indicate the associated cell types (E) Cells on the UMAP plot of all 6 samples were colored as originating either from N or
T group. (F) UMAP plot of all cell types annotated in each group, with each cell color coded to indicate the associated cell types. (G) The relative ratio of
all cell types in N and T group shown using bar plots, with each cell color coded to indicate the associated subclusters.
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the entire cell population into 21 clusters (Figure 1B;

Supplementary Figure S2B), including fibro-adipogenic

progenitors (FAPs) (cluster 1,9), adipocytes (cluster 2, 6, 18),

macrophages (cluster 3, 11, 13), endothelial cells (cluster 4, 7, 8,

10, 14, 15, 16, 17, 19), mural and smooth muscle cells (cluster 5), T

cells (cluster 12) and doublets (cluster 20 and 21), expressing both

preadipocyte and endothelial cell markers) (Figures 1C, D). The cell

populations contained cells from both N and T samples, indicating

a common cell lineage, rather than a patient-specific sample

(Figure 1E). A marked decrease in the relative proportion of

endothelial cells and an increased proportion of macrophage and

T cells in the T group was found (Figures 1F, G). Proportions of all

21 clusters and cell types in each patient are shown in

Supplementary Figures S2C, S2D. In summary, snRNA-seq

revealed the cellular complexity of breast adipose tissues.
3.2 ScRNA-seq of adipose tissues revealed
distinct subpopulations of macrophage

Macrophages are the most common infiltrating immune cells in

breast cancer and have both anti- and pro-tumor roles.

Unsupervised macrophage subpopulation identified 8 stable

clusters with unique signature genes (Figure 2A). Polarization

phenotypic analysis failed to classify classical M1 or M2

signatures (data not shown), suggesting increased complexity of

tumor-associated macrophages (TAMs) consistent with previous

reports (9). Macrophage subpopulations were classified as follows.

Cluster 1 exhibited high expression of AP-1 family transcription

factors (expressing e.g., JUN, FOSB and FOS) which have been

implicated in cell proliferation, differentiation, apoptosis, and

oncogenic transformation (10). Cluster 2 may consist of pro-

tumor macrophages with the specific expression of MARCO and

PLAUR (expressing e.g., CTSL, MARCO and PLAUR) and the

proportion was significantly increased compared with N group.

MARCO is reputed to be a marker of a TAM subset associated with

poor prognosis in human cancers (11–13). PLAURmay affect many

normal and pathological processes related to cell-surface

plasminogen activation and local degradation of the extracellular

matrix (14). The activation of plasminogen and extracellular matrix

degradation mediated by PLAUR are important causes of tumor

metastasis (15). Overexpression of PLAUR has been observed in

many cancers and is usually associated with poor survival and

prognosis (16–18). Cluster 3 showed high expression of

inflammatory genes (expressing e.g., HPGDS, SLC40A1 and

CD200R1). Cluster 4 expressed antigen presentation associated

genes, consistent with the gene signatures of dendritic cells

previously reported (expressing e.g., HLA-DQA1, HLA-DPB1,

HLA-DRB1 and HLA-DRA). Cluster 5 was revealed to have a

transcriptional signature associated with lipid metabolism and

phagocytosis (expressing e.g., LPL, CD36 and CD9), consistent

with lipid-associated macrophages (LAMs) that clear dead

adipocytes and lipids and have a proinflammatory phenotype

(19–22). Cluster 6 may be mast cells (expressing e.g., IL1RL1,

TPSB2 and TPSAB1). Cluster 7 expressed genes related to cellular

proliferation and cell cycle (expressing e.g., KIF11, KIF15 and
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KIF23). Cluster 8 expressed genes associated with extracellular

matrix remodeling and deposition (expressing e.g., ADAMTS9,

OSMR and AKAP12) (Figure 2B; Supplementary Table S3). Chen

et al. identified a pro-tumor subpopulation of macrophages

characterized by MARCO, a mesenchymal pro-tumor marker in

GBM (12). Previously published results demonstrated that the

expression of MARCO correlated with expression of M2 markers

expressed by tumor-promoting macrophages and EMT-metastasis-

driving gene signatures in breast cancer, and antibody targeting of

MARCO-expression TAMs blocked tumor growth and metastasis

(23, 24). PLAUR plays a crucial role in extracellular matrix

degradation and tissue remodeling, which regulates tumor

invasion and metastasis, a pivotal characteristic of malignant

tumors (17, 25). In addition, some studies have indicated that

tumoral and macrophage PLAUR can promote tumor

invasiveness and that macrophages can increase the expression of

PLAUR in tumor cells (26, 27). These results suggested that PLAUR

may be involved in tumor immunity and prompted us to explore

further. The current data identified the high level of

MARCO+PLAUR+ macrophages in adipose tissue adjacent to

tumors at single cell level, indicating MARCO+PLAUR+

macrophages were related to the progression of breast cancer.

Cluster 5 was very similar to the previously reported lipid-

associated macrophages (LAM), which are involved in the

clearance of dead adipocytes (19, 20, 28, 29). However, although

clusters 1, 3 and 7 showed high expression of LYVE1 and SELENOP

(Supplementary Figure S3A), considered to be marker genes of

perivascular macrophages, further analysis showed gene expression

profiles different from those published previously (29, 30), perhaps

due to the limited number of samples or organ specificity.

Relative proportions of clusters 2 and 5 increased and those of

clusters 1 and 3 decreased in T samples (Figures 2C, D;

Supplementary Figure S3B). Increased proportions of cluster 5

indicated that breast cancer activated the non-classical

inflammatory ATM phenotype involved in lipid metabolism (19,

31). Three patients were independently analyzed to investigate

whether differences in cluster proportion in N and T were

significantly different. MARCO+PLAUR+ macrophages were

significantly increased in T (p=0.0037) (Supplementary Figure

S3C). Macrophage gene expression was compared between the N

and T groups, and different functions found to be enriched in

differentially expressed genes (DEGs), indicating immune

microenvironment differences between normal breast and cancer

associated adipose. Analysis of DEGs identified 125 upregulated

and 92 downregulated genes in T, the top 25 of which are presented

as a heatmap (Figure 2E). Analysis of DEGs function showed that

upregulated genes were associated with angiogenesis, cytokine-

mediated signaling pathway, and regulation of blood vessel

endothelial cell migration. Downregulated genes were related to

cytoskeleton organization, extracellular organization, and cell

adhesion (Figure 2F). Breast cancer involves a dramatic change in

macrophage and cytokine profiles, which are involved in tissue

remodeling, inflammation and the development of breast cancer

(32). Therefore, macrophage cytokine expression in breast cancer

was investigated and genes related to cytokine production and

macrophage inflammatory responses analyzed. CD44 and LITAF
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were identified as the cytokines most highly upregulated in T group

macrophages (Figure 2G). CD44 has been reported to modulate

macrophage recruitment and regulate adipose tissue inflammation

(33, 34). LITAF interacts with STAT6B to regulate expression of

inflammatory cytokines (35, 36).

Relative proportions of cluster 2 were dramatically altered by

breast cancer, increasing from being almost non-existent in N to
Frontiers in Immunology 06
being the most abundant subpopulation of T. Gene set enrichment

analysis (GSEA) of cluster 2 showed the highest enrichment scores

in MARCO+ macrophages to be lysosome, proteasome, oxidative

phosphorylation (OXPHOS) and citrate cycle (TCA cycle)

(Figure 2H), consistent with the functions of MARCO in

phagocytosis and clearance (37). Changes in OXPHOS and TCA

are supported by previous reports of TAM-facilitated production of
D
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FIGURE 2

Breast cancer remodels the macrophage composition in adipose tissues. (A) UMAP plot of 8 clusters of macrophages from the 6 samples profiled in
this study, with each cell color coded to indicate the associated subclusters and cell numbers. (B) Heatmap showing the expression of macrophage
subpopulation marker genes in each cluster. The color changes from blue to red, indicating a low to high fold change. (C) UMAP plot of all
macrophage subpopulations annotated in each group, with each cell color coded to indicate the associated subclusters. (D) The relative ratio of
macrophages in N and T group shown using bar plots, with each cell color coded to indicate the associated subclusters. (E) Heatmap showing the
top 25 differential expression genes (up- or down-regulated). The color changes from blue to red, indicating a low to high fold change. (F) Barplot
showing the significance levels of the top 10 most significantly enriched pathways in all DEGs. The left side of the coordinate axis represents the
enriched functional pathway of down-regulated genes; The right side of the coordinate axis represents the enriched functional pathway of up-
regulated genes. (G) Expression of genes (N versus T) involving in inflammatory (GO:0006954) in macrophages. (H) The top 4 GSEA analysis of
MARCO+ macrophages (cluster 2). (I) Heatmap indicating the enrichment of metabolism signaling pathway on all macrophages in N and T group.
(J) The regulon specificity score (RSS) ranking plot of top 3 TFs in N and T group. The abscissa represents the ranking, and the ordinate represents
the RSS score. The regulator with higher RSS may be related to the specificity of this cell group (upper). Heatmap showing the regulon activity in N
and T group. Rows represent different regulons, and columns represent different cell populations. The color changes from blue to red, indicating a
low to high RSS specificity score. The higher the RSS score, the stronger the specificity of regulon in this cell group (lower). The number of target
genes shown in brackets.
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ATP via TCA and OXPHOS in breast cancers (38, 39). These results

achieved at the single cell level.

Metabolic alterations in tumor tissue and the tumor

microenvironment are crucial to tumor progression and adipose

inflammatory and metabolic change disrupt physiological

homeostasis both within local tissues and systemically.

Metabolism-based KEGG analysis showed significant enrichment

in glycosphingolipid and glycosaminoglycan metabolism and fatty

acid biosynthesis in breast cancer-adjacent tissues (Figure 2I).

Glycosphingolipid biosynthesis has been reported to modulate the

pro-inflammatory phases of LPS/TLR4 activation in macrophages

(40). Glycosaminoglycans interact with growth factors, growth

factor receptors and cytokines to regulate cancer growth,

progression, and metastasis (41). The upregulation of

glycosphingolipid and glycosaminoglycan metabolism and fatty

acid biosynthesis during breast cancer may induce inflammation

and promote cancer progression.

Analysis of transcription factors (TFs) illuminates the gene

regulatory network behind cell heterogeneity and differential

transcription factor activity was analyzed by single-cell regulatory

network inference and clustering (SCENIC) followed by supervised

cluster analysis. N tissues had enriched ATF3 and NFIA regulons,

known to repress expression of proinflammatory cytokines and

chemokines, while T tissues had enriched CEBPB and FOSL1

regulons which promote the macrophage inflammatory

phenotype (Figure 2J upper) (42–45). Evaluation of differential

TF activity indicated high activity of JUN, NFIA, FOSB, ATF3,

and FOXO3 in the N group and high activity of FOSL1, ETS2,

STAT3, and CEBPB in the T group (Figure 2J lower).

In summary, macrophages were the major immune cells in

breast adipose tissue and breast cancer leads to a marked increase in

the proportion of MARCO+PLAUR+ and lipid-associated

macrophages. Furthermore, breast cancer induced an

inflammatory macrophage phenotype.
3.3 Influences of breast cancer on
endothelial cells

Endothelial cells accounted for a large proportion of cell types

showing cancer-related changes and were separated into 10 distinct

subpopulations (Figure 3A; Supplementary Table S4).

Subpopulations were annotated according to marker genes and

pathway analysis as follows: cluster 1, 7 and 8 were endothelial

progenitor cells (EPCs; expressing e.g., MEOX2, CD34 and KDR);

cluster 2 and 4 expressed genes, such as PTPN13, CDH20, and

SPON1, related to cell junction and adhesion (cell junction-

associated endothelial cells; CJECs) with implications for cell

migration, invasion and epithelial-mesenchymal transition

(EMT); cluster 3, 5 and 6 expressed metallothionein family

member genes, such as MT2A, MT1M and MT1E, involved in

angiogenesis (angiogenesis-associated endothelial cells; AECs);

cluster 9 comprised lymphatic endothelial cells (LECs; expressing

e.g., TBX1, PROX1 and LYVE1); cluster 10 expressed genes

associated with endothelial cell development and homeostatic

maintenance (expressing e.g., TFAP2A, TFAP2B, and HMGCS2)
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(Figure 3B; Supplementary Figure S4A). Compositional analysis

revealed increases in percentages of clusters 3, 5, 6 and 9, and

decreases in clusters 2 and 4 in T tissues (Figures 3C, D;

Supplementary Figures S4B, C). Analysis of DEGs identified 246

upregulated and 138 downregulated genes in T, the top 25 of which

are presented as a heatmap (Figure 3E). Analysis of DEG function

showed that upregulated genes were enriched for angiogenesis,

vascular homeostasis, and inflammation. Downregulated genes

were enriched for cell adhesion, extracellular matrix, and

metabolism (Figure 3F). Overall indications were that breast

cancer promoted angiogenesis related processes but damaged cell

junction and adhesion, contributing to migration and invasion of

cancer cells.

Endothelial cells also produce cytokines. Analysis of genes

relating to cytokine release by endothelial cells showed that the

top 3 upregulated cytokines in the T group were IL-6, RELLE and

PLXAN2, suggesting that breast cancer promoted an inflammatory

state among endothelial subpopulations (Figure 3G). IL-6 is an

inflammatory factor and a multifunctional cytokine with extensive

functions. RELL1 is a member of the tumor necrosis factor (TNF)

receptor family and belongs to the receptor expressed in the

lymphoid tissues (RELT) family. RELL1 activates the pro-

inflammatory pathway by binding to TNF receptor-related factor

1 (TRAF1) (46).

Relative proportions of AECs were altered in breast cancer and

increased to become the most abundant subpopulation of T. GSEA

of AECs showed enrichment of cytokine-receptor interactions,

sphingolipid metabolism, protein localization to endoplasmic

reticulum (ER), and IL-1 signaling pathway in AECs (Figure 3H),

indicating stimulation of the inflammatory response and

angiogenesis (47–49).

Glycosphingolipid biosynthesis and sphingolipid metabolism

was enriched in the T group (Figure 3I), indicating that breast

cancer promoted an inflammatory state among endothelial

subpopulations. SCENIC data showed enrichment of ETS1

regulons in N tissues and of ETV6 regulons in T tissues

(Figure 3J left). The T group thus presented a high activity of

inflammatory regulons, similar to the situation in macrophages

(Figure 3J right).

In conclusion, breast cancer promoted an inflammatory state of

endothelial subpopulations and angiogenesis, decreasing

subclusters related to cell junctions, which may contribute to the

inflammatory state and metastasis in breast cancer.
3.4 Breast cancer induced a decrease in
the preadipocyte subpopulation

FAPs consist of fibroblasts, preadipocytes, and stem cells which

were re-clustered into 4 distinct subpopulations (Figure 4A). FAP1

and FAP2 expressed preadipocyte marker genes PDGFRA and

PPARG (Figure 4B). Preadipocyte differentiation involves a

sequence including cell cycle arrest, expansion of mitotic clones,

post-mitotic growth arrest and terminal differentiation (50) and cell

cycle- and cell apoptosis-related genes are fundamental to cell

proliferation and growth. FAP1 were proliferative preadipocytes
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characterized by high expression of genes modulating cell

proliferation (expressing e.g., FHL2, MT1M, MT1X, MT1E, and

MT2A); FAP2 were enriched for immune- and inflammation-

related functions and expressed ABCA transporters involved in

cholesterol uptake and efflux (expressing e.g., ABCA10, ABCA8,

ABCA6, and ABCA9); FAP3 were enriched for cell cycle-related
Frontiers in Immunology 08
functions and expressed similar marker genes to FAP1; FAP4 were

similar to previously reported fibro-inflammatory progenitors

(FIPs) with high expression of fibro-genic genes (expressing e.g.,

PRG4, FBN1, CD55, PI16, and PAMR1). FIPs lack adipogenic

capacity, exert pro-fibrogenic/pro-inflammatory phenotype, and

display an anti-adipogenic effect (51) (Figure 4C; Supplementary
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FIGURE 3

Breast cancer promotes the inflammatory profile of endothelial cells in adipose tissues. (A) UMAP plot of 10 clusters of endothelial cells from the 6
samples profiled in this study, with each cell color coded to indicate the associated subclusters and cell numbers. (B) Heatmap showing the
expression of endothelial subpopulation marker genes in each cluster. The color changes from blue to red, indicating a low to high fold change.
(C) UMAP plot of all endothelial subpopulations annotated in each group, with each cell color coded to indicate the associated subclusters. (D) The
relative ratio of endothelial cells in N and T group shown using bar plots, with each cell color coded to indicate the associated subclusters.
(E) Heatmap showing the top 25 differential expression genes (up- or down-regulated). The color changes from blue to red, indicating a low to high
fold change. (F) Barplot showing the significance levels of the top 10 most significantly enriched pathways in all DEGs. The left side of the coordinate
axis represents the enriched functional pathway of down-regulated genes; The right side of the coordinate axis represents the enriched functional
pathway of up-regulated genes. (G) Expression of genes (N versus T) involving in inflammatory (GO:0006954) in endothelial cells. (H) The top 4
GSEA analysis results of angiogenesis associated endothelial subpopulation. (I) Heatmap indicating the enrichment of metabolism signaling pathway
on all endothelial cells in N and T group. (J) The regulon specificity score (RSS) ranking plot of top 3 TFs in all endothelial cells in N and T group. The
abscissa represents the ranking, and the ordinate represents the RSS score. The regulator with higher RSS may be related to the specificity of this cell
group (left). Heatmap showing the regulon activity in N and T group. Rows represent different regulons, and columns represent different cell
populations. The color changes from blue to red, indicating a low to high RSS specificity score. The higher the RSS score, the stronger the specificity
of regulon in this cell group (right). The number of target genes shown in brackets.
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Table S5). Thus, breast cancer may promote a less adipogenic

phenotype in FAPs (Figures 4D, E). three patients were

independently analyzed to investigate whether differences in

cluster proportions in N and T were significant. Cluster 4 (FIPs)

showed a significant increase in T (p=0.02) (Supplementary Figures

S5A, B).
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Analysis of DEGs identified 240 upregulated and 67

downregulated genes in T, the top 25 of which are presented as a

heatmap (Figure 4F). Analysis of DEG function showed that

upregulated genes were involved in extracellular matrix organization

and inflammatory pathways. Downregulated genes were enriched for

involvement in lipid transport (Figure 4G). Comparison of FAP gene
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FIGURE 4

Fibro-adipogenic progenitors are shifted toward less adipogenic phenotype in breast cancer. (A) UMAP plot of 4 clusters of FAPs from the 6 samples
profiled in this study, with each cell color coded to indicate the associated subclusters and cell numbers. (B) UMAP plot of preadipocyte marker
genes PPARG, FABP4, PDGFRA and PDGFRB. (C) Heatmap showing the expression of FAP subpopulation marker genes in each cluster. The color
changes from blue to red, indicating a low to high fold change. (D) UMAP plot of all FAP subpopulations annotated in each group with each cell
color coded to indicate the associated subclusters. (E) The relative ratio of FAPs in N and T group shown using bar plots, with each cell color coded
to indicate the associated subclusters. (F) Heatmap showing the top 25 differential expression analysis of genes (up- or down-regulated). The color
changes from blue to red, indicating a low to high fold change. (G) Barplot showing the significance levels of the top 10 most significantly enriched
pathways in all DEGs. The left side of the coordinate axis represents the enriched functional pathway of down-regulated genes; The right side of the
coordinate axis represents the enriched functional pathway of up-regulated genes. (H) The regulon specificity score (RSS) ranking plot of top 3 TFs
in N and T group. The abscissa represents the ranking, and the ordinate represents the RSS score. The regulator with higher RSS may be related to
the specificity of this cell group (upper). Heatmap showing the regulon activity in N and T group. Rows represent different regulons, and columns
represent different cell populations. The color changes from blue to red, indicating a low to high RSS specificity score. The higher the RSS score, the
stronger the specificity of regulon in this cell group (lower). The number of target genes shown in brackets. (I) Heatmap indicating the enrichment of
metabolism signaling pathway on all FAPs in N and T group.
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expression between the N and T groups identified unique functions

enriched in DEGs, indicating differences in FAPs between normal

breast and cancer associated adipose, and showed 307 GEGs of which

top 25 are shown in a heatmap (Figure 4F). Stimulation of the

profibrotic phenotype in fibroblasts and preadipocytes by the

macrophage-induced inflammatory response has been previously

reported and is consistent with our data (52).

The analysis of TFs showed that both N and T were co-enriched

for the GLIS3 regulon. The N group was additionally enriched in

TEAD1, ESR1, FOXP2 and MEIS2 regulons, and the T group in

HIF1A, BACH1, ATF6 and FOSL1 regulons (Figure 4H). Metabolic

alterations are shown in Figure 4I. The T group was enriched in

amino sugar and nucleotide metabolism and glycosaminoglycan

metabolism pathways.

In conclusion, 4 distinct FAP subpopulations were identified,

and breast cancer decreased the proportion of preadipocytes and

upregulated genes involved in the profibrotic phenotype and

inflammatory response.
3.5 Breast adipose tissue consisted of
distinct subpopulations of adipocytes

Adipocytes were re-clustered and separated into 5 distinct

subpopulations (Figure 5A). Cluster 1 highly expressed

cholesterol synthesis related genes (e.g., FDFT1, TTPA, KLHL31,

USP30, and FBXO32) ; c luster 2 expressed oxidat ive

phosphorylation (OXPHOS) -related genes (e.g., MT-ND1, MT-

ND2, MT-ND3, MT-CO1, and MT-CO2), indicating that this

subpopulation may remove excess metabolites from the

circulatory system (53); cluster 3 expressed genes involved in lipid

biosynthesis (e.g., ELOVL5, ACSL4, ACSL1, ACSL3, and FASN);

cluster 4 expressed genes associated with cholesterol efflux and lipid

transport (e.g., GULP1, NEGR1, ABCA9, ABCA6, and ABCA10),

suggesting that the primary source of lipids for this subcluster may

be uptake rather than de novo lipogenesis; cluster 5 was not further

analyzed due to low cell numbers (Figure 5B; Supplementary Table

S6). Proportions of the 5 clusters in each patient were shown in

Supplementary Figure S6A. Differences in cluster proportion in N

and T were analyzed for significance in three patients

(Supplementary Figure S6B). Breast cancer shifted the ratio of

adipocytes from a lipolytic phenotype towards a lipogenic and

inflammatory phenotype (Figures 5C, D). Elevated FAs

production induces adipocyte inflammation and maintains

glucose uptake via feedback, whereas fatty acid oxidation prevents

FA induced inflammation, oxidative stress, and insulin resistance

(54). Inhibition of fatty acid oxidation promotes cytokine release

and inflammation. Comparison of gene expression in adipocytes

between the N and T groups showed 116 upregulated and 30

downregulated genes in T, the top 25 of which are shown in a

heatmap (Figure 5E). The upregulated DEGs were associated with

endothelial cell function, angiogenesis, fibroblastic response, acute

inflammatory response and extracellular matrix, and the

downregulated DEGs were enriched in cytoskeletal organization,

cell motility and stress fiber assembly (Figure 5F), suggesting that

breast cancer led to derangement in cellular metabolism.
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The N group showed enrichment of the MECOM and the T

group of the FOSB regulons (Figure 5G left). MECOM and FLI1

activities were decreased, while breast cancer promoted FOSB and

RFX2 activities (Figure 5G right). The most significantly altered

metabolic pathway was fatty acid biosynthesis (Figure 5H).

In summary, breast cancer decreased lipid uptake and the

lipolytic phenotype and caused a switch to lipid biosynthesis via

deranged cellular metabolism adipocytes.
3.6 Mapping the developmental track of
adipocytes by pseudotime state transition

SnRNA-seq analysis allowed simultaneous profiling of FAPs

and mature adipocytes and a pseudotime trajectory was applied to

detect the differentiation trajectory of adipogenesis in vivo. FAP1

were found to be bona fide preadipocytes and expressed the

PDGFRB+ characteristic of adipocyte progenitors (55–57)

(Figure 4B). However, RNA velocity analysis (58) did not detect a

definite transition among the 4 FAP subclusters (Figure 6A). A

continuum of cell states with two distinct trajectories from state 1

through to states 2 and 3, common origin with divergent fates, were

shown by mapping the trajectory connecting FAPs and adipocytes.

State 1 represented adipogenesis and states 2 and 3 specialization of

mature adipocytes into distinct subclusters (Figure 6B). N and T

group trajectories overlapped (Figure 6C). Each patient’s

differentiation status was shown in Supplementary Figure S7.

Differential gene expression across the trajectory was analyzed in

the T group which was divided into 4 groups based on temporal

expression patterns (Figure 6D). ECM, focal adhesion, and MAPK

signaling pathway associated genes were expressed in early

differentiation, while genes specific to fatty acid metabolism,

angiogenesis, glucose homeostasis and insulin receptor signaling

were detected in late differentiation. Genes involved in cell adhesion,

migration, and cell cycle were abundantly expressed during

differentiation (Figure 6E). DEGs included 98 transcriptional

regulators, indicating the complexity of the transcriptional

reprogramming related to adipogenesis. TFs analysis indicated

progression from stemness-related TFs to adipogenic TFs.

Adipogenic transcriptional waves were detected, such as repression

of KLF2, KLF7, ATF3, RORA, and EGR1 and induction of KLF6,

ARID5B, E2F3, and PPARG, as has been previously reported (59–63)

(Figure 6F). Strikingly, breast cancer induced several anti-adipogenic

TFs at the beginning of differentiation which declined with time,

indicating that breast cancer repressed adipogenesis (Figure 6G).

Overall, the reconstructed adipogenesis trajectory illuminates the

influences of breast cancer on the adipogenesis differentiation.
3.7 Complex intercellular communication
networks in adipose tissues

In order to systematically assess the complex cellular response,

ligand-receptor communication networks were mapped to

illuminate the cellular behavior and interaction with neighbouring

cells. Intercellular interactions were predicted according to specific
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protein complexes and a network among all cell types in the N and

T groups generated (Figure 7A). Breast cancer upregulated both the

number and strength of interactions (Figure 7B).

Higher levels of several ligand-receptor communications, such

as THBS1-CD47, THBS1-CD36, SEMA3C-NRP2/PLXNA2,

PROS1-AXL, NAMPT-ITGA5/ITGB1, LAMC1-CD44, LAMA4-

CD44, LAMA3-CD44, FN1-CD44, FN1-ITGAV/ITGB1,

COL4A1-ITGA11/ITGB1, ANGPTL4-SDC2, and ADGRE5-CD55

were found in breast cancer (Supplementary Figure S8) and
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communications related to angiogenesis, inflammation and

immune regulation were promoted (Figure 7C).

4 Discussion

Breast cancer is the most common cancer among females and

shows rapidly increasing incidence. Despite progress in

pathogenesis and treatment which has decreased mortality rate,

breast cancer remains the second leading cause of cancer-related
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FIGURE 5

Adipocyte subpopulations in adipose tissue are changed by breast cancer. (A) UMAP plot of 5 clusters of adipocytes from the 6 samples profiled in
this study, with each cell color coded to indicate the associated subclusters and cell numbers. (B) Heatmap showing the expression of adipocyte
subpopulation marker genes in each cluster. The color changes from blue to red, indicating a low to high fold change. (C) UMAP plot of all
adipocyte subpopulations annotated in each group with each cell color coded to indicate the associated subclusters. (D) The relative ratio of
adipocytes in N and T group shown using bar plots, with each cell color coded to indicate the associated subclusters. (E) Heatmap showing the top
25 differential expression analysis of genes (up- or down-regulated). The color changes from blue to red, indicating a low to high fold change.
(F) Barplot showing the significance levels of the top 10 most significantly enriched pathways in all DEGs. The left side of the coordinate axis
represents the enriched functional pathway of down-regulated genes; The right side of the coordinate axis represents the enriched functional
pathway of up-regulated genes. (G) The regulon specificity score (RSS) ranking plot of top 3 TFs in N and T group. The abscissa represents the
ranking, and the ordinate represents the RSS score. The regulator with higher RSS may be related to the specificity of this cell group (left). Heatmap
showing the regulon activity in N and T group. Rows represent different regulons, and columns represent different cell populations. The color
changes from blue to red, indicating a low to high RSS specificity score. The higher the RSS score, the stronger the specificity of regulon in this cell
group (right). The number of target genes shown in brackets. (H) Heatmap indicating the enrichment of metabolism signaling pathway on all
adipocytes in N and T group.
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deaths in women (64). The breast comprises fibroglandular and

adipose tissues, the latter covering the majority of the breast and

modulating the interaction of all components of the breast

microenvironment. Breast cancer adipose stores energy and

secretes factors necessary for tumor cell survival. Therefore, breast

adipose tissue is considered a master modulator of breast cell

physiology (65).
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SnRNA-seq was used in the current work to characterize

normal and cancer-adjacent adipose transcriptomes from

postmenopausal breast cancer patients at single-nucleus

resolution to define cell heterogeneity and cell-type composition.

A comprehensive cellular atlas of breast adipose tissues was

identified, in vivo developmental trajectories defined and

subpopulation plasticity ascertained in response to breast cancer.
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FIGURE 6

Reconstruction of adipogenesis in vivo. (A) RNA velocity analysis of FAPs. The velocities were layered on top of the FAP subpopulations in UMAP
space (Figure 4A). The results of RNA velocity are mapped to the UMAP dimensionality reduction cluster diagram. The points in the diagram
represent cells, the colors represent different cell types/cell clusters, and the arrow direction represents the cell differentiation direction predicted by
the algorithm. (B, C) Monocle analyses showing the development of FAP and adipocyte along the pseudotime trajectory. The left figure in B shows
the pseudo-time trajectory of cell cluster differentiation, and each color represents a cell cluster, the right figure in B shows the pseudo-time
trajectory of cell differentiation state, and each color represents a cell state. (C) shows the pseudo-time trajectory of cell differentiation in different
group, and each color represents a group. (D) Heatmap showing the differentially expressed genes in each module (along pseudo-time across the
trajectory) in T group, and we listed the top 5 DEGs in each module in the figure. Each row represents a gene, the horizontal axis from left to right
represents the time from morning to night, and the color from blue to red represents the expression of genes from low to high. Clustering of genes
with similar expression patterns in the time development track. The colors represent different module. (E) Barplot showing the significance levels of
the top 5 most significantly enriched pathways in each gene group (all DEGs in D). The numbers in the gray grid above each histogram represented
the corresponding module in panel (D). (F) Heatmap showing expressions of transcriptional regulators differentially expressed along pseudo-time
across the trajectory. Each row represents a gene, the horizontal axis from left to right represents the time from morning to night, and the color
from blue to red represents the expression of genes from low to high. Clustering of genes with similar expression patterns in the time development
track. (G) Pseudotime ordered single-cell expression trajectories of TFs in N and T group. The horizontal axis from left to right represents the time
from early differentiation to late differentiation. The vertical axis represents the amount of gene expression. Lines with different colors represent
different groups.
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Interaction networks were also explored. ScRNA-seq data revealed

altered cell types and localized expression of pathogenic genes in

distinct cell subclusters. Normal and cancer-adjacent adipose

tissues were generally similar but some differences in cell

subtypes, reflected by gene expression and cell composition,

were found.

T cells, especially the CD8+ subset, are involved in adipose tissue

inflammation. These cells are activated by obese adipose tissues and

recruited to activate adipose-resident macrophages (66) which

infiltrate obesity-related adipose tissue resulting in the

inflammation and insulin resistance. Vijay et al. identified a

dysfunctional adipose-resident T cell subcluster which expressed

metallothionein genes with relevance to adipose inflammation and

potential insulin resistance (29). Han et al. found that activated CD8
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+ T cells contributed specifically to increased adipose tissue IFNG

expression in cachexia patients and had a pro-catabolic effect on

adipocytes in vitro. Such observations may indicate mechanisms

underlying the chronic inflammation and adipose wasting in

cancer-associated cachexia (CAC) (67). Macrophages constituted

the majority of immune cells in the current study and the general

components of T cells did not vary greatly between N and T

samples. T cells could not be divided into different subclusters

and detailed analysis was not performed.

Macrophages have microenvironment-specific phenotypes to

maintain tissue development and internal environment stability.

Disorders of ATMs precipitate many pathologies including

inflammatory diseases, fibrosis and cancer and ATMs are potential

therapeutic targets. TAMs support tumor progression by blocking
A B
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FIGURE 7

The dense network and multiple cellular communications. (A) Circos plot showing the interactions between ligands and receptors across cell types in
two groups (left), N group (middle), and T group (right). Different colors in the circle plot represent different cell groups. The thicker the line is, the more
interactions between cell types are detected. The color of the line is the same as that of the ligand cell, that is, the cell that sends the signal. (B) Barplot
showing the number and strength of interactions across cell types in two groups. The left figure is the statistical histogram of the number of intercellular
interactions, and the right figure is the statistical histogram of the intensity of intercellular interactions. The abscissa represents different groups. (C) The
association of different signaling pathways among different cell types of each group. Different colors in the circle plot represent different cell groups. The
figure can view the number of interactions between cell types under a certain signal pathway. The thicker the line is, the more interactions between cell
types are detected. The color of the line is the same as that of the ligand cell, that is, the cell that sends the signal.
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anti-tumor immunity and secreting pro-angiogenesis and EMT

reactivation factors, thereby enhancing metastasis (68). Macrophage

plasticity and stress-specific responses result in heterogeneous

macrophage subpopulations with complex phenotypes (69).

Difficulties in clarifying specific functions of heterogeneous

macrophage subpopulations may impede development of disease

therapies. The current macrophage analysis identified the increase in

the MARCO+PLAUR+ subcluster. MARCO expression is considered

to define a M2-like macrophage subtype with an immunosuppressive

gene signature which is expressed by tumor-promoting macrophages

producing a worse prognosis (12, 13, 23). PLAURmay be involved in

tumor immunity and leads to tumor invasion and metastasis by

regulating extracellular matrix degradation and tissue remodeling

(15, 16, 25–27). Macrophage subpopulations with high expression of

the lipid transporter, CD36, were also found. Lipid metabolism is

central to TAM differentiation and function and a tumor inhibitory

effect of CD36 knockdown has been shown. CD36 has also been

associated with TME-induced tumor growth and metastasis and

inhibition of the immune response (70, 71). ScRNA-seq data of the

current study indicated increased MARCO+ and CD36+ macrophage

subpopulations with immunosuppressive functions in breast cancer.

Endothelial cells are involved in tumor cell infiltration into

adjacent tissues, migration through endothelial cells (intravasation),

survival in the bloodstream, extravasation and colonization of the

target organ. Non-activated, quiescent endothelial cells exhibit an

anti-inflammatory and anti-coagulant phenotype. Endothelial cells

stimulated to proliferate and migrate by tumor cells, participate in

angiogenesis. Tumor-derived growth or chemotactic factors recruit

and activate monocytes to differentiate into TAMs which secrete

cytokines and growth factors to promote angiogenesis (72).

Changes in endothelial subpopulations associated with cell

junctions, angiogenesis and inflammation indicated that breast

cancer caused endothelial dysfunction and angiogenesis,

contributing to tumor invasion and metastasis.

Adipocytes account for less than 20% of the total cells in adipose

tissue but occupy the largest mass and volume. The remaining 80%

of adipose tissue cells are stromal vascular cells (SVCs), including

immune cells, endothelial cells, adipocyte stem cells and fibroblasts

(73). Coordination of adipocytes and SVCs is essential for

homeostasis and systemic metabolism of adipose tissue. In some

endocrine diseases, benign and malignant tumors cause hormonal

disorders and persistent inflammation, impacting the ECM,

promoting endoplasmic reticulum stress and adipose tissue

inflammation to cause adipose tissue disorders (74). Breast cancer

led to a major shift from OXPHOS to lipogenesis in adipocytes and

induced the inflammatory phenotype in adipocytes of the present

study. Distinct adipocyte subclusters are likely to represent different

phenotypic states due to adipocyte plasticity, consistent with the

current trajectory analysis. Adipogenesis was observed to favor

OXPHOS-type adipocytes. We suggest that the reduction of

OXPHOS associated adipocyte subpopulations in breast cancer

adjacent adipose tissues is a consequence of adipocyte plasticity

rather than elimination by necrosis or apoptosis.

FAPs were clustered into 4 distinct subpopulations, where FAP3

and FAP4 represented fibroblasts that did conform to the
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adipogenic lineage, according to velocity analysis. However, RNA

velocity analysis indicated that transcriptional programs may favor

adipogenesis, driving some preadipocytes toward fibroblasts

(Figure 6A). Hence, FAP3 or FAP4, which increased in cancer-

adjacent adipose tissues, may influence fibrotic outcomes in adipose

tissue in breast and pancreatic cancer, consistent with previous

reports (75).

Increased ligand-receptor communications associated with

inflammation, fibrosis, and angiogenesis in cancer-adjacent

adipose tissues were detected in the current work, indicating an

imbalanced immune environment in breast cancer.

The enrichment of TFs and metabolism-based KEGG analysis

showed that breast cancer induced an inflammatory phenotype by

upregulating the enrichment of pro-inflammatory TFs and promoting

metabolic pathways related to inflammation, such as glycosphingolipid,

lipid biosynthesis and glycosaminoglycan metabolism.

We acknowledge that a limitation of our study is that there are

only three samples which could have impacted some results and

increased heterogeneity, and further studies are needed to

distinguish breast cancer types and perform experimental

validation of heterogeneity and diversity and its impact on

occurrence and development of breast cancer. In our data, some

clusters are patient dependent and also some adipocyte

differentiation state, such as clusters 2 and 3 in macrophages,

and in Figure 6B, state 3 is patient 53 specific, so we removed

the data of patient 53 and obtained the similar results that we

observed the marked increase in the proportions of both

MARCO+PLAUR+, LAMs, AECs, LECs and FIPs (data were

unshown), indicating the enhanced pro-tumor functions and

inflammatory phenotype in breast cancer adjacent adipose tissues.

While, it is necessary to collect more patient samples including

different breast cancer types to validate our conclusions. In a mouse

study, scRNA-seq was used to study adipocyte de-differentiation in

the tumor-microenvironment (8). However, the tumor impact in

adipocytes remains to be investigated in breast cancer patients. The

current study gives some insights into breast cancer associated

adipose tissues.
5 Conclusions

In conclusion, a comprehensive atlas of breast adipose tissue

plasticity at single-nucleus resolution in response to breast cancer

was generated. Considerable alternations in gene expression and

cellular composition were found. The adipogenic trajectory in vivo

was constructed and crosstalk between distinct cell types inferred.

The current scRNA-seq data provides a solid foundation for further

hypothesis-driven investigation of breast cancer pathogenesis,

leading to more effective treatment strategies.
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