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Bacteroides fragilis strain
ZY-312 facilitates colonic
mucosa regeneration in colitis
via motivating STAT3 signaling
pathway induced by IL-22 from
ILC3 secretion
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Xinmei Zhao1, Yangyang Liu4, Ye Wang4 and Fachao Zhi1*

1Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of
Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical
University, Guangzhou, China, 2Department of Gastroenterology, The Second Affiliated Hospital of
Guangzhou Medical University, Guangzhou, China, 3Huiqiao Medical Center, Nanfang Hospital,
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Guangzhou, China
Introduction: Probiotics play critical roles in relieving inflammatory bowel

disease (IBD). However, the underlying mechanism of Bacteroides fragilis strain

ZY-312 (B. fragilis) for colonic mucosa regeneration in IBD remains unclear.

Methods: The weight loss, disease activity index (DAI), colon length, and

histopathology-associated index (HAI) were evaluated the therapeutic effects

of B. fragilis in a DSS-induced colitis mouse model. Colonic mucosa proliferation

and apoptosis level, and mucus density were detected by histological stain. Gut

microbiota was sequenced by 16srRNA analysis. The expression of signal

transducer and activator of transcription 3 (STAT3) phosphorylation in colonic

mucosa was detected in B. fragilis-treated mice in colitis. B. fragilis-regulated

immunity factors of motivating downstream STAT3 phosphorylation were

screened by ELISA and flow cytometry. Lastly, B. fragilis-mediated colonic

mucosa regeneration effects were verified though the knockout of STAT3

(Stat3△IEC) and IL-22 (IL-22-/-) in mice, and inhibitor of STAT3 and IL-22 in co-

culture model.

Results: B. fragilis alleviated DSS-induced colitis in mice with less weight loss,

DAI, colon length shortening, and HAI. Further the results showed that B. fragilis

motivated STAT3 phosphorylation in colonic mucosa with the upregulation of

proliferation index Ki-67 and mucus density, the downregulation of apoptosis

level, and the modulation of gut microbiota through a Stat3△IEC mice model and

STAT3 inhibitor-added model in vitro. Meanhwhile we found that B. fragilis

promoted IL-22 production, and increased the percentage of IL-22-secreting

type 3 innate lymphocytes (ILC3) in colitis. Consequently, We identified that
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B. fragilis did not increase the expression of pSTAT3, either proliferation level,

mucus density, or alter gut microbiota in IL-22-/- mice.

Discussion: B. fragilis may indirectly motivate ILC3 to secrete IL-22, followed by

IL-22-induced STAT3 phosphorylation, hence promoting colonic mucosa

regeneration in colitis. It indicates that B. fragilis has the potential to be a

biological agent for IBD therapy.
KEYWORDS

inflammatory bowel disease, Bacteroides fragilis strain ZY-312, colonic mucosa
regeneration, Stat3 signaling pathway, ILC3, IL-22
1 Introduction
Inflammatory bowel disease (IBD) is an autoimmune disorder that

includes Ulcerative colitis (UC) and Crohn’s disease (CD).

Environmental exposures in genetically susceptible individuals cause

an imbalance in the intestinal microbiota and intestinal barrier.

Consequently, the intestinal immune system triggers persistent

inflammation, injuring the intestinal mucosa (1). Hence, The

imbalance of Genetic and environmental factors, immunity, and

intestinal flora will contribute to IBD. A recent study reports that

endoscopic mucosal repair is an important indicator for evaluating

colitis remission (2). It suggests that facilitating intestinal mucosa

regeneration is a key strategy for IBD relief.

Intestinal mucosa is a crucial modulator of intestinal

homeostasis that segregates commensal microorganisms in the

intestinal lumen and the host immune system under the intestinal

mucosa layer (3). Meanwhile, it enables to establish an

immunological environment permissive to colonization by

commensal bacteria (4). Importantly, goblet cells, one of the

different types of intestinal epithelial cells, exert a vital role in the

colonization of commensal bacteria and the rejection of pathogenic

bacteria through secreting mucus to attach to the surface of the

intestinal mucosa (5). A study reported that the intestinal goblet cell

density was lower in germ-free (GF) mice which were different from

conventionally raised mice (6). And bacterial products including

lipopolysaccharides and peptidoglycans could stimulate mucus

secretion and restore mucus thickness in GF mice to a similar

extent as in conventionally raised mice (7). It suggests that the gut

microbiota is important for the formation of the mucus layer. Also,

there are a series of mucus-degrading probiotics, including

Akkermansia muciniphila and Bacteroides fragilis, which perform

protective effects in colitis by acting on mucus (8). However, the

underlying mechanism of Bacteroides fragilis on intestinal mucus

secretion and gut microbiota remains unclear. It has been reported

that the non-toxigenic strain Bacteroides fragilis-derived

polysaccharide A could activate CD4+ T cells to secrete

Interleukin (IL) -10, hence protecting against CD-like colitis (9).

IL-10 has anti-inflammatory effects in colitis by motivating IL-10

receptors (IL-10R) including IL-10R1 and IL-10R2 (10). However,
02
IL-22, belonging to the IL-10 inflammatory family, has two

receptors including IL-22RA1 and IL-10R2, and shares common

receptor with IL-10 (11). Whether the non-toxigenic strain

Bacteroides fragilis depends on IL-22-mediated IL-10R2 activation

to perform anti-inflammatory effects in colitis remains unclear. In

addition, IL-22 mainly derives from type 3 innate lymphocytes

(ILC3) (12) and helper T (Th) 17 cells (13), and it could motivate

classic signal transducer and activator of transcription 3 (STAT3)

signaling pathway to exert proliferation effects in the intestinal

mucosa (14). IL-22 could also promote symbiotic bacteria

colonization through colonic mucosa saccharification (15).

Moreover, several interleukins including IL-22 have been shown

to regulate goblet cell differentiation and mucus secretion (16). It

suggests that immunity-mediated IL-22 secretion has regulating

effects in intestinal mucosa regeneration, and intestinal microbiota.

Whether Bacteroides fragilis mediates IL-22 signaling to promote

intestinal mucosa regeneration and modulate intestinal microbiota

maintains unknown.

Bacteroides fragilis strain ZY-312 (B. fragilis), belonging to

Bacteroides, was previously isolated from the feces of a healthy

infant by our team (17, 18). O’Toole et al. proposed that B. fragilis is

likely to become a second-generation probiotic with biological

applications (19). B. fragilis mainly exists in the small intestine

and colon through a metabolic engineering approach (20). We

found that B. fragilis promoted colon tissue proliferation in an

antibiotic-related diarrhea rat model (21). Additionally, B. fragilis

has the function of promoting mucus secretion, regulating

immunity, and modulating intestinal flora to relieve Cronobacter

sakazakii-induced neonatal necrotizing enterocolitis in neonatal

rats (22). It suggests that B. fragilis has influences on epithelium

especially goblet cell regeneration, immune homeostasis, and

modulating intestinal flora. However, The effects and underlying

mechanism of B. fragilis for intestinal mucosa regeneration,

immunity regulation, and intestinal flora in dextran sodium

sulfate (DSS)-induced UC-like colitis remains unclear.

In our work, we verified that B. fragilis promoted IL-22

production in colon tissue in DSS-induced colitis. Hence we

assumed that B. fragilis may motivate the IL-22 signaling pathway

to promote intestinal mucosa regeneration and modulate intestinal

flora in colitis. To verify the assumption, we administered B. fragilis
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to mice in a DSS-induced colitis mouse model and found that B.

fragilis facilitates colonic mucosa proliferation, and mucus

secretion, and alters gut microbiota in colitis via motivating the

STAT3 pathway induced by IL-22 from ILC3 secretion. Given the

biological therapeutic effects of B. fragilis, it indicates that B. fragilis

has the potential to be a biological agent for IBD therapy.
2 Methods

2.1 Establishment of dextran sulfate
sodium-induced experimental
colitis model

The mouse model of DSS-induced experimental colitis was

constructed by previously described methods (23). C57BL/6,

STAT3 conditional gene-knockout mice (Stat3△IEC) and IL-22

gene-knockout mice (IL-22-/-) mice were gavaged with or without

B. fragilis ZY-312 (1×109 CFU per mouse) for 14 days during the

pretreatment stage, followed by the induction of colitis with 2.5%

DSS (MP Biomedicals, Santa Ana, CA, USA; #9011-18-1) for 5 days.

Mice were then sacrificed 3 days after DSS withdrew. The mouse

model of DSS-induced colitis was evaluated for the DAI (Table S1),

weight loss score, fecal traits, and blood in stools. The HAI

(Supplementary Table S2) was determined to assess colon

inflammation. All experiments were performed using 6- to 8-

week-old sex-matched mice. C57BL/6 mice were purchased from

SPF (Beijing) Biotechnology Co., Ltd. (Beijing, China). Stat3△IEC

and IL-22-/- mice were purchased from GemPharmatech Co., Ltd.

(Jiangsu, China). Cre-negative littermates were used as wild-type

(WT) controls. The generation and validation of conditional

knockout STAT3 alleles and IL-22 knockout are described in the

Supplementary Table S5 and Supplementary methods. All mice

were bred and maintained under specific pathogen-free conditions.
2.2 Culture of Bacteroides fragilis
strain ZY-312

Bacteroides fragilis strain ZY-312 (B. fragilis) was cultured in 5%

fetal bovine serum, 9.5 mL of tryptic soy broth, and 100 µL of

passaging solution at 37°C for 24 h under anaerobic conditions.
2.3 Isolation and detection of colonic
lamina propria immune cells

The colon was isolated and cut longitudinally and divided

into segments of 0.5 cm in length. Then the colon was cleaned

twice and placed in 20 ml digestive fluid (5 mM EDTA, 100×

Hepes, 5% FBS, HBSS without calcium and magnesium) for

20 min twice at 37°C. The rest of the colon was digested using

the Lamina Propria Dissociation Kit (Miltenyi Biotec, Bergisch

Gladbach, Germany) according to the manufacturer’s protocols.

Next, CLP immune cells were collected and further purified by

density gradient centrifugation with 40% and 80% Percoll–RPMI
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solution. Single CLP immune cells were collected in the

interphase. These cells were stained with the indicated

antibodies (Table S3) for detection according to a flow

cytometry gating strategy (Figure S6). Results were read using a

Flow Cytometer (Aria III; BD Bioscience, Franklin Lakes, NJ,

USA). Data were analyzed using FlowJo 10.0.
2.4 Colonic crypt isolation and colonic
organoid co-culture construction

Colonic crypts were obtained from colons of 4-week-old C57BL/6

mice. As previously described (24), the colon was dissected and

washed with phosphate-buffered saline (PBS) and then chopped

into pieces. After washing 20 times with PBS, the pieces were

incubated in Gentle Cell Dissociation Reagent (Stem Cell) for

30 min at 25°C. The mixture was filtered through a 70 mm cell

strainer, crypt fractions were isolated and washed with DMEM/F12,

and purified colonic crypt fractions were acquired by centrifugation.

Next, the colonic crypt was mixed with Matrigel (Corning) and

evaluated using the IntestiCult OGM Mouse Kit (Stem cell,

Canada) with 50 µl of the mixture added to 24-well plates.

Organoid counting was performed according to the manufacturer’s

protocols. For the co-culture system containing CLP and colonic

organoids, CLP were isolated as described above. Next, the isolated

CLP were cultured with colonic organoids at a ratio of 7:1 in Matrigel.

B. fragilis (104 CFU/well) and murine TNF-a (60 ng/mL; Peprotech,

Rocky Hill, NJ, USA) were added independently or simultaneously to

the culturemedium for 24 h. Murine IL-22 (5 ng/ml, Peprotech), anti-

IL-22 neutralizing antibody (0.1 mg/mL, AF582; RD, Minneapolis,

MN, USA) (25), and Stattic (15 mM; Selleck, Houston, TX, USA) (26)

were also added to organoids for 24 hours. The development of

colonic organoids from day 1 to day 6 and the co-culture model is

described (Figure S1).
2.5 Histological analysis

The mouse colon tissue was fixed in 4% paraformaldehyde for

24 h, embedded in paraffin, and cut into sections at a thickness of 4

µm. For immunohistochemical staining, the colonic sections were

subjected to deparaffinization, hydration, antigen retrieval,

quenching of endogenous peroxidase, and blocking procedures.

All slices were then incubated with the primary antibodies against

pSTAT3 and Ki-67 (Figure S2) at 4°C overnight followed by

incubation with biotinylated secondary antibodies for 30 min and

visualization using a 3,3′-Diaminobenzidine Kit (ZSGB-BIO,

Beijing, China). For immunofluorescence staining for the

detection of pSTAT3, PCNA, and cleaved Caspase-3, the colonic

sections were processed by the methods described above. A terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

assay was performed using the Servicebio Fluorescein (FITC)

TUNEL Cell Apoptosis Detection Kit (Wuhan, China) following

the manufacturer’s protocols. Alcian blue and Periodic Acid-Schiff

(PAS) staining (Biossci, China) was performed following the

manufacturer’s protocols.
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2.6 Colonic epithelial cell isolation

The colon epithelium was isolated according to the previously

reported method. In brief, colon tissues were washed thoroughly in

cold PBS. Colons were then cut into 5 mm pieces, added into a

digestion buffer (5 mM EDTA and 2 mM DTT in Hanks balanced

salt solution; Sigma, St. Louis, MO, USA), and incubated at 37°C for

30 min on a rotating platform. Equal volumes of HBSS were added

to stop digestion and the solution was filtered through a 70 mm cell

strainer. The filtered solution was centrifuged at 4°C and 400g for

10 min to obtain colonic epithelial cell pellets for protein isolation.
2.7 Western blot

Western blotting was performed as described previously

(27).The proteins were separated by SDS–PAGE and analysed by

immunoblotting with rabbit polyclonal antiserum to pSTAT3 (CST

#9145, Danvers, MA, USA), STAT3 (CST #4904), IL-22 (bs-2623R),

proliferating cell nuclear antigen (PCNA) (CST #13110), Caspase-3

(CPP32 4-1-18), cleaved Caspase-3 (CST #9661), P38 (CST #9212),

pP38 (CST #4511), ERK (CST #4695), pERK (CST#4370), GAPDH

(CST #5174) antibodies were used to measure colonic epithelial

protein expression.
2.8 Quantibody array detection

Colon samples were collected and analyzed using the Quantibody®

Mouse Inflammation Array 1 (QAM-INF-1) involving 40 cytokines

(Table S4) according to protocols in the user manual. Fluorescence

signals were detected using Axon GenePix, and the relative levels of

cytokines were determined. Differentially expressed genes (DEGs) were

obtained using FDR < 0.05 and fold change (FC) > 2 as thresholds. A

Gene Ontology (GO) enrichment analysis of DEGs was implemented

using the topGO R package, correcting for gene length bias. The

ClusterProfiler R package was used to evaluate DEG enrichment for

Kyoto Encyclopedia of Genes and Genomes analysis (KEGG)

pathways. The fisher exact test was used, and data packets were

clusterProfiler from R/Bioconductor. The selection criteria were that

the number of different proteins on a certain term/Pathway or GO

was >=5, and p_value <0.05. term/Pathway or GO was obtained in

descending order according to the value of Count, and the first 12

results were taken. The definition of enrich_factor = (the number of

differential genes in a term (that is, Count)/the total number of

differential genes in the database term/the total number of genes in

the database). A protein-protein interaction (PPI) network of

upregulated DEGs was constructed using the String database.
2.9 RNA isolation and real-time PCR

RNA was isolated using a column-based isolation kit

(EZbioscience, Roseville, MN, USA) according to the manufacturer’s

instructions, and concentrations were measured using a

spectrophotometer (NanoDrop 2000, Thermo Fisher, Waltham, MA,
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USA). Equal amounts of RNA (1 mg) were used to generate cDNA by

reverse transcription and real-time PCR was performed to measure

gene expression levels. In brief, 2mg of diluted extracted RNA was

converted to cDNA, then validated primers (Table S6) and SYBR

Green (Takara, Japan) were added to the cDNA and themix was run in

LightCycler480 (Roche, USA). P<0.05 was considered significant.
2.10 Enzyme-linked immunosorbent assay

Colon and blood samples were centrifuged at 4°C and 2500 rpm

for 20 min and serum was collected. Colon samples were

homogenized in lysis buffer (RIPA with protease inhibitor;

Beyotime, Shanghai, China) and whole protein concentrations

were measured by a bicinchoninic acid assay. Inflammatory factor

(IL-22, IL-1b, IL-6, IL-23, IL-10, TNF-a, IFN-g, and IL-17)

Enzyme-linked Immunosorbent Assay (ELISA) kits (Thermo

Fisher Scientific) (Table S3) were used to measure inflammatory

factor concentrations according to the manufacturer’s protocols.

Results were read by a microplate reader (SpectraMax190;

Molecular Devices, Sunnyvale, CA, USA), and concentrations

were calculated using SoftMax Pro 5.0. IL-22 blockage was

performed by IL-22 capture antibody incubation overnight at 4°C.
2.11 In vitro cell function assay

Mouse colon cancer cells MC38 were cultured in DMEM

(Gibco, USA) supplemented with 10% serum (Hyclone, Logan,

UT, USA) for routine culture and in DMEM with 0.5% serum

for cell function experiments. To evaluate the cell proliferative

capacity, cells were seeded in a 96-well-plate at a density of 3000

cells/well and a Cell Counting Kit-8 (CCK-8; Dojindo,

Kumamoto, Japan) assay was performed. OD450 values were

measured. A cell cycle analysis was performed by in vitro

prop id ium iod ide (PI ) incorpora t ion fo l lowing the

manufacturer’s instructions (Dojindo). PI-incorporated cells

were measured by flow cytometry. Data were analyzed using

FlowJo 10.0.
2.12 16srRNA analysis

The colonic fecal microbiota composition in mice was

determined by 16S rRNA gene amplification. Briefly, a magnetic

bead extraction kit (Qiagen, Valencia, California, USA) was used to

extract genomic DNA from feces. DNA concentration and integrity

were measured by agarose gel electrophoresis. The 16S rRNA gene

V3–V4 region was amplified from the genomic DNA in a 25 µl

reaction using the universal bacterial primers: (341F, 5' -

CCTAYGGGRBGCASCAG - 3', and 806R, 5' - GGACTACNN

GGGTATCTAAT - 3'). The PCR products were detected through

agarose gel electrophoresis and purified with Universal DNA

Purification and Recovery Kit (TianGen, China, Catalog #:

DP214). Sequencing was performed on an Illumina NovaSeq

6000 with two paired-end read cycles of 250 bases each
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(IlluminaInc., San Diego, CA, United States). The two paired

FASTQ files were base called from the Illumina raw sequence

read data and the quality of the raw sequence reads was assessed

using Qiime V1.9.1. After trimming, operational taxonomic units

(OTUs) were generated by using Uparse v7.0.1001 with a 97%

similarity cutoff. The representative read of each OTU was selected

by using the Quantitative Insights into Microbial Ecology (QIIME)

package. All representative reads were annotated and blasted

against the Silva database using the RDP classifier (confidence

threshold was 80%). The microbial richness and diversity in fecal

content samples were estimated using the alpha diversity that

includes the Shannon index. The UniFrac distance matrix

performed by QIIME software was used for the unweighted

UniFrac Principal coordinates analysis (PCoA), and phylogenetic

tree construction. Linear discriminant analysis effect size (LEfSe)

based linear discriminant analysis (LDA) and cladogram were

generated to assess differentially abundant microbial taxa. The

16S rRNA gene amplicon sequencing and analysis were

conducted by Novogene Bioinformatics Technology Co., Ltd

(Beijing, China).
2.13 Statistical analysis

Statistical analyses were performed using GraphPad Prism 8.0

(GraphPad Software). All variables are expressed as Means ± SEM, as

noted in the figure legends. A Student’s t-test was used forcomparisons

between two groups. One-way ANOVA and Tukey’stests were used for

comparisons among three or more groups, and Two-way ANOVAwas

used tocompare body weight and DAI. While non-parametric data

were analyzed with a Mann–Whitney U-test. P < 0.05 was the

threshold for significance.
3 Results

3.1 B. fragilis alleviated DSS-induced
colitis by promoting colonic mucosa
proliferation and mucus secretion, and
modulating microbiota

To evaluate whether B. fragilis has a protective role in DSS-

induced colitis, we constructed a DSS-induced colitis mouse model

and administered B. fragilis orally (Figure 1A). Compared with the

DSS group, mice receiving B. fragilis (DSS+ZY-312 group) had less

weight loss (Figure 1B), disease activity index (DAI) (Figure 1C),

colonic constriction (Figures 1D, E), and HAI (Figures 1F, G).

Further, we found that B. fragilis increased the level of proliferation

index Ki-67 and PCNA, promoted mucus expression, and

decreased the level of cleaved Caspase-3 and TUNEL-positive

cells compared to the DSS group (Figures 1H–J). And flow

cytometry results showed that B. fragilis promoted colonic

epithelium cell cycle progression compared with the DSS group

(Figure S1E). For further validation in vitro, we constructed a co-

culture model that included colonic organoids and CLP-derived

immune cells to imitate the colonic anatomical structure in mice

(Figures S1A, B). And we found that B. fragilis increased the PCNA
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level and decreased the cleaved Caspase-3 level in colonic organoids

from the co-culture model (Figure S1D).

Based on that mucin glycans in the mucus layer could provide

the energy source for intestinal microbiota (28), we attempted to

investigate the influence of B. fragilis on intestinal microbiota. The

results showed that B. fragilis elevated a, and b diversity compared

to the DSS group (Figures 1K, L). The LEfSe results showed that the

abundance of pathogenic bacteria including Gammaproteobacteria,

Helicobacteraceae, Helicobacter_typhlonlus, Streptococcus,

Peptostreptococcaceae, Campylobacterales were increased in the

DSS group. While B. fragilis increased the abundance of

Allobaculum (Figure 1M). Allobaculum, belonging to the

erysipelaceae class, physiologically can use carbohydrates to

produce butyric acid and lactate to exert an anti-inflammatory

effect (29). It indicated that B. fragilis alleviates DSS-induced colitis

by promoting colonic mucosa proliferation, and mucus secretion,

and modulating microbiota.
3.2 B. fragilis motivated STAT3
phosphorylation to facilitate colonic
mucosa proliferation and mucus secretion,
and alter gut microbiota

The proliferation pathways, including STAT3 (30), p38 (31),

and extracellular-signal-regulated kinase (ERK) (32), participate in

intestinal mucosa proliferation and apoptosis in IBD. Next, we

attempted to screen and verify which signaling pathway was

involved in B. fragilis-mediated colonic mucosa proliferation.

Through the protein microarray of colon tissue, the KEGG

analysis showed that B. fragilis participates in the Janus kinase

(JAK)-STAT signaling pathway (Figure 2A). And western blotting

(WB) and immunohistochemical results showed that B. fragilis

elevated pSTAT3 level in the colonic mucosa compared to the DSS

group (Figures 2B, C). Besides, immunofluorescence results

demonstrated that B. fragilis increased pSTAT3 expression in the

colonic organoids (Figure 2D). It suggests that B. fragilis elevates the

pSTAT3 level in the colonic mucosa.

Next, we constructed a DSS-induced colitis model and

administered B. fragilis orally in Stat3△IEC mice (Figure S2). The

results showed that Stat3△IEC mice receiving B. fragilis were more

susceptible to DSS-induced colitis than the wild-type (Stat3fl/fl) mice

receiving B. fragilis, evidenced by more weight loss (Figure 3A), a

higher DAI score (Figure 3B), a shorter colon length (Figures 3C,

D), and a higher HAI (Figures 3E, F; Figure S3). To investigate

whether B. fragilis motivated STAT3 phosphorylation to regulate

colonic mucosa proliferation and mucus secretion, and modulate

microbiota. The qPCR, WB, immunohistochemistry, and

immunofluorescence results showed that B. fragilis did not

increase the PCNA, Ki-67 levels, or mucus density, either

decrease the cleaved Caspase-3 level or TUNEL-positive cells

density in the Stat3△IEC mice contrast to the wild-type mice

(Figures 3G–I; Figure S3). In vitro assay, we inhibited STAT3

expression through a STAT3 pathway inhibitor in the colonic

organoids and MC38 co-culture model (Figure S1C). The

immunofluorescence results showed that B. fragilis did not elevate
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PCNA expression, or decrease the cleaved Caspase-3 level in the

colonic organoids. And CCK8 results showed that B. fragilis did not

increase cell viability, or decrease cleaved Caspase-3 level once

inhibiting STAT3 in MC38 (Figure S4A–C). In addition, The a, b
diversity and LEfSe analysis showed a similar microbiota

composition between the DSS+ZY-312 group and the DSS group

in Stat3△IEC mice (Figures 3J–L). Together, these results suggest

that B. fragilis facilitated colonic mucosa proliferation and mucus

secretion, and altered gut microbiota through the STAT3

signaling pathway.
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3.3 B. fragilis up-regulated IL-22,
motivating STAT3 phosphorylation in the
colonic mucosa

Inflammatory cytokines, such as IL-22, IL-10, and IL-6, could

activate STAT3 phosphorylation to exert proliferation effects (33).

Hence, we detected the level of related inflammatory factors. The

ELISA results showed that B. fragilis promoted IL-22 production in

the colon and serum (Figures 4A, B), and decreased the level of IL-23,

while B. fragilis has no effect on IL-6, IL-10, IL-17A, IL-1b, tumor
B
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FIGURE 1

B. fragilis alleviated DSS-induced colitis by promoting colonic mucosa proliferation and mucus secretion, inhibiting apoptosis. (A) The route of the
DSS-induced experimental colitis mouse model was as follows, mice were pretreated with B. fragilis strain ZY-312 (1x109 CFU) (DSS+ZY-312 group) or
phosphate buffer (PBS) (DSS group) for 14 days orally. Next mice were treated with 2.5% DSS for 5 days, then sacrificed 3 days after DSS withdrew,
Control group (N=5), DSS group (N=6), and DSS+ZY-312 group (N=5). N, number of mice, NT means no treatment. (B, C) Percent of weight loss (B) and
disease activity index (DAI) (C) were monitored daily starting from DSS administration. (D) Representative of colon morphology. (E) The colon length of
mice. (F) H&E staining of colon tissues. Scale bars, 200 mm. (G) The histopathological associated index (HAI). (H) Immunochemistry analysis of the level
of Ki-67 (upper), Immunofluorescence analysis of Tunel (middle), PAS staining of mucus in colon sections (below). Scale bars, 200 mm. (I) Quantitative
PCR (qPCR) analysis of PCNA in colon tissue. (J) Western blot analysis of PCNA and cleaved Caspase-3 in colonic epithelial cells. (K, L) The a (K) and b
(L) diversity analysis of microbiota between groups. (M) LEfSe analysis of differential bacteria in feces between the DSS group and ZY-312 group with
different levels meeting a significant LDA threshold value of >2.5. Data are presented as Mean ± SEM (B, C, E, G, I, K). Statistical analysis was performed
using two-way ANOVA (B, C), and one-way ANOVA (E, G). *p < 0.05,**p < 0.01, ****p < 0.001.
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necrosis factor-alpha (TNF-a), and interferon-gamma (IFN-g)
compared to the DSS group. IL-22 is mainly produced by CLP-

derived immune cells in the colon (34). Therefore, we dissociated

CLP-derived immune cells and treated them with B. fragilis to detect

the level of IL-22 in the culture medium (supernatant) in vitro. The

ELISA results showed that B. fragilis promoted CLP-derived immune

cells to secrete IL-22 and IL-6, but did not influence IL-10, IL-23, IL-

17A, IL-1b, TNF-aor IFN-g (Figure 4C). Meanwhile, the flow

cytometry results showed that the supernatant from B. fragilis-

treated with CLP-derived immune cells promoted cell cycle

progression of MC38 (Figure S7A).

Then we administered B. fragilis orally in a DSS-induced

colitis IL-22-/- mice model. (Figure S5). We found that IL-22-/-

mice receiving B. fragilis were more sensitive to DSS-induced

colitis than wild-type (IL-22+/+) mice receiving B. fragilis,

evidenced by more weight loss (Figure 5A), a higher DAI score

(Figure 5B), a shorter colon length (Figures 5C, D) and a higher

HAI (Figures 5E, F; Figure S6). The RNA level of PCNA and

Caspase-3 were comparable between the DSS group and the DSS

+ZY-312 group in IL-22-/- mice (Figure 5G). Next, we verified

whether B. fragilis-mediated pSTAT3 upregulation was impaired

in IL-22-/- mice. The immunohistochemical, immunofluorescence,

and WB results showed that B. fragilis decreased pSTAT3

expression in IL-22-/- mice compared to IL-22+/+ mice

(Figures 5H, J). And B. fragilis did not increase pSTAT3

expression in colonic organoids with IL-22 neutralizing

antibodies (Figure S7C). Synchronously, B. fragilis did not

increase Ki-67 and PCNA levels, and mucus density in IL-22-/-
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mice compared to IL-22+/+ mice (Figures 5H, J). CCK8 results

showed that B. fragilis did not increase the survival rate of MC38

once blocking IL-22 (Figure S7B). Besides, B. fragilis did not

decrease the cleaved Caspase-3 level and TUNEL-positive cell

density compared to the DSS group in IL-22-/- mice (Figures 5I,

J) and the colonic organoids with IL-22 neutralizing antibodies

(Figure S7C). Besides, The b diversity and LEfSe analysis showed a

similar microbiota composition between the DSS+ZY-312 group

and the DSS group in IL-22-/- mice (Figures 5K, L). Together,

these results demonstrated that B. fragilis promoted IL-22-

mediated pSTAT3 phosphorylation to promote colonic mucosal

proliferation and mucus secretion, and modulate intestinal

microbiota in DSS-induced colitis.
3.4 B. fragilis-induced IL-22 secretion was
mainly derived from ILC3

IL-22 is mainly produced by ILC3 (35), CD4+ T cells, and Th17

cells (13). Next, we attempted to identify B. fragilis-promoted IL-22

secretion mainly derived from which type of immune cells in CLP.

Initially, the protein microarray analysis demonstrated that B.

fragilis promoted IL-7 and IL-1a expression, but did not affect

the IL-1b, IL-6, IL-10, IL-17A, IL-23, TNF-a, or IFN-g levels

(Figures 6A–C). IL-7 was mainly derived from intestinal epithelial

cells and promoted ILC3 development (36), and IL-1a was secreted

from ILC3 for inflammation reaction (37, 38). It suggested that B.

fragilis may promote ILC3, but not IL-17A secreting Th17 cells, to
B

C D

A

FIGURE 2

B fragilis motivated STAT3 phosphorylation in colonic mucosa. (A) KEGG analysis (DSS+ZY-312 group versus DSS group) of gene functions from
colon tissue in DSS-induced colitis, linking B. fragilis with higher relation with the JAK-STAT signaling pathway in colitis (marked by a red box).
(B) Western Blot analysis of pSTAT3/STAT3, pP38/P38, and pERK/ERK signaling pathway in colonic mucosa. (C) Immunohistochemistry analysis of
pSTAT3 in colonic mucosa. Scale bars, 200 mm (upper), 50 mm (below). (D) Immunofluorescence analysis of pSTAT3 in colonic organoids from co-
culture model, The co-culture model was added with (+) or without (-) B. fragilis strain ZY-312 (104 CFU/well) after TNF-a (60ng/ml) induced
inflammation for 24 hours in vitro. (Scale bars,50 mm).
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secrete IL-22 through IL-7 signaling. Using the flow cytometry

gating strategy (Figure S8), we detected the cell percentage of IL-22-

secreting ILC3 and CD4+ T cells. The cell flow cytometry results

showed that B. fragilis prompted IL-22 production from ILC3 but

not CD4+ T cells (Figures 6D, E). Next, we aimed to clarify whether

the vitality of IL-22-secreting ILC3 was impaired under B. fragilis

administration in Stat3△IEC mice. We found that B. fragilis

promoted ILC3 to secrete IL-22 in Stat3fl/fl and Stat3△IEC mice,

but not CD4+ T cells in Stat3△IEC mice (Figure S9). It suggests that

B. fragilis promotes ILC3 cells to secrete IL-22 in DSS-

induced colitis.

Overall, B. fragilis may indirectly motivate ILC3 (Meanwhile B.

fragilis promote the maturation and development of ILC3 through

IL-7 signaling) to secrete IL-22, followed by IL-22-induced STAT3

phosphorylation in the colonic mucosa, hence promoting colonic

mucosa regeneration including cell proliferation and mucus

secretion, and modulating intestinal microbiota in a DSS-induced

colitis mouse model (Figure 7).
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4 Discussion

Intestinal epithelial barrier impairment contributes to the

amplification of the IBD-associated immuno-inflammatory

response (39) and the imbalance of intestinal microbiota (40).

Hence, it is a good candidate for IBD therapy by targeting

epithelium barrier repair. Recently, the therapeutic effects of

probiotics for promoting intestinal epithelial barrier restoration,

inhibiting immunity-mediated inflammation reaction, and

modulating intestinal microbiota are attracting attention in IBD

applications. VSL#3 probiotic mixture induces remission in patients

with active Ulcerative Colitis (25). Lactobacillus reuteri increases

mucus density to exert a protective effect against DSS-induced

colitis (41). Lactobacillus rhamnosus GG promotes intestinal

epithelial cell proliferation and increases the diversity of gut

microbiota in mice (42). And Lactobacillus salivarius Ls33-

purified peptidoglycan induces the dendritic cell to secrete IL-10

through a NOD2-dependent manner to relieve colitis (43). In this
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FIGURE 3

B. fragilis motivated STAT3 phosphorylation in colonic mucosa to promote colonic enterocytes and goblet cell proliferation, inhibit apoptosis, and
alter gut microbiota. (A, B) Percent of weight loss (A) and DAI (B) were monitored daily starting from DSS administration. Control/Stat3△IEC group
(N=4), DSS/Stat3△IEC group (N=7), DSS+ZY-312/Stat3△IEC group (N=7), DSS+ZY-312/Stat3fl/fl group (N=7). N, number of mice. (C) Representative
colon morphology. (D) Statistical analysis of colon length. (E) H&E staining of colon tissues. (Scale bars, 200 mm). (F) Statistical analysis of HAI. (G)
qPCR analysis of PCNA and Caspase-3 in colon tissue. (H) Western Blot analysis of pSTAT3, STAT3, PCNA, cleaved Caspase-3, Caspase-3 in colonic
epithelial cells. (I) Immunochemistry analysis of Ki-67 (upper), Alcian blue staining of mucus (middle), Tunel assay analysis (below) of colon tissue.
(Scale bars, 200 mm). (J, K) The a(J) and b(K) diversity analysis of microbiota in Stat3△IEC mice between groups. (L) LEfSe analysis of differential
bacteria in feces between the DSS group and ZY-312 group with different levels meeting a significant LDA threshold value of >2 in Stat3△IEC mice.
NC.cko indicates Control/Stat3△IEC group. DSS.cko indicates DSS/Stat3△IEC group. Z.cko indicates DSS+ZY-312/Stat3△IEC group. Data are presented
as Mean ± SEM (A, B, D, F, G). Statistical analysis was performed using two-way ANOVA (A, B), and one-way ANOVA (D, F, G). *p < 0.05,**p < 0.01,
***p < 0.005, ****p < 0.001. ND indicates undetectable. NS indicates no significance.
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study, we demonstrated that B. fragilis has a protective role in UC-

like colitis by facilitating colonic mucosal regeneration including

cell proliferation, mucus secretion, and altering the gut microbiota.

It suggests the probiotic properties of B. fragilis in IBD which is

consistent with the studies above.

It has been reported that some proliferation pathways,

including STAT3 (28), p38 (29), and ERK (30), participate in

intestinal mucosa proliferation and apoptosis in IBD. STAT3 is

widely expressed in organs and tissues, and the phosphorylation of

STAT3 motivates downstream genes related to proliferation and

apoptosis, thus performing proliferation effects. A previous study

has revealed that the motivation of STAT3 signaling promotes

colonic mucus secretion in DSS-induced colitis in mice (28).

Correspondingly, a probiotic Lactobacillus motivates STAT3

signaling to promote stem cell proliferation in DSS-induced

colitis (44). High mobility group box-1 (HMGB1), a damage-

associated molecular pattern protein related to microbe

recognition, exerts an anti-inflammatory effect by increasing

pSTAT3 expression in the colonic mucosa (45). In this study,
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we consistently found that B. fragilis motivated STAT3

phosphorylation to promote colonic mucosal regeneration

including cell proliferation and mucus secretion. Moreover,

considering that STAT3 is activated in acute colitis, and its

expression gradually disappears during the chronic stage of the

disease (46), here we speculate that B. fragilis motivates STAT3

signaling to facilitate colonic mucosa regeneration at the acute

phase of DSS-induced colitis. Notably, it has been reported that

the motivation of STAT3 signaling is linked to modulating gut

microbiota in the diet-induced obesity model (47). Also, the

activation of STAT3 signaling, induced by short-chain fatty

acids, promotes antimicrobial peptide expression in intestinal

epithelial cells, thereby affecting gut microbiota (48).

Commensal bacteria protect against pathogen invasion by

increasing mucus secretion and occupying the binding sites on

the mucins to impede pathogen adhesion (49). Mucus has a scour

and repelling effect on pathogenic bacteria, thus modulating gut

microbiota (50). Based on that commensal B. fragilis motivates

STAT3 signaling to promote mucus secretion, it indicates that B.
B

C
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FIGURE 4

B.fragilis promoted IL-22 production, but not IL-1b and TNF-a mediated classical proinflammatory pathway in DSS-induced colitis. (A) ELISA analysis
of the inflammatory factors including IL-22, IL-6, IL-23, IL-1b, TNF-a, IFN-g, IL-17A, and IL-10 from colon tissue in DSS-induced colitis. (B) ELISA
analysis of IL-22, and IL-6 from serum in DSS-induced colitis. (C) ELISA analysis of IL-22, IL-6, IL-23, IL-1b, TNF-a, IFN-g, IL-17A, and IL-10 in
supernatant from co-culture model including B. fragilis strain ZY-312 and CLP after lipopolysaccharide (LPS,1ug/ml) stimulation for 12 hours in vitro.
Data are presented as Mean ± SEM (A–C). Statistical analysis was performed using one-way ANOVA. *p < 0.05,**p < 0.01, ***p < 0.005, ****p <
0.001.ND indicates undetectable. NS indicates no significance.
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fragilis may modulate gut microbiota through STAT3 signaling-

mediated mucus secretion. In our study, we reveal that B. fragilis

elevates the phylum level of Firmicutes and increases the

abundance of butyric-producing Allobaculum in wild-type mice,

while the abundance difference disappears once STAT3 is

defective in intestinal epithelial cells.

Additionally, Upstream factors of STAT3 primarily include IL-

22, IL-10, and IL-6 (33). IL-22 belongs to the IL-10 cytokine family

and exerts anti-inflammatory effects (34). In this study, B. fragilis

mainly promoted IL-22 production but has no apparent influence on

IL-10, and IL-6. IL-22 promotes stem cell regeneration and mucus

secretion in the intestinal epithelium (51, 52). Besides, IL-22 induces

intestinal metabolites-related colonic mucosa saccharification to
Frontiers in Immunology 10
promote symbiotic bacteria colonization (15). And IL-22 mediates

early host defense against attaching and effacing bacterial pathogens

through antimicrobial peptide secretion (53). These roles suggest that

IL-22 might mediate colonic mucosa regeneration and intestinal

microbiota. A previous study has revealed a link between IL-22 and

STAT3 signaling in intestinal epithelial renewal in DSS-induced

colitis (44). In this study, we confirm that B. fragilis up-regulates

IL-22/pSTAT3 axis to promote colonic mucosa regeneration and

alter gut microbiota manifesting that B. fragilis promotes mucus

secretion, meanwhile elevating a, and b diversity, and increases

the abundance of butyrate-producing unidentified clostridia in

wild-type mice, while the abundance difference disappears after IL-

22 defects.
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FIGURE 5

B. fragilis up-regulated IL-22/pSTAT3 pathway to facilitate colonic enterocytes proliferation and mucus secretion, inhibit apoptosis, and impact gut
microbiota. (A, B) Percent of weight loss (A) and DAI (B) were monitored daily starting from DSS administration. Control/IL-22-/- group (N=4), DSS/
IL-22-/- group (N=7), DSS+ZY-312/IL-22-/- group (N=8), DSS+ZY-312/IL-22+/+ group (N=7). N, number of mice. (C) Representative colon
morphology. (D) Statistical analysis of colon length. (E) H&E staining of colon tissues (Scale bars, 200 mm). (F) Statistical analysis of HAI. (G) qPCR
analysis of Caspase-3 and PCNA in colon tissue. (H) Immunochemistry analysis of pSTAT3 and Ki-67, alcian blue analysis of mucus from IL-22+/+ and
IL-22-/- mice (Scale bars, 200 mm). (I) Tunel assay analysis of colon tissue from IL-22-/- mice (Scale bars, 200 mm). (J) Western Blot analysis of
pSTAT3, STAT3, PCNA, cleaved Caspase-3, and Caspase-3 from colonic epithelial cells in IL-22-/- mice. (K) Thebdiversity analysis of microbiota in
Stat3△IEC mice between groups. (L) LEfSe analysis of differential bacteria in feces between the DSS group and ZY-312 group with different levels
meeting a significant LDA threshold value of >3.5 in IL-22-/- mice. NF.22KO indicates Control/IL-22-/- group. DF.22KO indicates DSS/IL-22-/- group.
ZF.22KO indicates DSS+ZY-312/IL-22-/- group. Data are presented as Mean ± SEM (A, B, D, F, G). The P value was calculated using two-way ANOVA
(A, B). Statistical analysis was performed using one-way ANOVA (D, F, G). *p < 0.05,**p < 0.01, ***p < 0.005, ****p < 0.001. ND indicates
undetectable. NS indicates no significance.
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Referring to the cell source of IL-22, IL-22 is mainly derived

from ILC3 (12), CD4+ T cells, and Th17 cells (13). ILC3 are

innate immune cells and critical for IL-22 production (35). A

previous study reported that ILC3 protects the host from enteric

Citrobacter rodentium infection (54). Chun et al. reported a lower
Frontiers in Immunology 11
proportion of ILC3 in patients with IBD (55), suggesting that

ILC3 may have a protective role in IBD. It has been reported that

IL-7, expressed in intestinal epithelial cells (56), is required for

ILC3 development and maintenance, and consequently for

intestinal barrier defense (57). In this study, we confirm that
B
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FIGURE 6

B. fragilis possibly promoted CLP-derived ILC3 to secrete IL-22 in DSS-induced colitis. (A) The heatmap analysis of inflammatory factors from colon
tissue through protein microarray detection. Control group (N=2), DSS group (N=3), DSS+ZY-312 group (N=3). N, number of mice. Red represents
up-regulation, and blue represents down-regulation. (B) The level of inflammatory factors including IL-7, IL-1a, GM-CSF, and IFN-g showed
significant differences between the DSS+ZY-312 group (N=3) and the DSS group (N=3). IL-7 (p value=0.0078), IL-1a (p value=0.0038), GM-CSF (p
value=0.0173), IFN-g (p value=0.0386), Red represents up-regulation, blue represents down-regulation. (C) The PPI (protein-protein interaction)
analysis of DEGs (differentially expressed genes) between the DSS group and DSS+ZY-312 group. Network nodes represent proteins, edges represent
protein-protein associations, colored nodes: query proteins and the first shell of interactors, white nodes: the second shell of interactors, and empty
nodes: proteins of unknown 3D structure, contrary to a known 3D structure. (D) IL-22 secreting ILC3 (labeled with FVS-CD45+Lineage-RORgt+IL-22
+) and CD4+T cells (labeled with FVS-CD45+Lineage+CD4+IL-22+) from CLP in C57BL/6 mice were analyzed by cell flow cytometry, and statistical
analysis of cell percentage was showed (right panel). Control group (N=3), DSS group (N=13), DSS+ZY-312 group (N=11). N, number of mice. (E) Cell
flow cytometry analysis of IL-22 secreting ILC3 in IL-22+/+ mice. Control group/IL-22+/+ (N=3), DSS group/IL-22+/+ (N=3), DSS+B. fragilis group/IL-
22+/+ (N=3). N, number of mice. Data are presented as Mean ± SEM. Statistical analysis was performed using one-way ANOVA (D, E). *p < 0.05,**p <
0.01, ***p < 0.005, NS indicates no significance.
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B. fragilis may promote ILC3 to secrete IL-22 in a manner of IL-7

signaling. However, the signal transmission between B. fragilis and

ILC3 remains unclear due to that ILC3 in mice does not have toll-

like receptors to recognize intestinal microbiota (56). Potentially,

intestinal microbiota-associated metabolites could activate aryl

hydrocarbon receptors in ILC to secrete IL-22 (58, 59) It

suggests that B. fragilis-relative metabolites may convey the

signal to activate ILC3 to mediate IL-22 secretion. Therefore, we

will investigate the mechanistic interactions between B. fragilis and

ILC3 in our further studies.
5 Conclusion

In conclusion, we identify that ILC3-derived IL-22 is necessary

for B. fragilis to activate the STAT3 signaling pathway, thereby

facilitating colonic mucosal regeneration including cell proliferation

and mucus secretion, and modulating intestinal microbiota. We

expect that B. fragilis exerts beneficial effects in IBD via innate

immunity-mediated colonic mucosa regeneration.
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