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Myeloid-derived suppressor cells (MDSCs) are one of the major negative

regulators in tumor microenvironment (TME) due to their potent

immunosuppressive capacity. MDSCs are the products of myeloid progenitor

abnormal differentiation in bone marrow, which inhibits the immune response

mediated by T cells, natural killer cells and dendritic cells; promotes the

generation of regulatory T cells and tumor-associated macrophages; drives

the immune escape; and finally leads to tumor progression and metastasis. In

this review, we highlight key features of MDSCs biology in TME that are being

explored as potential targets for tumor immunotherapy. We discuss the therapies

and approaches that aim to reprogram TME from immunosuppressive to

immunostimulatory circumstance, which prevents MDSC immunosuppression

activity; promotes MDSC differentiation; and impacts MDSC recruitment and

abundance in tumor site. We also summarize current advances in the

identification of rational combinatorial strategies to improve clinical efficacy

and outcomes of cancer patients, via deeply understanding and pursuing the

mechanisms and characterization of MDSCs generation and suppression in TME.

KEYWORDS

myeloid-derived suppressor cells, tumor immunotherapy, tumor immune
microenvironment, combinatorial strategies, cell therapy
1 Introduction

Accumulating evidence shows that the formation of the tumor immune

microenvironment (TIME) is closely related to tumor malignant development and

metastasis. The occurrence and progression of tumors is a complex pathophysiological

process. Most researchers believe that the TIME includes: 1) secretion of

immunosuppressive factors, including interleukins, chemokines, growth factors, and

other cytokines, inducing inflammatory responses and forming a local milieu conductive
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to tumor propagation (1, 2); and 2) many immune cell components,

such as myeloid-derived suppressor cells (MDSCs), tumor-

associated macrophages (TAMs), regulatory T (Treg) cells,

tumor-associated dendritic cells, mast cells, and type 2 natural

killer T (NKT) cells, are involved in tumor immunosuppression

(3–6). Due to their contribution to tumorigenesis and progression,

MDSCs are recognized as the critical factor in TIME and their

function exacerbates the disease. MDSCs may be the basis of tumor

immunosuppression. First, although in tumor patients, one or

several of the above-mentioned immunosuppressive cells are

detected, MDSCs can be detected in most patients. Second,

MDSCs suppress the innate immune response and delay the

adaptive immune response. Third. MDSCs can induce expansion

of immunosuppressive cells (TAMs and Treg cells).

MDSCs, have high heterogeneity, were first referred around 30

years ago and have unique characteristics and an important place in

many diseases, especially cancer (7). MDSCs are a group of innate

immune cells derived from myeloid lineage at different

developmental stages with strong heterogeneity, which can

differentiate into dendritic cells (DCs), macrophages and

granulocytes under physiological conditions. However, under

pathological conditions, like inflammation, trauma, tumors and

autoimmune diseases, release of immunosuppressive factors block

the differentiation of myeloid progenitors, promote their expansion,

and further recruit them to the blood, spleen, liver, and tumor tissue

(7–9). MDSCs play a pivotal and central role in governing and

maintaining the TIME in solid tumors (10). MDSCs are composed

of the myeloid cells with similar biological activities, but distinct

phenotypes. Unlike monocytes, macrophages and DCs, which

express specific molecular markers on the cell surface, MDSCs are

composed of a mixture of granulocytes and monocytes, without

clear and specific markers on their surface (11). In mice, MDSCs are

defined as cells that co-express myeloid antigens Gr-1 and CD11b

(CD11b+Gr-1+). In addition, according to the expression of Ly6C

and Ly6G, CD11b+Gr-1+ cells can be further divided into

granulocytic MDSCs (CD11b+Ly6G+Ly6Clow, G-MDSC) and

monocytic MDSCs (CD11b+Ly6G-Ly6Chigh, M-MDSC) subtypes

(9, 12). MDSCs induced by human solid tumors were divided into

two subgroups: CD33+HLA-DRlowHIF1a+/STAT3+ and

CD11b+HLA-DRlowC/EBPb+, according to their phenotypes and

molecular mechanisms impeding other immune cells (13). Human

mon o c y t i c MDSC s (M -MDSC s ) w e r e d e fin e d a s

CD11b+CD14+HLADR-/lowCD15-, while granulocytic MDSCs (G-

MDSCs) were defined as CD11b+CD14-CD15+ or CD11b+CD14-

CD66b+ (14, 15).

In recent years, it has been discovered that MDSCs directly

participate in the promotion of tumor progression and metastasis

and are closely related to the clinical treatment of malignant tumors.

In this review, we describe the functional and regulatory mechanism

of MDSCs within TME. Notable clinical success in tumor

immunotherapies, such as immune checkpoint blockade (ICB),

and adoptive cell therapy (ACT), have reinvigorated our interest

in the field of immunotherapy and established it as a mode of tumor

therapy along with traditional strategies, like surgery, chemotherapy

and radiotherapy (16, 17). Therefore, we will discuss the emerging

data associated with the therapeutic strategies that targeting
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MDSCs. Furtherly, we also highlight what the aspects of MDSCs

requires an in-depth understanding to discriminate and evaluate

reasonable and sensitive combinatorial strategies to increase the

efficacy of tumor immunotherapy for cancer patients.
2 Mechanisms of MDSC-mediated
immunosuppression within TME

2.1 Signaling pathways related to MDSCs
generation and function

In the setting of cancer, MDSCs can be generated by common

myeloid progenitor (CMP) in bone marrow, recruited to tumor site

and expand massively by tumor-derived factors or inflammatory

signals, including inflammatory cytokines, chemokines, growth

factors, and other pathological mediators accelerate the expansion

and recruitment of immature myeloid cells to tumor site to suppress

the host antitumor response (Figure 1). Classical ideas propose that

the direct immunosuppressive function of MDSCs depends on

secreting inhibitory factors, including production of nitric oxide

(NO), elimination of key nutritional factors by depleting L-arginine

(via arginase1), sequestering L-cysteine, or decreasing local

tryptophan levels due to the activity of indole amine 2,3

dioxygenase (IDO) (18–21) (Figure 1). The mechanisms of

immunosuppression by G-MDSCs and M-MDSCs are distinct to

the tumor site. Tumor-mediated G-MDSC mainly inhibited T cells

via reactive oxygen species (ROS), whereas M-MDSC inhibited T

cell mainly through arginase and inducible NO synthase (iNOS)

(22–25). The deprivation of L-Arginine, catabolized by MDSC-

secreted Arg-1, restrained T cells proliferation via disrupting the

expression of CD3x chain (19, 26). Nitric oxide (NO) is synthesized

by NOSs, which are ubiquitously expressed in MDSCs, and induce

T cell apoptosis by blocking JAK/STAT/nuclear factor kappa-B

(NF-kB) signaling pathway (27). Peroxide nitrate (PNT) is

produced by MDSCs and inhibits CD8+ T cells migration

through reducing the integration of MHC I molecules with

antigenic peptides on tumor cells and nitrate chemokines (28,

29). In response to a variety of growth factors and cytokines, the

progenitor of MDSCs drive a complex transcription network,

allowing for their expansion and preventing the further

differentiation. The abovementioned factors trigger multiple

signaling pathways in MDSCs (11, 30), and most of them

converge on the activation of signal transducer and activator of

transcription Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signaling, which upregulates

immunosuppressive mediators such as iNOS, ROS, and arginase

(31). STAT3 activation promoted the accumulation of MDSCs in

melanoma (32), and STAT3 inhibition weakened the suppressive

function of MDSCs (33). The MDSCs amplification and function

are related to the downstream signals of STAT3. The calcium-

binding pro-inflammatory protein factors S100A9 and S100A8,

upregulated by STAT3 activation, could block the differentiation

and maturation of dendritic cells (DC) and promote MDSCs

accumulation (34). The exact mechanism of this process remains
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to be explored, but some scholars have pointed out that this may be

related to the S100A9 and S100A8 heterodimers participating in the

formation of the nicotinamide adenine dinucleotide phosphoric

acid (NADPH) oxidase complex, which increasing the production

of ROS in myeloid cells. STAT1 is the main transcription factor

under IFN-g or IL-1b stimulation, which is believed to have an

important relationship with the activity of iNOS and arginase. Some

studies point out that MDSCs lacking STAT1 are unable to suppress

T cell function due to decreased secretion of iNOS and lower

expression of arginase (35). STAT6 activated by IL-4 and IL-13

enhances the activity of arginase and inducing transforming growth

factor b (TGFb) production by MDSCs through IL-4Ra (36).

Besides, Nuclear factor (NF-kB), prostaglandin E2 (PGE2)/

cyclooxygenase 2 (COX2), and Ras were also of the great

significance in the molecular mechanism of suppressing T cell

activity mediated by specific subgroups of MDSCs (37, 38).

MDSCs are affected by both novel anti-cancer immune therapies,

as well as the conventional treatments such as radiotherapy.

Following radiotherapy, cytoplasmic double stranded DNA

stimulates the cyclic GMP-AMP synthase (cGAS)/stimulator of

interferon genes (STING) pathway, resulting in type I interferon

production (39). cGAS/STING signaling becomes a key factor in

inhibiting MDSC function after radiotherapy via multiple

mechanisms. The treatment of cGAMP, the STING agonist,

prevented MDSC immunosuppressive function via reducing NO

in B16 melanoma tumor-bearing mice (40). Furthermore, STING

agonist treatment combined with the STAT3 inhibitor and

markedly regressed tumor growth in syngeneic mice by increasing

CD8+ T cells and Tregs and MDSCs in TME (41). Collectively,

cGAS/STING and JAK/STAT pathway are both recognized as the

central signaling pathway in controlling MDSC generation,

accumulations and function in tumor progression. The rationale

combinatorial treatment of STAT inhibitors and STING agonists
Frontiers in Immunology 03
will be potential therapeutic strategy and make advances in

tumor immunotherapy.
2.2 Interplay between MDSCs and other
immunosuppressive cells

Another major mechanism mediating immunosuppression is the

induction and recruitment of other regulatory cells, like Treg cells

(42). The characteristic of the TME enable crosstalk between MDSCs

and Tregs that allows them to modulate each other mutually. MDSCs

in TIME selectively facilitated expansion and induction of Treg cells

via a TGFb-dependent manner (43), or dependent on MDSC-

secreted IL-10 and IFN-g (23). Furthermore, MDSCs can provide

additional signals for Treg cell induction and development via

upregulating ligands expressed on the surface of MDSCs for several

costimulatory molecules, such as CD86, programmed death ligand

(PD-L1), and leukocyte immunoglobulinlike receptor subfamily B

(LILRB4). MDSCs promoted the induction and expansion of tumor-

specific Treg cells via taking in tumor antigens and presenting them

to T cells, also converted T cells in other differentiated states into Treg

cells to assist tumor evasion (44, 45). The correlation of arginase-1

expression with increasing expression of immune checkpoint

receptor and ligands results in more potent suppressive activity of

MDSCs (46). Twofold repression caused by MDSCs and Treg cells

will create strong immune tolerance and promote tumor progression

and propagation.

Thus, there is a consensus that the TME can induce MDSCs

with the more potent suppressive activity via increasing the

expression of a series of immunosuppressive molecules. Exploring

more suitable approaches to blockade the immunosuppressive

molecules expressed by MDSCs will be hopeful to disrupt the

immunosuppression mediated by MDSCs in TME.
FIGURE 1

Schematic of MDSC generation, expansion, recruitment, and role in the establishment of tumor immune inhibitory microenvironment. MDSCs are
generally generated by common myeloid progenitor (CMP) in bone marrow, governed by the abnormal or pathological signals, especially
proinflammatory factors. Then MDSCs are recruited to tumor site by tumor-derived factors or inflammatory signals for establishing the
microenvironments that promoting tumor cell escape. Within the tumor microenvironment (TME), both monocytic-MDSC (M-MDSC) and
granulocytic-MDSC (G-MDSC) will expand and exert immunosuppressive functions to induce T cell suppression and anergy via multiple
mechanisms, like arginase1, iNOS, IDO, HO-1, and NOX2.
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3 Current approaches and strategies
targeting MDSCs for tumor
immunotherapy

The TME plays an important role in supporting and promoting

tumor growth and metastasis, where MDSCs have an important

role in immuno-suppression. More studies are trying to explore and

achieve tumor therapy by changing the TME (soil) to prevent the

activity of tumor cells (seeds). Targeting the TIME has become a

new approach for tumor therapy in recent years. In view of the

important role of MDSCs in the TIME, therapeutic strategies

targeting MDSCs are being explored (Table 1): 1) promoting the

differentiation and maturation of MDSCs; 2) inhibition of the
Frontiers in Immunology 04
expansion and accumulation of MDSCs; 3) elimination of MDSCs

in TME; 4) abolition of MDSCs immunosuppression (Figure 2).
3.1 Therapies promoting differentiation of
MDSCs into mature cells

MDSCs are a mixture of immature myeloid cell populations

with high heterogeneity and immunosuppressive activity. All-trans

retinoic acid (ARTA) could promote the differentiation of MDSCs

into granulocytes, macrophages and DC, improve the host anti-

tumor immune response via neutralizing the production of ROS

(79–81). For example, the administration of formic acid receptor
TABLE 1 The therapeutic strategies of targeting MDSCs in preclinical cancer trails.

Strategy Drug Combinatorial
partner

Tumor
model

Mechanism References

Promoting
differentiation of

MDSCs

ATRA DC101 (antibody
targeting murine

VEGFR2)

The syngeneic
models of

breast cancer,
4T1 and TS/A

Blockade of the antiangiogenic therapy-induced
expansion of MDSC secreting high levels of vessel-

destabilizing S100A8

(47)

Ibrutinib (BTK
inhibitor)

None The orthotopic
mouse breast
cancer model

To promote MDSCs develop into mature DCs (48)

Dihydroorotate
dehydrogenase

inhibitors (DHODH)

PD-1 inhibitor The metastatic
TNBC models,

4T1 and
E0771.ML-1

To facilitate MDSCs maturation and differentiation (49)

JSI-124 (STAT3
inhibitor)

Sialidase In mice bearing
two

transplantable
tumors (EL4,
CT26) and two

transgenic
tumors (Ret

melanoma and
TRAMP
prostate

carcinoma)

To control the differentiation of MDSC into
macrophage via decreasing STAT3 activity

(50)

VSSP Anti-TLR4/anti-
TLR2 mAb

Mice bearing
MCA203 or the
tumor-bearing
mouse model
using the G-

CSF-producing
4T1 cell line

To induce MDSC differentiation to DC or
macrophage

(51, 52)

Inhibiting MDSCs
generation,

recruitment and
trafficking

Calcitriol (1a,25-
dihydroxyvitamin D3)

None The ectopic
mouse tumor
implantation
model, CE81T

and TE2

Inhibiting IL-6 signaling (53)

Entinostat 5-azacytidine The NSG mice
were

transplanted
subcutaneously
of LLC tissue
(Patient) and

HNM007 tissue
(Patient)

Downregulation of CCR2 and CXCR2, and
promoting MDSC differentiation into a macrophage-

like phenotype

(54)

(Continued)
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TABLE 1 Continued

Strategy Drug Combinatorial
partner

Tumor
model

Mechanism References

SX-682 (CXCR1/2
inhibitor)

CAR-NK The mice
bearing murine
oral cancer 2 or

cells from
HNSCC

patients in vitro
or the MOC1
oral carcinoma
and LLC mouse
tumor models

To abrogate MDSC accumulation and trafficking, and
enhance adoptive transferred NK tumor infiltration

(55, 56)

Olaparib EGFRvIII-targeted
CAR-T

4T1EGFRvIII
tumor-bearing

mice

To inhibit MDSC migration via the SDF1a/CXCR4
axis

(57)

JBSNF-000088 (NNMT
inhibitor)

None The
xenografted
tumor models
overexpressing
NNMT GBC

cells

To inhibit MDSCs generation by decreasing IL-6 and
GM-CSF expression on a epigenetic modified manner

(58)

Icariside II a-PD-1 mAb LLC tumor-
bearing mice

To suppress the chemotactic migration of MDSCs by
downregulating the expression of CXCL2 and CXCL3

(59)

SB225002 (CXCR2
inhibitor)

JNJ-40346527
(CSF1R inhibitor)

LLC, CT26,
EL4, or 4T1

tumor-bearing
mice

To block G-MDSCs infiltration and decrease TAMs (60)

PLX647 (CSF1R
inhibitor)

Indoximod/D-1MT
(IDO inhibitor)

B16-IDO
tumor-bearing
mouse model

To block tumor infiltrating MDSCs (61)

Maraviroc (CCR5
inhibitor)

anti-PD1 mAb 4T1 and PyMT
breast tumor
model or from
patients with
gastric cancer

in vitro

To result in strong reductions of MDSCs via targeting
autocrine CCL5-CCR5 axis

(62, 63)

Trametinib (MEK1/2
inhibitor)

aPD-1-
supplementation

4NQO-L- and
B16-bearing

mice

To reduce the abundance of CSF-1R+CD11c+ MDSC
populations

(64)

Preventing
suppressive activity of

MDSCs

Vitamin D None CLL cells from
patients in vitro

Downregulating MDSC function as
negative regulator of miR155

(65)

Entinostat anti-PD1 mAb The murine
models of lung
and renal cell
carcinoma

Inhibition of immunosuppressive function of G- and
M-MDSC populations by reducing arginase-1, iNOS

and COX-2 levels

(66, 67)

UNC4241 (pan-TAM
inhibitor)

a-PD-1 mAb Melanoma
tumor-bearing

mice

To diminish MDSC suppression and differentiation in
part through regulation of STAT3 serine
phosphorylation and nuclear localization

(68)

Difluoromethylornithine None B16 tumor-
bearing mice

Inhibition of ODC by DFMO is to impair MDSCs
suppressive activity via reducing arginase expression
and inhibiting the CD39/CD73-mediated pathway

(69)

Ibrutinib (BTK
inhibitor)

Anti-PDL1
checkpoint
inhibitor

Neuroblastoma
tumors-

bearing mice

To alter NO production, and decrease expression of
IDO, Argnaise, TGFb

(70)

Elimination of
MDSCs

Gemtuzumab
ozogamicin

CAR-T NSCLC; PA;
BIDC; CA;

PDA cell lines
in vitro

To deplete MDSCs for reactivating CAR-T cell
responses against multiple cancers

(71)

(Continued)
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(RAR) antagonist (which does not affect retinol X receptor (RXR))

in mice can cause the accumulation of granulocytes in various

hematopoietic organs, including bone marrow, suggesting that the

RAR pathway blocks the differentiation and maturation of

granulocyte precursors. 1,25-dihydroxy vitamin D3 (1,25(OH)
Frontiers in Immunology 06
2D3), which is the active metabolite of vitamin D3, has been

identified as a potent natural modulator of innate and adaptive

immunity. Vitamin D3 combined with various cytokines induced

the differentiation of CD34+ progenitors isolated from patients with

head and neck squamous cell carcinoma (HNSCC), resulting in
TABLE 1 Continued

Strategy Drug Combinatorial
partner

Tumor
model

Mechanism References

5-Fluorouracil or
capecitabine (5-FU pro-

drug)

Gemcitabine EL4-bearing
mice or

pancreatic
cancer patients

To eliminate MDSCs via selectively induce MDSCs
apoptosis

(72, 73)

MD5-1 (anti-DR5
antibody)

Anti-PD-L1
antibody

To deplete MDSCs and induce enrichment of CD8+

T cells
(74)

Cabozantinib Anti-HER2 mAb 4T1-HER2
murine breast
cancer model

To delete MDSCs and improve the efficacy of anti-
HER2

(75)

Decreasing immune
checkpoint receptors
expression on MDSCs

Anti-CD200 mAb Anti-PD-1
antibody

MT-5 tumor-
bearing mice
and genetically
engineered

PDAC mouse
model

To limit CD200R+ MDSCs expansion (76)

Anti-gp49B (LILRB4)
antibody

Anti-PD-1
antibody

LLC-tumor
bearing mice

To decrease M-MDSCs infiltration (77)

HMBD-002 (anti-
VISTA antibody)

CT26, HCT15,
A549, and 4T1
tumor-bearing

To decrease the infiltration of MDSCs and increase T
cell activity

(78)
ATRA, all-trans retinoic acid; BTK, bruton’s tyrosine kinase; TNBC, triple-negative breast cancer; VSSP, very small size proteoliposomes; RCA, renal cell carcinoma; DCs, dendritic cells; LLC,
lewis lung carcinoma; ESCC, esophageal squamous cell carcinoma; MOC2, murine oral cancer 2; CLL, chronic lymphocytic leukemia; PDAC, pancreatic ductal adenocarcinoma; TMA RTK,
transmembrane receptor tyrosine kinases; ODC, ornithine decarboxylase; DFMO, difluoromethylornithine; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma; PA, prostate
adenocarcinoma; BIDC, breast invasive ductal carcinoma; CA, colon adenocarcinoma; PDA, pancreas duct adenocarcinoma; NNMT, nicotinamide N-methyltransferase; GBC, gallbladder
carcinoma; CXCL2, CXC chemokine ligands 2; CXCL3, CXC chemokine ligands 3; ICB, immune checkpoint blockade; HNC, head and neck cancer; IDO, indoleamine 2,3-dioxygenase; APC,
advanced pancreatic cancer; 5-FU, 5-Fluorouracil; LILRB4, leukocyte immunoglobulin-like receptor subfamily B member 4; VISTA, V-domain Ig suppressor of T cell activation.
FIGURE 2

Strategies for targeting MDSCs in tumor immunotherapy. Four main approaches are included: 1) Accelerating and promoting differentiation and
maturation via multiple agents, like all-trans retinoic acid (ATRA), STAT3 inhibitor, dihydroorotate dehydrogenase inhibitors, and Bruton’s tyrosine
kinase (RTK) inhibitor; 2) blocking MDSCs recruitment and infiltration into tumor microenvironment (TME) through chemokine receptor inhibitors
targeting chemokine receptors responsible for migration of MDSCs to TME; 3) depletion of MDSCs by low-dose chemotherapy and tyrosine kinase
inhibitor (TKi); 4) attenuating the suppressive activity of MDSCs via targeting and inhibiting the effector molecules, like iNOS, COX2.
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increased numbers of cells phenotypically similar to mature DCs

(82). Recent studies have provided important insights that primitive

myeloid leukemic cell lines can be driven to differentiate into

monocyte-like cells by 1,25(OH)2D3, which may be useful in

differentiation therapy of myeloid leukemia and myelodysplastic

syndromes (MDS) (83, 84). However, the role of vitamin D3 in

myeloid cell differentiation remains controversial. A recent study

showed that DCs treated with 1a,25(OH)2D3 (calcitriol) did not

differentiate or mature, locking the cells in a tolerogenic/immature

state (85). Vitamin D3-induced tolerogenic DCs are thought to

develop their regulatory properties through a semimature profile,

inhibition or reduction of T-cell responses, and switching the

immune response to a Th2 profile (86–89). Vitamin-D3-induced

tolerogenic DCs with the semimature phenotype, anti-

inflammatory profile, and low capacity to induce T-cell

proliferation, can be used clinical for inducing immunotolerance

(90). Calcitriol attenuated the recruitment of MDSCs and increased

infiltration of cytotoxic T cells following radiotherapy in

hepatocellular carcinoma and prostate cancer (82, 91). Thus, the

role of vitamin D3 in tumor therapy is complex and the application

of vitamin D3 for clinical use by targeting MDSCs still needs more

study. By promoting the development of MDSCs into normal

monocytes and granulocytes, not only reduces MDSCs, but also

increases the mature myeloid cells in TIME, thereby inhibiting

tumor growth.
3.2 Strategies that inhibiting the expansion
and recruitment of MDSCs

As mentioned above, the expansion of MDSCs is regulated by

tumor-derived suppressive factors secreted by tumor cells and

released by the TME. It mainly includes IL-6, GM-CSF, G-CSF,

VEGF, COX-2 and other cytokines, which can trigger a variety of

different signal transduction and signal activation pathways in

MDSC. The STAT3 signaling pathway is an important regulator

for MDSC amplification mediated by these factors and could be the

ideal target. STAT protein has an N-terminal DNA-binding domain

and C-terminal protein-binding domain. Tumor-derived

suppressive factors binding to corresponding receptors leads to

continuous activation of STAT3, which then upregulates expression

of STAT3-related genes and produces proteins (survivin and cyclin)

and matrix metalloproteinase-9 (MMP-9) that promote MDSCs

expansion. Targeting the STAT3 signaling pathway has become a

research hotspot in the inhibition of MDSC expansion (92). MMP-9

is an important target for tumor therapy via inhibiting

amplification of MDSCs and facilitating formation of the TME.

MMP-9 inhibitors promote the normalization of hematopoietic

function, thus reducing the production of MDSCs in tumor-bearing

BALB-neuT mice expressing an activated rat c-erbB-2/neu

transgene model (93). VEGF is currently recognized as the most

powerful angiogenic factor, which can specifically act on vascular

endothelial cells and promote vascular endothelial hyperplasia.

Studies have confirmed that VEGF in tumor tissues can promote

the generation of neovascularization, inhibit the development of

DCs and induce the generation of MDSCs (94, 95). Therefore,
Frontiers in Immunology 07
blockade of VEGF could be another approach for tumor therapy, by

removing immunosuppression. In a tumor-bearing mouse model,

tumor growth was significantly inhibited after administration of

anti-VEGF antibody, and there was a reduced number of MDSCs in

tumor tissue and peripheral blood. However, the mechanism by

which anti-VEGF monoclonal antibody (mAb) inhibits the

expansion of MDSCs remains to be elucidated (96, 97).

Bevacizumab was the first FDA-approved monoclonal antibody

against VEGF, which brings hope to patients with advanced tumors

by anti-tumor microangiogenesis and inhibiting the progression of

metastatic lesions. Although, the application of anti-VEGFmAb has

been verified and evaluated in a multitude of clinical trials for tumor

therapy, because of the multiple effects mediated by blocking VEGF,

the efficacy could not be only attributed to MDSC reduction.

Sunitinib, as the anti-angiogenic drug, is a receptor tyrosine-

kinase inhibitor and immunomodulator, that potently prevents

MDSC accumulation and restores normal T-cell function in

tumor-bearing mice, independent of its capacity to inhibit tumor

progression, as well as reverses MDSC accumulation and T-cell

inhibition even in the blood of non-responder renal cell carcinoma

(RCC) patients (98).

Chemokines as key mediators of MDSCs recruitment have been

extensively studied in many tumor models and cancer patients

(Table 1). The recruitment of MDSCs from bone marrow and

spleen to tumor tissues is mainly through multiple signaling

pathways. A pivotal role of CCL2-CCR2 signaling in MDSC

recruitment and tumor progression has been demonstrated in

melanoma and hepatocellular carcinoma (HCC) mouse models

(99, 100). Thus, blocking CCL2 with soluble CCR2 fragment or

inhibition of CCR2 with blocking antibody could decrease tumor

accumulation of MDSCs in the tumor bone metastases model by

injecting prostate cancer cells directly into murine tibiae, making it

a potential target for anti-tumor therapy (101). mCCR5-Ig fusion

protein, anti-CCR5 antibody, or even CCL5-neutralizing mAb were

all found that could reduce the number and suppressive capacity of

tumor infiltration MDSCs, prevent the tumor metastasis, promote

the survival of B16 tumor-bearing mouse and even improve the

efficacy of anti-PD-1 tumor therapy (102, 103). Chemokine (C-X-C

motif) ligand 8, also known as IL-8, highly expressed in various

tumors, including colon, ovarian, breast, pancreatic, prostate, and

hematological malignancies (104–106), has been demonstrated that

could recruit MDSCs to tumor sites via CXCR1/CXCR2 (107). The

treatment of Reparixin, the pharmacological inhibitor of CXCR1

and CXCR2, caused the significant reduction of G-MDSCs

numbers, in colon adenocarcinoma HT29 xenograft tumor and

colon carcinoma CT26-GM-derived subcutaneous tumor models

(108–110). Furthermore, inhibition of MDSC trafficking by SX-682,

a CXCR1/2 inhibitor, enhanced NK-Cell immunotherapy in head

and neck cancer models (55). HuMax-IL8, an anti-IL-8 mAb,

reduced the number of G-MDSCs in MDA-MB-231 breast cancer

xenografts (111). CXCL8 levels determine the efficacy of sunitinib

treatment, which was demonstrated to effectively target MDSCs,

suggesting that CXCL8 acts as a potential target in anti-tumor

therapy (112). Blocking MDSC recruitment to tumor tissues may be

an effective approach for disrupting the formation of TIME and

improving the efficacy of anti-tumor therapy.
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3.3 Strategies abolishing
MDSC immunosuppression

MDSCs mainly express reactive ROS, arginase1, NOS and

peroxynitrite to exert their immunosuppressive function (28,

113). Therefore, appropriate inhibition of those factors, serving as

important potential therapeutic targets, can eliminate the

immunosuppression of MDSCs. ROS, as part of the major

mechanism by which MDSCs suppress T-cell responses, activate

anti-oxidative pathways and induce transcriptional programs that

regulate the fate and function of MDSCs. Nuclear factor erythroid

2-related factor 2 (Nrf2) activation in regulating the constitutive

activation and availability of antioxidant enzymes, including

NADPH, NADPH quinone oxidoreductase 1 (NQO1), hem

oxygenase (HO), might be a central mechanism enabling cells to

increase mitochondrial ATP production by simultaneously

counteracting subsequent high ROS levels (114). Selective

activation of Nrf2 can decrease the intracellular ROS production,

inhibit the immunosuppression of MDSCs, prevent tumor

metastasis, and induce tumor regression. Furthermore, the

synthetic triterpenoid C-28 methyl ester of 2-cyano-3,12-

dioxooleana-1,9,-dien-28-oic acid (CDDO-Me) completely

abolished the immunosuppressive activity of MDSCs by reducing

ROS production in mouse tumor models (115). Moreover, the

treatment of pancreatic cancer patients with CDDO-Me did not

affect the number of MDSCs in peripheral blood of patients but

significantly improved the immune response (115). Agents that

target MDSCs, such as sanguinarine (SNG), are now being

considered for treatment of lung cancer. SNG was found to

inhibit the immunosuppressive activity of MDSCs via decreasing

the expression of Arg-1, iNOS, and ROS, as well as inducing the

differentiation of MDSCs into macrophages and DCs through the

NF-kB pathway in vitro from Lewis lung cancer mouse model

(116). The type I interferons pathway is well known to promote

anti-tumor immunity by diverse mechanisms. Emerging evidence

shows that the downregulation of the IFNAR1 chain is found in

MDSC from cancer patients and mouse tumor models. The

decrease in IFNAR1 depends on the activation of the p38 protein

kinase and is required for activation of the immunosuppressive

phenotype (117). Stabilizing IFNAR1 using p38 inhibitor combined

with IFN induction therapy elicits a robust anti-tumor effect via

undermining suppressive activity of MDSCs in tumor bearing mice

(117). The JAK/STAT signaling pathway is one of the well-known

pathways induces immune escape of tumors via cytokines and

growth factors to control MDSC generation and differentiation

(118, 119). Blockade of STAT3, STAT5 or even NF-kB by the

selective inhibitors can inhibit the immunosuppression of MDSCs

(120). AMP-activated protein kinase a (AMPKa) signaling was

increased in tumor-MDSCs from tumor-bearing mice and patients

with ovarian cancer, which was induced by tumor-derived GM-CSF

and occurred in a STAT5-dependent manner (121). In addition,

genetic deletion of ampka1-coding gene, prkaa1 antagonized M-

MDSC differentiation to macrophages and re-routed M-MDSC, but

not G-MDSC, into cells that elicited direct antitumor cytotoxic

effects through NOS2-mediated actions, suggesting the therapeutic
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use of AMPK inhibitors to overcome MDSC-induced T-cell

dysfunction and AMPK inhibition as a potential therapeutic

strategy to restore protective myelopoiesis in cancer. G-MDSCs in

the TME spontaneously die by ferroptosis, inducing the release of

oxygenated lipids and limiting the activity of human and mouse T

cells, although decreasing the presence of G-MDSCs (122). Thus,

genetic and pharmacological inhibition of ferroptosis by

liproxstatin-1, abolishes suppressive activity of G-MDSCs, reduces

tumor progression and synergizes with immune checkpoint

blockade (ICB) to suppress tumor growth in immunocompetent

mice (122). However, induction of ferroptosis in immunocompetent

mice promotes tumor growth. Therefore, ferroptosis is a unique and

targetable immunosuppressive mechanism of G-MDSCs in TME

that can be pharmacologically modulated to limit tumor

progression. In human hepatocellular carcinoma (HCC), the

tumor-surrounding fibrotic livers were markedly enriched with

M-MDSCs, along with the poor survival rates. Mechanistically,

activated hematopoietic stem cell (HSC) induced monocyte-

intrinsic p38 mitogen-activated protein kinase (MAPK) signaling

to trigger enhancer reprogramming for M-MDSC development and

immunosuppression (123). Treatment with p38 inhibitor inhibited

HSC-M-MDSC crosstalk to prevent HCC growth (123).

Concomitant with patient-derived M-MDSC suppression by i-

BET762, combined treatment with anti-PD-L1 synergistically

enhanced tumor-infiltrating lymphocytes, resulting in tumor

eradication and prolonging survival in the fibrotic-HCC mouse

model (123). It has been reported that mouse and human G-

MDSCs exclusively upregulate fatty acid transport protein 2

(FATP2), which was controlled by GM-CSF, through activation

of the STAT5 (124). The selective pharmacological inhibition of

FATP2 abrogated the suppressive activity of G-MDSCs and

substantially delayed tumor progression (124). In combination

with immune checkpoint inhibitors (ICIs), FATP2 inhibition

blocked tumor progression in mice and has the potential to

improve the efficacy of cancer therapy.
3.4 Therapies eliminating MDSC
within TME

An initial attempt was made to clear the MDSCs with antibodies

against Gr-1, but since Gr-1 is not specifically expressed by MDSCs,

which is also expressed by mature granulocytes. Therefore, the

elimination of MDSCs may also lead to a decline in normal immune

cells. In addition, once the plasma concentration of the antibody in

plasma decreases or the immune system responds to the antibody,

the number of MDSCs increases rapidly, which enhances the

immunosuppressive function of MDSCs in the TME. Low dose of

chemotherapy, such as 5-fluorouracil (5FU), paclitaxel, cisplatin

and gemcitabine, has been shown to effectively eliminate MDSC in

tumor-bearing mice, and enhanced anti-tumor immunity (72, 73,

125–127). The number of MDSCs in the spleen was significantly

reduced, although DCs, T cells, NK cells, macrophages and B cells

were not significantly affected. The mechanism may be that the

chemotherapy drugs belong to base analogs, which can prolong and
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block the DNA synthesis in the cell cycle and induce cell death.

However, the mechanism of selective killing of MDSCs needs to be

further clarified. Additionally, subclinical doses of platinum-based

drugs, such as cisplatin, prevented the generation and suppressive

activity of M-MDSCs by inhibiting STAT3-COX2 signaling

pathway, along with decreasing COX2 and arginase1 expression

in M-MDSCs of melanoma and head and neck squamous cell

carcinoma (HNSCC) patients (128) . Therefore, some

chemotherapy drugs can play an active role in anti-tumor

immunotherapy by targeting MDSCs in a certain dosage and

course of treatment.

The remodeling of metabolic states also contributes to the shape

of the TIME and plays an important role in regulating MDSCs in

the TME. The radiotherapy-augmented Warburg effect helps

myeloid cells to acquire an immunosuppressive phenotype,

resulting in limited treatment efficacy for pancreatic ductal

adenocarcinoma (PDAC) (129). Sustained increase in lactate

secretion, resulting from the radiation augmented Warburg effect,

was responsible for the enhanced immunosuppressive phenotype of

MDSCs after radiotherapy (129). Thus, targeting lactate derived

from tumor cells and the hypoxia-inducible factor-1a (HIF-1a)
signaling in MDSCs could reinstate antitumor T-cell responses and

inhibit tumor progression after radiotherapy in pancreatic cancer,

indicating distinct promise for clinical therapies to alleviate radio

resistance in PDAC. Glutamine metabolism is a crucial element of

cancer cell metabolism. Glutamine is important for nucleotide

synthesis, amino acid production, redox balance, glycosylation,

extracellular matrix production, autophagy, and epigenetics (130,

131). Emerging evidence shows that targeting tumor glutamine

metabolism leads to a decrease in G-CSF and hence recruitment

and generation of MDSCs as well as immunogenic cell death,

leading to an increase in inflammatory TAMs (132).

Alternatively, inhibiting glutamine metabolism of the MDSCs

themselves not only led to activation-induced cell death and

conversion of MDSCs to inflammatory macrophages, also

impaired suppressive function of MDSCs via inhibiting IDO

expression in the tumor and MDSCs, that resulted in a marked

decrease in kynurenine levels, and rendered checkpoint blockade-

resistant tumors susceptible to immunotherapy in tumor-bearing

mice (132). Therefore, the application of glutamine antagonism in

synergistic targeting inhibition of tumor and MDSCs may hold

promise for clinical therapy to inhibit tumor growth and metastasis.

Therapeutic liver-X nuclear receptor (LXR) agonism was also found

to reduce MDSC abundance in murine models and in patients

treated in a first-in-human dose escalation phase 1 trial,

accompanied with the activation of cytotoxic T lymphocyte

(CTL) responses in mice and patients (133).
4 significance of tumor immunotherapy
combined with MDSC-targeted therapies

4.1 Combination of MDSC-targeted therapies
with adoptive cell therapy

Tumor immunotherapy, such as ICB and adoptive cell therapy,

has attracted much attention in recent years due to its remarkable
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efficacy. However, preliminary and limited success is achieved in

hematological malignancies and in certain solid tumors, owing to

the limitations in curative effect, or in technology. Combined

treatment strategy is suggested which may improve the efficacy of

mono-immunotherapy and compensate for the deficiency of

monotherapy. MDSCs mediate tumor metastasis and are

implicated in immune evasion through shaping the TME, and are

referred as the “queen bee” of the TME (134). Strategies to reverse

the suppressive TME should also attract and activate immune

effectors with antitumor activity (Table 2). Cytokine-induced

killer (CIK) cell-based immunotherapy is effective as adjuvant

therapy in HCC with early stage but lacks efficacy in advanced

HCC. MDSCs are increased in response to CIK cell therapy and

subsequently may be targeted to provide an additional therapeutic

benefit. A study on immunosuppressive mechanisms focusing on

CIKs found that combination treatment with a PDE5 inhibitor

reversed the MDSC suppressor function via arginase-1 and iNOS

blockade and systemic treatment with a PDE5 inhibitor prevented

MDSC accumulation in the TME of the tumor bearing mice (135).

Similarly, treatment with a PDE5 inhibitor suppressed CD14+HLA-

DR−/low MDSCs immunosuppressive activity and enhanced CIK

activity against human HCC cell lines in vitro, suggesting targeting

MDSCs is an efficient strategy to enhance the antitumor efficacy of

CIKs for the treatment of patients with HCC. The possible

combination of olaparib with EGFRvIII-targeting CAR (806-28Z

CAR) T cells has been explored (57). The hostile TME is also one of

the major obstacles to the efficacy of chimeric antigen receptor

modified T (CAR-T) cells, and the recruitment of MDSCs within

the TMEmay contribute to the unsatisfactory performance of CAR-

T cells in solid tumors. Olaparib might suppress the recruitment of

MDSCs to improve the TIME, which contributes to the infiltration

and survival of CAR-T cells on breast cancer in mice (57). The

additional mechanistic rationale for combining the third-generation

PARPi (olaparib) with CAR-T therapy for the treatment of breast

cancer was supported. GPC3-CAR T cell treatment together with

C1632, the inhibition of Lin28, which targets IDO1 and PDL1, led

to enhanced anti-tumor activity in a HCC xenograft mouse model

(136). Combination of targeting IDO1 and PDL1 with CAR-T cells

serves as a dual targeting agent against tumor cells and MDSCs in

TME and enhances immunotherapeutic potential of CAR-T cells

against tumor.
4.2 Combination of MDSC-targeted therapies
with immune checkpoint therapy

Although ICB therapy has made remarkable achievements in

tumor immunotherapy, there is still a large proportion of patients

that do not respond to ICIs or develop resistance (137, 138).

Furthermore, ICB therapy is disappointing with a response rate <

10% in cancers with a poorly immunogenic or “cold” TIME,

requiring further strategies for effective immunotherapy (139,

140). Immunotherapy non-responders often harbor high levels of

circulating MDSCs which can predict the response to cancer

immunotherapies, which is an important factor in developing

resistance to ICB therapy and mediates immunosuppression in

TME, hindering the efficacy of such therapy (141). In particular, the
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levels of MDSCs indicate whether the patients will respond to ICIs,

which the close association between MDSCs level in patients with

the efficacy of anti-PD1 or anti-CTLA4 therapy has been observed

(142–144). PD-L1 is usually expressed in the majority of cancers,

and PD-L1 expression by host myeloid cells is more effective than
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that on cancer cells in suppressing CTL function (145–149). MDSCs

may also suppress CTL activity by PD-L1-dependent and

-independent mechanisms (29). Therefore, combining TAM and

G-MDSC inhibitors reduced both populations in the tumor site,

and dramatically enhanced the effect of ICB with anti-PD-1 in our
TABLE 2 Summary of clinical trials targeting MDSCs in cancer.

Drug Target Combinatorial
partner

Cancer Outcome ClinicalTrials.gov
identifier

ATRA Retinoic
acid

receptor

Ipilimumab Melanoma None of the patients in the Ipilimumab plus ARTA group had
signs of disease progression

NCT02403778

ATRA Retinoic
acid

receptor

Pembrolizumab Advanced
melanoma

Ongoing NCT03200847

HF1K16 ATRA None RST Recruiting and ongoing NCT05388487

Entinostat Class I
HDAC

Azacitidine NSCLC Combined epigenetic therapy decreases relapses after curative surgery NCT01207726

Entinostat Class I
HDAC

Clofarabine ND ALL/
ABL; R/R
ALL/ABL

Entinostat plus clofarabine appears to be tolerable and active in older
adults with ND ALL/ABL, but less active in R/R patients

NCT01132573

Entinostat Class I
HDAC

Exemestane ER+ breast
cancer

8.3-mo improvement in OS among
patients who received entinostat

NCT02115282

SX-682 CXCR1/2 Pembrolizumab Melanoma Recruiting and ongoing NCT03161431

Capecitabine DNA/
RNA

synthesis

Bevacizumab GBM Circulating MDSCs were lower and the increased cytotoxic immune
infiltration was observed after low-dose capecitabine treatment

NCT02669173

Tadalafil PDE5 None HNSCC Significantly reducing both MDSCs and Treg and increasing CD8+ T
cells reactive to autologous tumor antigens

NCT00843635

Gemcitabine DNA/
RNA

synthesis

Nivolumab NSCLC Decreasing MDSCs to enhance anti-PD1 therapy NCT03302247

Omaveloxolone
(RTA 408)

Nrf2 Ipilimumab or
nivolumab

Melanoma The best overall in omaveloxolone (5 mg) & ipilimumab group is up
to 100%

NCT02259231

Dasatinib Tyrosine
kinase

DC vaccines Metastatic
melanoma

Combined treatment was safe and resulted in coordinating
immunologic and/or objective clinical responses in 6/13 (46%)

evaluable patients

NCT01876212

MTL-CEBPA C/EBPa Pembrolizumab AST Causing inactivation of MDSCs with potent antitumor responses
across different tumor models and in cancer patients

NCT04105335

Reparixin CXCR2 Paclitaxel TNBC Weekly combinatorial treatment in MBC appeared to be safe and
tolerable, with demonstrated responses in the enrolled population

NCT02370238

RGX-104 LXR Nivolumab,
ipilimumab,
docetaxel

EC,
NSCLC

Recruiting and ongoing NCT02922764

Tasquinimod S100A9 None mCRPC Tasquinimod significantly improved rPFS compared with placebo NCT01234311

Sunitinib VEGF and
c-KIT

None RCC The therapy is feasible, safe and an effective method to manage
toxicity in metastatic renal cell carcinoma

NCT01499121

Aspirin COX2 Ipilimumab,
Pembrolizumab

Melanoma To inhibit the function of tumor MDSCs NCT03396952

Maraviroc CCR5 None CRC Mitigation of tumor-promoting inflammation within the tumor tissue
and objective tumor responses in CRC were observed.

NCT01736813
ATRA, all-trans retinoic acid; RST, refractory solid tumors; ND ALL/ABL, newly diagnosed acute lymphoblastic leukemia/acute biphenotypic leukemia; R/R ALL/ABL, relapsed/refractory acute
lymphoblastic leukemia/acute biphenotypic leukemia; NSCLC, non-Small Cell Lung Carcinoma; HDAC, histone deacetylase; ER, estrogen receptor; OS, overall survival; GBM, glioblastoma brain
tumors; PED5, phosphodiesterase-5; HNSCC, neck squamous cell carcinoma; Nrf2, erythroid 2-related factor 2; DC, dendritic cell; AST, advanced solid tumor; TNBC, triple-negative breast
cancer; MBC, metastatic breast cancer; EC, endometrial cancer; mCRPC, metastatic castration-resistant prostate cancer; rPFS, radiographic progression-free survival; RCC, renal cell carcinoma;
CRC, colorectal cancer; COX2, cyclooxygenase-2; CXCR2, CXC chemokine receptor 2; CCR5, C-C motif chemokine receptor type 5.
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preclinical model of cholangiocarcinoma (CCA) (150). Combining

ICI treatment with MDSC depletion has been successful and has

been investigated in some pre-clinical studies. Combined treatment

using entinostat and 5-azacytidine, epigenetic modulatory drugs,

with ICB antibodies (anti-PD1 and anti-CTLA4), led to complete

tumor regression and metastatic progression in the aggressive

triple-negative breast cancer (TNBC) model 4T1, with >80%

survival rate 100 days after tumor implantation (54, 151). IL-6

plays a major role in the accumulation and activation of MDSCs

during tumor development. Importantly, increased IL-6 levels

positively correlate with disease progression and MDSC

enrichment in cancer patients (152). Preclinical studies of IL-6/

IL-6R blockade to target MDSCs in cancer have been conducted. IL-

6 blockade or anti-IL-6R monoclonal antibody reversed the effect of

ICIs in HCC, colorectal cancer, melanoma, triple negative breast

cancer, and squamous cell carcinoma, along with marked reduction

of MDSCs, decreased suppressive activity of MDSCs, or an increase

in tumor infiltrating CD8+ effector T cells (153–157). Only

combination therapy in targeting MDSCs and immune

checkpoints was more effective for anti-tumor therapy, while only

using the epigenetic modulatory drugs did not mediate the anti-

tumor immunity (66). Mechanistic insight into the reversibility of

epigenetic modification through small-molecule inhibitors has

unlocked the possibility of targeting specific epigenetic pathways

to reprogramme the MDSC population into an immunostimulatory

phenotype. The histone deacetylases inhibitor, entinostat, was

shown to block the formation of the premetastatic niche via

promoting MDSCs differentiation into pro-inflammatory

macrophages and the therapeutic use of entinostat has been

observed limited efficacy in some clinical trials (NCT01207726,

NCT01132573, NCT02115282) (54). However, entinostat-driven

inhibition of MDSC activity combined with ICI resulted in the

tumor regression and longer tumor-free survival by improving the

infiltration and function of granzymeB+CD8+ T cells in mouse

models of HER2 transgenic breast cancer and the Panc02 metastatic

pancreatic cancer mouse models (3, 67). The m6A demethylase

Alkbh5 has effects on m6A density and splicing events in tumors

during ICB therapy and modulates MDSCs accumulation in TME

by regulating Mct4/Slc16a3 expression and lactate content of the

TME in the employed melanoma and colon syngeneic mouse

models (158). Thus, a small-molecule Alkbh5 inhibitor enhanced

the efficacy of ICB cancer immunotherapy. ATRA can have positive

effects on anti-tumor therapy by reprogramming MDSCs state

within the TME. Some clinical trials have also demonstrated the

potential significance of ATRA alone or in combination with ICB or

target- orientated anticancer drug in anti-tumor therapy

(NCT02403778, NCT03200847). It has been reported that

a dd i t i o n o f ATRA , wh i c h r e du c e s e x p r e s s i on o f

immunosuppressive genes including PD-L1, IL-10, and IDO by

MDSCs, to standard of care ipilimumab appeared safe (159).

Finally, ATRA significantly decreased the frequency of circulating

MDSCs compared to ipilimumab alone in advanced-stage

melanoma (159). Additionally, ATRA has been demonstrated to

increase the efficacy of anti-VEGFR2 antibodies alone and in

combination with chemotherapy in preclinical breast cancer

models, reverse the anti-VEGFR2-induced accumulation of
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intratumoral MDSCs, alleviate hypoxia, and counteract the

disorganization of tumor microvessels (47). Although, the clinical

efficacy of ATRA has been evaluated, the more effective

combination treatment needs to be further explored. We highlight

the current clinical trials ongoing and testing the combination of

targeting-MDSC with ICB, chemotherapy in Table 2.
4.3 Engineering CAR-T cells to deliver the
targeting agents against MDSC

Genomic and epigenomic editing provides more opportunities

for immunotherapies to create and alter properties. Furthermore,

gene editing for immune cell therapies saves the cost and labor

participating in the manufacture of the cell products. Gene-

modified T cell therapy has been developed as a way to deliver T

cells targeting different targets of tumor. However, the

immunosuppressive tumor microenvironment is still one of

multiple barriers existing in solid tumors that continue to hinder

the efficacy of CAR-T cells. Thus, gene modification may enable

CAR-T cells acting as a dual targeting agent against tumor cells and

MDSCs. One study has developed a modified CAR T cells with

IL15, targeting the receptor IL15 receptor alpha (IL15Ra) expressed
on MDSC in human and murine glioblastomas (GBMs) (160). The

fusion of IL15 to the antibody part of CAR T cells generates a dual

targeting system that diminishes the frequency MDSC and tumor

cells and improved the survival of mice in two GBM models (160).

Another study engineered CAR-T cells to deliver RN7SL1, an

endogenous RNA that activates RIG-I/MDA5 signaling (161).

RN7SL1 promotes expansion and effector-memory differentiation

of CAR-T cells, and transferred RN7SL1 restricts MDSC

development, decreases TGFb in myeloid cells, and fosters DC

subsets with costimulatory features, which enables CAR-T cells to

enhance autonomous and endogenous immune function (161). To

reverse the suppressive tumor microenvironment, some study

developed gene modified T-cells bearing a chimeric receptor in

which activating receptor NKG2D fused to intracellular domains of

4-1BB and CD3z (NKG2D CAR) (162). The NKG2D CAR-T cells

target MDSCs, which overexpress Rae1 (NKG2D ligands) within

the TME. NKG2D CAR-T cells eliminated MDSCs and improved

antitumor activity of subsequently infused CAR-T cells in a novel

orthotopic implantation of syngeneic pancreatic ductal

adenocarcinoma (PDAC) tissue slices mice model (162). Similar

results were observed in the study that used gene-modified NK cells

bearing a chimeric receptor in which the activating receptor

NKG2D was fused to the cytotoxic z-chain of the T-cell receptor

(NKG2D.z), and targeted MDSCs that overexpressed NKG2D

ligands within the TME (163, 164). Confirmed in the clinical trial,

NKG2D.z-NK cells generated from patients with neuroblastoma

killed autologous intra-tumoral MDSCs capable of suppressing

CAR-T function (NCT03373097) (164). Combination therapy

with NKG2D.z-NK cells and CAR-T cells for solid tumors may

provide superior efficacy compared to CAR-T cells therapy alone.

PD-L1 axis is a key immunosuppressive signal provided by tumor

cells and MDSCs in TME, which limits CAR-T cell function. Some

studies designed the CAR-T cells secreting anti-PD-L1 single-chain

variable fragment (scFv) or generated a novel PD-L1-targeting
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chimeric switch receptor (PD-L1.BB CSR) (165–167). The former

CAR-T cells secreting anti-PD-L1 scFv which could bind to PD-L1

on PD-L1high tumor cells and MDSCs competitively and block their

binding with anti-PD-L1 monoclonal antibodies, leading to

increased efficacy (165). The latter CAR-T cells can bind to PD-

L1, switching the inhibitory signal into an additional 4-1BB signal,

displayed superior fitness and enhanced functions in culture

medium, causing rapid and durable eradication of pleural and

peritoneal metastatic tumors in xenograft models (166).

Furthermore, a phase I clinical trial related to this study, was

initiated in patients with pleural or peritoneal metastasis

(NCT04684459). Thus, those studies open the opportunity for

investigating other targeting moieties on the surface of MDSCs,

specifically those enriched in cells of TME, and applying these

modifications to CAR T cells for their direct dual functions against

glioma cells and immunosuppressive MDSC.

4.4 Combination of MDSC-targeted therapies
with tumor vaccine

Recent report showed that a vaccine based on heat-killed

pathogens induced spleen M-MDSCs that can be activated to kill

dendritic cells (DCs), an additional mechanism that may help to

explain the difficulties found to develop a very successful anti-

pathogen vaccine (168). Tumor vaccines harness the tumor as the

source of antigens and implement sequential immunomodulation

to generate systemic and lasting antitumor immunity. Mechanism

accounting for these is based on isolated patient-derived DCs,

through pulsing them with tumor-associated antigens (TAAs) or

neoantigens and maturation signals, followed by their reinfusion, or

directly inject the antigens subcutaneously by activating DCs in vivo

in patients (169). A major challenge facing the future of tumor

vaccines for cancer treatments is to persist the cytotoxic T cell

responses and overcome inhibitory signals from MDSCs in TME,

understand the mechanisms of resistance to vaccines and to develop

combination therapies that enhance antitumor immunity and

durable responses. In a syngeneic B16F0 melanoma model and

using tyrosinase related protein 1 (TRP1) as a vaccine antigen, it has

been found that simultaneous delivery of IL-12 and a PD-L1-

silencing shRNA was the only combination that exhibited

therapeutically relevant anti-melanoma activities (170).

Interestingly, the lentivector co-expressing IL-12 and the PD-L1

silencing shRNA was the only one that counteracted MDSC

suppressive activities, potentially underlying the observed anti-

melanoma therapeutic benefit (170). Prospective evaluation of

candidate cancer treatment using ex vivo differentiated MDSCs

highlights therapies with significant therapeutic potential and the

therapy of the IL12-encoding combined with PD-L1 silencing

lentivector vaccines demonstrated promising anti-melanoma

activities. A prophylactic vaccine by employing exosomes derived

from murine ESCs engineered to produce GM-CSF (ES-exo/GM-

CSF vaccine) successfully protects mice from the outgrowth of an

implantable form of murine lung cancer and provides protection

against metastasized pulmonary tumors, by decreasing the

frequencies of tumor infiltrating immunosuppressive immune

cells, including Treg cells and MDSCs (171). Similar to this idea,
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treatment with sunitinib, which inhibits G-MDSCs prior to the

vaccine composed of peptides of the tumor antigen survivin (SVX

vaccine), could magnify the vaccine-mediated immune responses in

a colorectal carcinoma mouse model (172). IFNa and 5-Aza-2’-

deoxycytidine combined with a DC targeting DNA vaccine (a

MIP3a fused vaccine targeting two common melanoma antigens,

gp100 and trp2) exhibited greater tumor infiltration of DCs, and

NK cells, as well as reduced levels of MDSCs in vaccinated groups in

the B16F10 melanoma model (173). The combination therapy alters

the tumor immune cell infiltration and elicits protective immune

responses, but the underlying mechanisms needs to be explored.

The advent of vaccines in multiple solid tumors has prompted the

development of new therapeutic combinations that target MDSCs,

modulating the TIME and the systemic antitumor response.

Moreover, to explore new strategies to optimize the efficacy of

standard immunotherapies, it is essential to find approaches that

target MDSCs in antitumor immunization.
5 Concluding remarks

Tumor immunotherapy has undergone remarkable advances in

recent years and has shown great potential for cancer patients. For

most cancer patients , a favorable init ial response to

immunotherapy, is followed by limited responses and cancer

relapse and recurrence, due to the multiple mechanisms inducing

tumor immunosuppression (174). It also becomes more urgent and

possible to reinforce the immune responses against tumors by ICB,

adoptive cell transfer (ACT) therapy or tumor vaccines, and abolish

TIME. Many studies found nonresponses to those therapies, mostly

due to ignorance of the shape of the TIME after treatment. Thus,

exploration of combination immunotherapeutic strategies coupled

with other immunotherapy with reprogramming the TIME will be

the top priority. It should be noted that MDSCs are known to

suppress the anti-tumor immune response to induce host tolerance,

support cancer stem cells and increase tumor angiogenesis and

vascular maturation (175–178), suggesting that MDSC-targeted

therapeutic approaches have broad implications in a wide range

of cancer therapies in addition to immunotherapy. A growing

number of studies have demonstrated that circulating MDSCs in

cancer patients are a negative prognostic biomarker in predicting

disease course, tumor stage, or metastatic spread (179). Thus,

MDSCs have been recognized as a promising therapeutic target

and prognostic biomarker for cancer patients, while the diversity,

complexity, and heterogeneity of human MDSCs make it difficult to

define their phenotypes accurately and uniformly in cancer.

Therefore, it is necessary to investigate the phenotypes and

characterizations of MDSCs in different types of tumors to

establish the precise means to eliminate MDSCs. Although, the

phenotypes and suppressive mechanisms seem to be shared among

tumor MDSC subsets, it is necessary to identify and distinguish the

differences in detail, in order to make more use of accurate

individualized treatment regimens. We have reported here that

numerous preclinical trails in mouse tumor models, have exhibited

favorable efficacy by targeting MDSCs (61, 180).
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The field of MDSC research still has more questions than answers.

Better characterization of human MDSCs and a clearer understanding

of whetherMDSC-targeted cues will be of clinical significance are main

priorities in this field.We do not yet know the outcomes of the ongoing

clinical trials, including inhibition of MDSC immunosuppressive

activity, blockade of MDSC recruitment and expansion, and

promotion of MDSC differentiation into mature non-suppressive

cells. However, reprogramming MDSCs in tumors, combined with

newly developing immunotherapy, like ICB or ACT, seems to be a

potential new approach to improve antitumor immunity, although

adverse events of the treatment strategies should be taken into

consideration. Removing the negative or suppressive immune

response and improving the positive immune response is a

theoretically ideal scheme to mediate anti-tumor immunity.

However, the systemic depletion of suppressive cells, like Treg cells,

also causes serious immune-related adverse events (181, 182). Hence,

how to realize the immunoregulation in or around the tumor sites to

augment antitumor immunity will be challenging. Therefore,

developing therapeutic strategies targeting MDSC subpopulation is of

paramount importance to improve the effectiveness of tumor therapy.

We are at an interesting point in the translation of cancer

immunotherapies where an improved knowledge of targeting

MDSCs will be critical.
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