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Baylet A, Téteau O, Dalloul I, Dalloul Z,
Zawil L, Dézé O, Cook-Moreau J,
Saintamand A, Boutouil H, Khamlichi AA,
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Introduction: In mature B cells, activation-induced deaminase reshapes Ig genes

through somatic hypermutation and class switch recombination of the Ig heavy

chain (IgH) locus under control of its 3’ cis-regulatory region (3’RR). The 3’RR is

itself transcribed and can undergo “locus suicide recombination” (LSR), then

deleting the constant gene cluster and terminating IgH expression. The relative

contribution of LSR to B cell negative selection remains to be determined.

Methods: Here, we set up a knock-in mouse reporter model for LSR events with

the aim to get clearer insights into the circumstances triggering LSR. In order to

explore the consequences of LSR defects, we reciprocally explored the presence

of autoantibodies in various mutant mouse lines in which LSR was perturbed by

the lack of Sµ or of the 3’RR.

Results: Evaluation of LSR events in a dedicated reporter mouse model showed

their occurrence in various conditions of B cell activation, notably in antigen-

experienced B cells Studies of mice with LSR defects evidenced increased

amounts of self-reactive antibodies.

Discussion:While the activation pathways associated with LSR are diverse, in vivo

as well as in vitro, this study suggests that LSR may contribute to the elimination

of self-reactive B cells.
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Introduction

Antigen (Ag)-specific antibody (Ab) responses rely on cells

harboring B cell receptors (BCRs) optimally selected within

germinal centers (GCs). Activation-induced deaminase (AID)-

dependent somatic hypermutation (SHM) carves high affinity

immunoglobulin (Ig) variable (V) domains in cells which then

more efficiently capture Ags and undergo the best cognate

interactions with T follicular helper cells. In parallel, class switch

recombination (CSR) of the Ig heavy (IgH) chain locus replaces

expression of the constant (C)µ gene with a downstream C gene by

joining the repetitive switch (S) regions of C genes. After successful

SHM and/or CSR, cells with reshaped BCRs either differentiate into

plasma cells and secrete high affinity Abs or eventually survive as

memory cells. Positive selection of such cells inherently requires

simultaneous elimination of competitors. Terminating immune

responses also later implies contraction of immune cell populations

through programmed cell death pathways. GC B cells face multiple

pro-apoptotic risks. They strongly express proapoptotic proteins such

as BAX, BAD, BID and FAS receptor (while down-regulating anti-

apoptotic proteins BCL2 and BCL-XL). Their active metabolism

yields abundant reactive oxygen species and they accumulate DNA

lesions including mismatches, apurinic/apyrimidic (AP) DNA and

single- or double-strand breaks. Meanwhile, the BCL6-driven

program protects activated cells from death by down-regulating

P53, P21, CHK1 and ATR; expression of the AP endonuclease

APE2 and the polymerase Rev7 also protects cells from toxic AP-

lesions and from the DNA damage response (1, 2).

Altogether, specific immune responses need to restrict survival

signals to bona fide Ag-specific cells while dampening activation of

polyreactive or passenger B cells transiting through lymphoid

tissues and undergoing sub-optimal stimulation. Fine tuning of

the pro-survival vs pro-apoptotic pathways is thus a major issue in

physiology, in order to prevent lymphomagenesis or deregulated

expansion of inappropriate B cells.

While immature and transitional cells can readily die upon

activation, mature B cells are more resistant to apoptosis (3).

Besides the successful outcomes of activation, death however

remains a frequent fate for GC and recent post-GC B cells (4, 5).

This combines signals such as those provided by Fas or CD22 (6, 7),

death related to DNA lesions (1, 8), death-by-neglect for cells

lacking BCR signals (9, 10) and activation-induced cell death

(AICD). B cell AICD involves factors such as EndoU or the

transcription factor Fra1 (11, 12) and can notably follow excessive

BCR/TLR signals (13), but also BCR cross-linking in the absence of

second signals from T-cells or TLRs (14, 15).

Beyond the tonic signal provided by BCR expression, BCR

cross-linking triggers activation, which associates with AID-

dependent SHM and CSR remodeling of the IgH locus under

control of its 3’ regulatory region (3’RR) (16–20). Accessibility of

S regions to CSR relies on promoters responsive to cytokines

released after B-T interactions. By contrast, the 3’RR controlling

these promoters, does not itself bind cytokine-dependent

transcription factors but rather those typical of B cell

commitment and activation (such as PAX5, PU1, OCT, NF-kB,
ETS1, AP1…) (21, 22). Local chromatin remodeling, physical
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accessibility and transcription of the 3’RR, yielding enhancer (e)

RNA, are thus mostly modulated by B cell activation (23, 24).

Fate of such activated B cells differentially relies on AID-mediated

effects. Besides affinity maturation, unfavorable V region SHM or IgH

locus recombination can promote apoptosis by altering Ag

recognition or Ig expression (4, 24). We have previously discovered

a CSR-like, AID-mediated event joining an S region to the 3’RR,

dubbed locus suicide recombination (LSR), that leads to the loss of the

whole constant region and shut-down of Ig expression (24, 25). To

what extent lost BCR expression contributes to B cell homoeostasis in

the context of LSR remains to be clarified. Various non-mutually

exclusive hypotheses can be put forward for the role of LSR including

elimination of bystander cells with non-cognate BCR, of low-affinity

cells receiving incomplete T-cell help, and/or of harmful cells having

acquired self-binding affinity for self Ags. Since switched Abs are the

most pro-inflammatory, means for limiting CSR of self-reactive cells

could be of interest for the specificity and safety of immune responses.

As a first attempt to explore the contribution of LSR to negative

selection and B cell AICD pathways, we designed a LSR reporter

model in which we modified the murine IgH locus by inserting a V-

less Ig human Cµ (hCµ) gene downstream of the 3’RR. The 3’RR

enhancers (hs3a, 1-2, 3b and 4) are interspersed in all mammalian

species with highly repetitive “like-Switch” (LS) stretches (with eleven

LS regions in the mouse). LS1 precedes hs3a; LS2 to LS7 lie in the

palindrome flanking hs1-2; LS8-9 follow hs3b and LS10-11 follow hs4

(24). Having previously noticed that LS repeats functionally mimic S

regions by recruiting AID (and then undergoing LSR), we knocked-in

the reporter human Cµ downstream of the most downstream LS

region, thus conditioning its inducible expression on the occurrence of

LSR junctions, then able to yield primary transcripts made up of

mouse VDJ and hCµ. Such transcripts should be spliced into mature

VDJ-hCµ transcripts, ultimately leading to chimeric mouse-human µ

H chain. This reporter model confirmed that a Cµ gene inserted

downstream of potential LSR breaks could be expressed at this

position after B cell activation.

Additionally, we evaluated the effect of an LSR defect in mouse

models invalidated for Sµ or 3’RR, sequences which normally

support LSR recombination, and observed a significantly

increased occurrence of self-binding Abs in such models,

suggesting a contribution of LSR to B cell negative selection.
Materials and methods

Mice

The procedures for mouse studies have been reviewed and

approved by the Ministère de l ’Education Nationale de

l’Enseignement Supérieur et Recherche (agreement APAFIS#

16274-2018072514307380v9). Mice were bred in a specific and

opportunistic pathogen free (SOPF) core facility. In addition to

wild-type (wt) controls, samples used in this study originated from

previously described transgenic mice including mice with a

complete deletion of Sµ (26), 3’RR-deficient animals (3’RRKO)

(19), c3’RR mice with a partial 3’RR deletion (27), µϵKI mice

expressing human IgM heavy chains (28), together with Rag-
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deficient mice (negative controls lacking circulating Ig), and MRL/

lpr mice (positive controls for circulating autoantibodies).
Generation of reporter LSRµKI mice

A complete genomic DNA fragment including the same full-

length human Cµ gene previously expressed at high levels in µϵKI
mice (28), with the complete CH1,2,3,4, M1 and M2 exons and

intervening introns, followed by a floxed neomycin resistance gene

(neoR) was introduced in between 5’ and 3’ arms for homologous

recombination and insertion downstream of the hs4 core enhancer

and the LS11 like-switch repeats (24), and upstream of the elements

defined as the 3’ boundary of the IgH locus, i.e. the hs5, hs6 and hs7

elements and associated CTCF binding sites (29) (Figure 1A). At the 5’

end of the targeting construct, a phosphoglucokinase promoter-

Herpes Simplex Virus thymidine kinase (TK) gene was included in

order to negatively select against random integration. Cells of the

embryonic stem (ES) cell line E14 were transfected with linearized

vector by electroporation and selected using 300 mg/ml geneticin and 2

mg/ml ganciclovir. Southern blot analyses with probes hybridizing 5’

and 3’ of the construct and specific PCR experiments identified

recombinants. ES clones showing homologous recombination were

injected into C57Bl/6 blastocysts, and the resulting chimeras were

mated with C57Bl/6 animals. Germline transmission in heterozygous

mutant mice was checked by Southern blot. Mutant mice were further

mated with cre recombinase-expressing transgenic mice and progeny

were checked for cre-mediated deletion of the neoR gene. Mice were

further genotyped with a triple PCR assay to simultaneously evaluate
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the presence of the hCµ gene, absence of the neoR gene and the

homogeneous loss of the WT site targeted downstream of the 3’RR.
Blood sampling in mice

Blood samples were recovered from transgenic mice and wt

controls with heparinised needles. Plasma samples were recovered

by centrifugation and stored at -20°C until used. Immunization

with sheep red blood cells (SRBC, 200 µL per immunization) was

done by intraperitoneal injection. Blood samples were taken at day 0

and day 8 after injection and assayed for human IgM by ELISA.
Spleen cell cultures for Ig determinations

Spleens were harvested at day 8 post-immunization.

Splenocytes were collected, red blood cells were lysed and cells

were CD43-depleted using CD43 microbeads (Miltenyi Biotec).

Single-cell suspensions of CD43- B splenocytes from wt, and

LSRµKI mice were cultured 3 days at 1x106 cells/ml in RPMI

1640 with 10% fetal calf serum, 5mg/ml LPS with or without,

20ng/ml IL-4, 2ng/ml TGFb and 2 ng/ml INFg (PeproTech,

Rocky Hill, NJ), anti-CD40 antibody (2.5mg/ml) (R&D systems)

and anti-k light chain antibody (2.5µg/ml, Southern Biotechnology)

for BCR cross-linking. Culture samples were harvested at day 4 for

RNA extraction. Culture supernatants were then recovered and

stored at -20°C until used.
B

CA

FIGURE 1

Characterization of LSRµKI mice. (A) Map of the murine IgH locus and the targeting vector used for insertion of the hCµ gene in-between the hs4
enhancer and the hs5 insulating element, downstream of LS10-11 repeats (TK, thymidine kinase gene; E, EcoRI; P, PmlI) (not to scale). (B) Minimal
impact of hCµ knock-in on peripheral B cell compartments as shown by cell cytometry analysis of splenocytes. (C) Secretion of mouse Ig in LSRµKI
mice in blood monitored by ELISA. (n = 5 to 6 mice, Mann and Whitney non-parametric two-tailed test; *P < 0.05; **P < 0.01).
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Immunization and ELISA assays

For immunization experiments, batches of 8-week-old mice

were used (6 mice per genotype). The first immunization was

performed with antigen (50 mg NP-Ficoll in 50% incomplete

Freund adjuvant or 100µg NP-KLH in 50% complete Freund

adjuvant per animal) and a second immunization was realized 30

days later with the same amount of antigen in 50% incomplete

Freund adjuvant. Immunized mice were eye-bled at various

intervals during the immunization protocol and plasma was

analyzed for the presence of antigen-specific IgM, IgG1, IgG2a and

IgG2b by ELISA as previously described (27).

Assays for specific IgM, IgG1, IgG2a and IgG2b were performed

in plates coated with 10µg/ml antigen in 0.05 M Na2-CO3 buffer.

After washing, a blocking step was performed with 3% bovine

serum albumin (BSA) – PBS. For analyses, serum or plasma were

diluted into successive wells in 1% BSA - PBS and incubated 2 hours

at 37°C. The positive control consisted of a pool of plasma from

immunized wtmice (the same control plasma was used in all ELISA

assays). After washing, 100 ml/well of appropriate conjugated

antibodies were added and adsorbed during 1 hour at 37°C.

Alkaline phosphatase (AP)-conjugated goat antisera specific for

human IgM, mouse IgM, IgG1, IgG2a and IgG2b (Southern

Biotechnologies) were used at 1 mg/ml. After washing, AP activity

was assayed using AP substrate and enzymatic reactions were

stopped with 3 M NaOH. Optical density was measured at 405

nm. Ovalbumin-specific antibodies were quantified in arbitrary

units by comparing diluted plasma with the titration curve

obtained on the same multiwell plate.

Plasma from LSRµKI and wtmice was analyzed for the presence

of various mouse Ig classes (IgM, IgG1, IgG2b, IgG2b, IgG3, IgA) and

for human IgM by ELISA. Assays were performed in polycarbonate

96 multiwell plates, coated overnight at 4°C (100 µl/well) with

suitable capture antibodies diluted in 0.05 M Na2CO3 buffer. After

washing, a blocking step was performed and 50 µl plasma (first

diluted to 1:50), supernatants or isotypic standard Ig were diluted

into successive wells in 1% BSA/PBS and incubated for 2 hr at 37°C.

After washing, appropriate AP-conjugated goat antisera specific for

human IgM or mouse Ig classes (Southern Biotechnologies) were

added and adsorbed during 1 hr at 37°C. After washing, AP activity

was assayed on AP substrate, and blocked by 3 M NaOH. Optic

density was then measured at 405 nm.
Cell cytometry

For cytometry analysis, single cell suspensions of splenocytes

from 4- to 8-week old mice, were stained with the following

monoclonal antibodies conjugated to either fluorescein

isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin

(APC), phycoerythrin-cyanin 7 (PECY7) or phycoerythrin-cyanin

5 (PC5): anti-CD5 (53-7.3), anti-CD19 (6D5), anti-CD23 (B3B4),

anti-CD21/CD35 (7G6), anti-B220 (RA3-6B2) (all from BD

Pharmingen, Southern Biotech or e-bioscience).
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Real time quantitative PCR

Four-day in vitro stimulated splenocytes were harvested and

RNA was extracted and reverse transcribed using the High-

Capacity cDNA Archive Kit (Applied Biosystems) before being

subjected to quantitative PCR (qPCR) to evaluate functional JH3-

hCµ spliced transcripts. Quantitative PCR was performed using

SYBR® Green (Takara). Data for JH3-hCµ transcripts were

normalized according to the parallel evaluation of b-
actin transcripts.
Repertoire analysis using RACE-PCR and
next-generation sequencing

Total RNA was extracted using TRIzol reagent (ThermoFisher)

from 5x106 CD43- spleen B cells from 2 groups of 5 LSRµKI and 5

wtmice. For each sample, 500 ng total RNA was reverse-transcribed

to cDNA by a 5’RACE PCR using ProtoScript II (New England

Biolabs) and a cap race primer associated with consensus reverse

primers for each mouse IgH Cm, Cg and Ca CH1 region or the

human Cµ CH1 (as detailed in Supplementary Table 1). To prepare

libraries, 5 µl cDNA were amplified with Taq Phusion (New

England Biolabs), using a universal forward primer and a nested

reverse primer selected within the CH1 exon of the Cm, Cg and Ca
genes. This amplified region corresponded to the 5’ part of IgH

transcripts; PCR products were purified using (0.6 x reaction

volume) AMPure XP beads (Beckman Coulter), and resuspended

in 20µl NEB elution buffer (Qiagen). Thereafter, 150ng amplified

product was barcoded and tagged with sequencing adapters through

12 cycles of primer extension with Taq Phusion (30 seconds at 98°C,

30 seconds at 65°C, 30 seconds at 72) with a final elongation 5

minutes at 72°C. Tagged PCR products were purified using (0.6 x

reaction volume) AMPure XP beads and mixed with a

stoichiometric ratio. Resulting libraries were gel purified

(QIAGEN) before sequencing. Sequencing adaptor sequences and

tagging PCR steps were as previously reported for sequencing either

with the Titanium emPCR Kit (Lib-A) on a 454 GS Junior

instrument (Roche) or the MiSeq Reagent Kit v3 (600 cycles)

with a MiSeq apparatus (Illumina) (30, 31). Ig classes and

subclasses were identified by matching the included CH1 part to

the relevant C gene. VDJ sequences sorted according to the

associated C gene were then analyzed using high-VQUEST

software (IMGT) (32). Redundant sequences were excluded in

order to evaluate the global repertoire of clonotypes and the

mean somatic hypermutation level.
Data availability

RepSeq data have been deposited at GEO repository (accession

number GSE233503) in order to be publicly available as of the date

of publication. DNA repertoire reported in this paper will be shared

by the lead contact upon request. Any additional information
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required to reanalyze the data reported in this paper is available

from the lead contact upon request.
Evaluation of self-reactive Abs

Plasma frommice carrying alterations of the 3′RR or deletion of

Sµ were compared to plasma from wt animals. Plasma from Rag-

deficient mice were used as negative controls and plasma from

MRL/lpr mice as positive autoimmune controls. Since some

evaluated mice carried CSR anomalies and the assays focused on

IgM, all plasma assayed were first evaluated for their total IgM level

and then diluted to a standardized total IgM level of 20-µg/mL

(except the Rag-deficient serum which was diluted to 1:10).

Evaluation of Abs binding tissue antigens was done by ELISA

assays in 96 multi-well plates. Plates were thus coated overnight at

4°C either with 10 mg/mL rabbit IgG (Dako, X0903) or with 100 mL
kidney cell lysate (10-mg/mL, diluted in Na2CO3/NaHCO3 buffer).

After removing coating solution, a blocking step was performed for

1 hour with 3% BSA- PBS at 37°C. After washing (0.1% Tween20 -

PBS), plasma normalized according to their total IgM content were

diluted in 0.3% BSA - PBS and incubated in ELISA plates for 2

hours at 37°C. After washing, secondary anti-mouse-IgM–alkaline

phosphatase (AP)-conjugated antibodies (Southern Biotech, #1021-

04) were added and incubated for 1 hour at 37°C. After final

washing, ELISA were revealed with SigmaFAST™ p-Nitrophenyl

phosphate (p-Npp) substrate (Sigma-Aldrich #N2770) and optical

density was read at 405 nm.

ELISA were also carried out for quantifying rheumatoid factors

(i.e. IgM anti IgG), by evaluating the binding of circulating Abs

against rabbit IgG, as done for clinical assays in patients. To this

goal, ELISA plates were treated as mentioned above, except that

plates were initially coated with rabbit IgG. For all ELISA assays,

data were expressed as means ± SEM of the indicated number (n) of

values, as calculated using Prism software (GraphPad Software, La

Jolla, CA). Significance was calculated with a nonparametric Mann-

Whitney U test.

To detect Abs reactive to intracellular Ags, indirect

immunofluorescence assays (IFAs) were adapted from clinical

assays and performed according to the manufacturer’s

instructions. In brief, HEp-2 cell coated slides (Kallestad™ HEp-

2, Bio-Rad) were incubated at 37°C for 30min with sera adjusted to

20 µg/ml IgM. Slides were washed in PBS and incubated with Alexa

Fluor® 488 anti-mouse IgM (Life, A21042). Fluorescence was

visualized on a Nikon Eclipse Ni-E microscope. Serum from

MRL/lpr auto-immune mice was used as a positive control and

RAG-deficient serum diluted to 1:10 was used as negative control.

Images were analyzed with ImageJ software (NIH), converting the

single channel color image to a binary image, segmented into

features of interest. Areas corresponding to fluorescence signals

were measured. Results are expressed as arbitrary units (measured

fluorescence area of sample divided by measured fluorescence area

of PBS). Data, expressed as means ± SEMs of the indicated number

of values, were analyzed using Prism software (GraphPad Software,

La Jolla, CA). Significance was calculated with a nonparametric

Mann-Whitney test using Prism software.
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Results

Peripheral B cells normally appear in
LSRµKI mice

Since the mouse 3’RR includes several stretches of repetitive

like-switch (LS) sequences, we chose to insert a reporter Cµ gene

between the most 3’ LS region and the insulating elements

previously shown to act as the 3’ boundary and 3’ anchor of the

IgH locus (29, 33) (Figure 1A). ES cells were transfected, selected

using neomycin, screened and validated for efficient targeting before

generating the homozygous LSRµKI mice (Figures S1A, B) used for

this study. Peripheral B cells differentiated and their analysis among

splenocytes by flow cytometry did not significantly differ from their

wild-type counterparts in terms of global number, amount of

transitional B cells, and distribution into follicular vs marginal

zone B cells (Figures 1B; S1C), as well as early B cell development

was not affected in LSRµKI mice (Figure S1D). Thus, the ectopic

hCµ insertion downstream of the 3’RR had no major impact on B

cell development. Levels of circulating Ig by contrast suggested

discrete alterations of the class switching process (Figure 1C). In

basal SOPF conditions and without any immunization, LSRµKI

mice in fact barely differed fromWT animals, except for a lower IgE

level (Figure 1C). Additional differences appeared in immunized

mutant animals with IgA production being lower than in wt mice,

while IgG1 and IgG3 showed no significant variation and

endogenous mouse IgM and IgG2b levels were higher than in wt

controls (Figure 1C).

Since local AID recruitment at the 3’RR supports the

occurrence of local AID-mediated DNA breaks able to recombine

with Sµ and mediate LSR in activated B cells, the expectation from

the LSRµKI model was to turn LSR events into ectopic CSR to the

inserted hCµ gene, thus yielding chimeric VDJ-hCµ gene

transcripts. ELISA from blood indeed confirmed the presence of

minute amounts of secreted human IgM in the unimmunized SOPF

mice (about 50 ng/ml), which increased by 5 to 10-fold after SRBC

immunization (Figure 2A). The inserted hCµ gene thus is expressed

in LSRµKI, yields chimeric Ab molecules with human IgM

determinants and its usage at this position is responsive to

immune stimulation in vivo.
Functional expression of the inserted hCµ
gene in LSRµKI mice

In order to evaluate the expression of hCµ transcripts and check

their functionality, we amplified and characterized the spliced

sequences from transcripts of the human Cµ gene, using Ig

repertoire RepSeq/next-generat ion sequencing (NGS)

experiments. IgH transcripts from lymphoid tissues notably

revealed functional VDJ-hCµ transcripts related to all VH

subgroups and with V and J usage that did not significantly differ

from that of endogenous mouse H chain transcripts (Figure 2B). V

regions associated with hCµ included both mutated and unmutated

sequences at levels roughly similar to the V sequences associated

with mouse C genes from the same RNA samples (mean SHM load
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was 1.68% for sequences associated with mouse Cµ, 2.21% for those

associated with mouse Cg and 2.12% for those associated with hCµ).

Surprisingly, expression of the knock-in hCm remained low in

vivo, and we failed to identify significant levels of hIgM+ cells by cell

cytometry since levels remained close to the background staining.

Accordingly, immunofluorescence on tissue sections failed to

identify cells clearly staining for human IgM though sections of

the gut mucosa-associated lymphoid tissues yielded a diffuse

staining. In contrast, secreted hIgM was detectable (Figure 2C).

Puzzled by these observations, we explored the 3’ part of hCµ

transcripts for correct splicing of membrane exons. We found

correct splicing of the CH exons onto the first membrane exon

(M1) (Figure S1E). However, splicing of the M1 onto the M2 exon

was not detectable, providing a likely explanation for the absence of

any detectable cells with a human IgM BCR (Figure S1F).

Sequencing of the pertinent regions in the ectopic insert

confirmed intact splice sites on M1 and M2 exons on DNA

(not shown).

We also quantified JH-hCµ spliced transcripts by RT-qPCR on

RNA prepared from in vitro stimulated B cells. Increased amounts

of spliced JH-hCµ transcript were detected in various conditions of

B cell stimulation, either using LPS, or at a higher level with LPS

+IL4 stimulation (Figure 2D). Thus, functionally spliced chimeric

transcripts are induced upon B cell activation in vitro. With the aim

to improve the survival of hIgM+ cells in vivo, we bred LSRµKI mice

with BCL2 overexpressing mice (34) and quantified hIgM

transcripts in white blood B cells 2 months after SRBC

immunization: the amount of hIgM transcripts however remained
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similar in double mutant mice compared to LSRµKI mice. BCL2

overexpression thus did not significantly rescued B cells expressing

hIgM in these conditions (Figure S1G).
Mice with LSR defects show increased
production of self-reactive antibodies

As mentioned above, one possibility regarding the functional

significance of LSR is that the process takes place in B cells

expressing self-reactive specificities. The tiny hIgM production in

LSRµKI mice was not adapted to such a detailed study of Ig

specificity. Rather, we chose to explore this issue in three mouse

lines featuring LSR defects, which carried a partial (c3’RR) (27) or a

complete deletion of the 3’ RR (19) or a complete deletion of

Sµ (26).

Using various classical assays for the detection of self-reactive Abs,

blood samples from these mice readily showed increased presence of

Abs binding intra-cellular Ags, the most notably in Sµ-deficient mice

and in 3’RR deficient mice (total or partial 3’RR deletion) to a lesser

extent, as revealed by indirect immunofluorescence on Hep2 cells

(Figures 3A, B). Presence of rheumatoid factors, again principally in

Sµ-deleted mice (Figure 4A) and of Abs binding tissue antigens as

demonstrated by ELISA against kidney lysate antigens (Figure 4B),

were also readily detected. These observations suggest that regardless

of the LSR target region which is deleted in the IgH locus, this can alter

negative selection of B cells and result in increased production of self-

reactive Abs.
B

C D

A

FIGURE 2

Expression of human IgH µ chain in LSRµKI mice. (A) ELISA of circulating human IgM in blood from naive or SRBC-immunized LSRµKI mice compared
to wt controls. (B) Expression of various VH gene segments in the repertoire of VDJ-hCµ transcripts compared to endogenous fully murine VDJ-mCµ
transcripts. (C) Faint expression of human IgM in gut associated lymphoid tissues from LSRµKI mice, compared to a negative wt control and a positive
control (InEps = µϵKI mice carrying a hCµ insertion immediately downstream of the IgH JH region and producing high amount of hIgM). (D) Quantitative
evaluation of JH-hCµ spliced transcripts by reverse transcription and qPCR in RNA from splenocytes of LSRµKI mice stimulated in vitro in various
conditions. (n = 3 to 16 mice, Mann and Whitney non-parametric two-tailed test; *P < 0.05; **P < 0.01, ***P < 0.001).
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Discussion

AID and the IgH 3’RR are major players of B cell maturation by

controlling SHM and CSR finally yielding high affinity BCR/Ig of

different classes (2). Their most obvious action is thus to contribute

to the positive selection of specific B cells in the course of immune

responses. Regarding the impact of AID-mediated processes on

negative selection and tolerance, several reports have documented
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self-reactivity together with enhanced GC reactions in AID-

deficient individuals (35, 36). This was postulated to result from

an SHM defect since it affects partial AID deficiencies with

preserved AID-mediated recombination and CSR (36). However,

a similar phenotype was also recently reported in a partial AID

defect restricted to CSR while preserving SHM frequency, although

this ended with lessened selection of those V segments with SHM

appropriately focused on CDR segments (37). The impact of such
BA

FIGURE 4

Autoantibodies detected by ELISA in mice lacking LSR targeted regions. (A) Rheumatoid factors by ELISA against coated rabbit immunoglobulins, in
blood from wt mice versus mice with either partial deletion of the 3’RR regions targeted by LSR (c3’RR), complete deletion of 3’RR (3’RRKO) or
complete deletion of the Sµ region (SµKO). (B) Autoantibodies against tissue antigens (from kidney lysates) in the same samples as in (A) (n = 2 to 13
mice, Mann and Whitney non-parametric two-tailed test; *P < 0.05; **P < 0.01, ***P < 0.001).
BA

FIGURE 3

Autoantibodies against intracellular antigens detected by immunofluorescence in mice lacking LSR targeted regions. (A) Representative images
evaluating reactivity against Hep2 cells by plasma from wt mice vs plasma from mice with either partial deletion of the 3’RR regions targeted by LSR
(c3’RR), complete deletion of 3’RR (3’RRKO) or complete deletion of Sµ (SµKO). (B) Summary of indirect immunofluorescence detection of
antibodies binding Hep2 cells, in samples from mice lacking LSR targeted regions. (n = 6 to 7 mice for wt, c3’RR, 3’KO and Sµ KO: n = 1 for the
other controls, Mann and Whitney non-parametric two-tailed test; *P < 0.05; **P < 0.01).
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partial AID defects on SHM vs CSR machinery and on B cell

selection thus remains to be clarified, as well as their potential

impact on the LSR process.

Evaluating a potential role for the 3’RR in negative selection of B

cells is still more difficult given its broad implication for stimulating

not only AID-mediated SHM and CSR in activated B lymphocytes,

but also the high-level transcription of Ig genes necessary for Ig

secretion in plasma cells, as highlighted by several 3’RR targeted

disruptions in mouse models (18–20). Whether the AID-mediated

loss of IgH C genes resulting from LSR significantly contributes to

negative selection of B cells is still more elusive since it would ideally

need to evaluate the BCR features and the patterns of Ig expression

in cells dying from LSR.

To this aim, we designed the LSRµKI model to capture the VDJ

repertoire of cells involved in LSR by introducing an “acceptor”

human Cµ gene downstream of the mouse 3’RR, to which VDJ

exons recombined to the 3’RR can then attach after transcription

and splicing. As expected, this insertion of hCµ downstream of the

3’RR had no significant effect on mature B cell compartments except

for minor changes in CSR. While all previously reported alterations

of the 3’RR, such as deletions or neo gene insertions upstream of the

most 3’ enhancer, hs4, resulted in major CSR defects, it was shown

that a neo gene insertion downstream of hs4 and upstream of the

IgH locus 3’ boundary had no significant effect on B cell

development or CSR (38). The LSRµKI mutation thus reproduces

a similar situation.

Expression of the ectopic hCµ occurred in this model but

remained low, for reasons which may implicate either rare LSR

events in mice, and/or premature termination of transcripts going

from the VDJ to a potentially long intronic 3’RR before reaching

hCµ. Regulation of splicing is also known to involve multiple factors

and may be unpredictably complex for a human gene inserted in the

mouse genome at an ectopic position. In the present case, the

unexpected biased splicing favoring secreted-type µ transcripts

precludes expression of membrane anchored human IgM. In the

absence of such a surrogate BCR to durably rescue “post-LSR” cells,

the LSRµKI mice thus stand as a transient LSR reporter model.

In this reporter model, hCµ transcription and secreted human IgM

evaluation indeed provide convenient read-outs for monitoring LSR

events. Their analysis shows that some functional chimeric VDJ-hCµ

mRNA and protein can be produced in this configuration where LSR

translates into CSR towards the hCm gene, with heightened in vivo

production when animals are immunized, and with a repertoire of VDJ

segments roughly similar to the normal B cell repertoire, not showing

obvious bias in the V and J usage, and including both germline and

somatically mutated VDJ regions. Although the system cannot evaluate

the frequency of LSR, it indicates that the process can involve naïve as

well as memory B cells. In vitro experiments comparing various

conditions of B cell stimulations also found LSR associated with

various types of stimuli.

The LSRµKI model thus provides a reporter system for LSR

events, but contrary to our expectations, the hCµ inserted at this

downstream position did not yield completely mature hCµ

transcripts that could have supported BCR expression, and failed

to support significant survival of cells “escaping LSR” by switching
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to an hCµ-class BCR expression. Detailed study of such cells and of

their Ag specificity was thus not possible in this model.

In order to obtain an indirect evaluation of the connection

between LSR and self-reactivity, we thus pursued our study by

evaluating the amounts of self-reactive antibodies in mouse models

where Sµ or 3’RR regions targeted by LSR in the IgH locus, were

either truncated or completely deleted. Using various classical

assays for rheumatoid factors or for evaluating reactivity against

tissue antigens and intra-cellular antigens, we observed that 3’RR

alterations resulted in the presence of self-reactive Abs and that

higher production of such Abs was observed for the complete rather

than for a partial 3’RR deletion. Still to a higher level, self-reactive

Abs were found in Sµ-deficient mice. Interpretation of such data can

obviously be obscured by the broad consequences of the IgH

deletions considered, with effects that are not restricted to

deletion of LSR target sequences. Notably 3’RR deletions are

known for their impact on SHM (27, 39), and similarly to the

hypotheses made for some AID defects focused on SHM, self-

reactivity might then result from a lack of highly specific Abs, a

related defect in clearing some antigens and subsequent immune

dysregulation (36). However, such effects are not expected for the

deletion affecting Sµ, from which only mechanical inhibition of CSR

and LSR can be expected.

Although the data included in this report have many

limitations, we think that they altogether support the hypothesis

that LSR might contribute to the peripheral negative selection of

self-reactive cells and thus play a role in the homeostasis of

immune responses.

Alternative explanations for strong self-reactivity which

develops in Sµ-deficient mice could also involve the CSR defect,

but such a hypothesis seems unlikely, notably since other conditions

associated with B cell extrinsic CSR defects, such as CD40L

deficiency have not been documented as associated with increased

self-reactivity. Interpretations of these deficiencies however remain

controversial, as for the situation of partial AID defect, where the

loss of B cell homeostasis has been principally correlated with SHM

defects but also eventually with CSR defects.

Definitive conclusions about the potential role of LSR will thus

await additional explorations where the ideal model would need

sophisticated modifications of the locus preserving CSR, SHM and

normal plasma cell differentiation, while suppressing LSR or

allowing full survival of post-LSR cells (36, 37).
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