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Introduction: Many people with long COVID symptoms suffer from debilitating

neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although

symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC

symptoms impact virus-specific immune responses. Therefore, we examined T cell

and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation

signatures distinguishing Neuro-PASC patients from healthy COVID convalescents.

Results: We report that Neuro-PASC patients exhibit distinct immunological

signatures composed of elevated CD4+ T cell responses and diminished CD8+

memory T cell activation toward the C-terminal region of SARS-CoV-2

Nucleocapsid protein when examined both functionally and using TCR

sequencing. CD8+ T cell production of IL-6 correlated with increased plasma

IL-6 levels as well as heightened severity of neurologic symptoms, including pain.

Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral

response signatures were evident in Neuro-PASC patients compared with

COVID convalescent controls without lasting symptoms, correlating with

worse neurocognitive dysfunction.

Discussion: We conclude that these data provide new insight into the impact of

virus-specific cellular immunity on the pathogenesis of long COVID and pave the

way for the rational design of predictive biomarkers and therapeutic

interventions.
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Introduction

SARS-CoV-2 is the causative agent of a worldwide pandemic

that was first identified in December, 2019. There have been more

than 765 million cases and over 6. 9 million deaths worldwide

attributable to COVID-19 (1). Although highly effective vaccines

are now used to prevent severe acute disease and death caused by

SARS-CoV-2, the risk of post-acute symptoms and severe chronic

complications after multiple infections is not decreased in

vaccinated individuals (2). Therefore, diagnosis and treatment of

long-term sequelae after SARS-CoV-2 infection remain an urgent

medical concern.

“Long COVID” is defined by the Centers for Disease Control

and Prevention (CDC) and others as a wide range of symptoms that

can affect the brain, heart, lungs, GI tract, and other body systems

lasting more than 4 weeks after disease onset (3). The syndrome has

been clinically termed “post-acute sequelae of SARS-CoV-2

infection” (PASC) by the National Institutes of Health and affects

an estimated 30% of people infected with SARS-CoV-2 in the U.S

(4, 5). “Post-COVID conditions” have also been defined by the

World Health Organization as symptoms persisting for more than 3

months that cannot be explained by an alternative diagnosis (6).

Neurologic manifestations of PASC (Neuro-PASC) are among the

most debilitating and include cognitive dysfunction, fatigue, and

many other symptoms leading to decreased quality of life (7–9).

They frequently occur in patients with mild initial COVID-19

presentation who never require hospitalization for pneumonia or

hypoxemia (10, 11). Despite significant research advances, the

underlying causes of Neuro-PASC in these patients remain unclear.

T cell immunity is necessary for host defense against SARS-

CoV-2. Severe acute COVID-19 disease was linked to impaired

germinal center formation linked to a defective T follicular helper

cell response (12), and patients with severe acute disease had higher

percentages of immunosuppressive KIR+ CD8 T cells (13). Virus-

specific T cell responses were also found to be sub-optimal or

impaired in severely ill COVID patients (14). Conversely, elevated

proportions of proinflammatory T-bet+ T cells and memory B cells

were associated with lower severity of acute COVID-19 disease (15).

Studies in rhesus macaques have additionally shown that CD8+ T

cell depletion after SARS-CoV-2 infection impairs anamnestic

immune protection after subsequent re-infection (16). Though

data on immune dysregulation in PASC patients are more

limited, recent studies have found autoreactive B cell responses

are associated with Neuro-PASC (17), and antiviral effector CD8+ T

cell responses were significantly diminished in a patient with long-

term COVID-19 (18). In addition, patients experiencing persistent

post-COVID cognitive impairment had elevated plasma levels of

CCL11 and elevated white matter-selective microglial reactivity

(19). However, the impact of Neuro-PASC on virus-specific T cell

responses remains poorly understood.

Here, we focus on a group of patients who mostly had mild

acute disease but subsequently developed Neuro-PASC and a

substantial reduction in their quality of life. Our data show four

critical findings linking T cell responses with Neuro-PASC

symptoms. First, we show that Neuro-PASC patients exhibited

enhanced Nucleocapsid-specific T cell responses compared with
Frontiers in Immunology 02
COVID convalescent controls without persistent symptoms. CD8+

memory T cells from Neuro-PASC patients were also less activated

and expressed substantially more IL-6 in response to Nucleocapsid

protein, which was recapitulated in patient plasma IL-6 levels.

Thirdly, the increased severity of cognitive deficits and

deterioration of quality-of-life metrics in Neuro-PASC patients

were positively correlated with elevated Nucleocapsid-specific T

cell responses. Lastly, Neuro-PASC patients presented with elevated

immunoregulatory but lower antiviral and Th1-inflammatory

signatures compared to convalescent controls. Together, these

data suggest wide-ranging alterations in anti-Nucleocapsid-

specific immune responses in Neuro-PASC patients, with

important implications for appropriate diagnostic, prevention,

and treatment strategies.
Methods

Study design

We aimed to include a robust sample size for every patient

group. Data inclusion/exclusion criteria are described below in the

Study participant’s section. Endpoints were selected prospectively.

Replicates for each experiment are described in figure legends.

Research objectives were to identify and characterize T cell

responses to SARS-CoV-2 linked to Neuro-PASC pathogenesis and

specify how these responses differed from COVID convalescent

controls without lasting symptoms. We enrolled Neuro-PASC

outpatients, convalescent controls, and unexposed healthy

controls for our study. Experimental design is outlined in

Figure 1A. Subjects were not randomized and investigators were

not blinded to the study subjects’ grouping prior to conducting

experiments and analyzing data.
Study participants, NIH Toolbox, and
PROMIS-57 data collection

We enrolled consenting adult outpatients seen in the Neuro-

COVID-19 clinic at Northwestern Memorial Hospital from

September 2020-September 2021, including 94 Neuro-PASC

patients with documented PCR+ or seropositive IgG results for

SARS-CoV-2. In parallel, we recruited 44 healthy COVID

convalescents from the surrounding community who tested either

PCR+ or seropositive for SARS-CoV-2 before vaccination but had

no lingering symptoms lasting >4 weeks; and 34 healthy controls

who tested PCR- for SARS-CoV-2 and were also seronegative for

IgG against SARS-CoV-2 Spike RBD prior to vaccination. 30

subjects across all 3 groups were vaccinated with the primary

series of either the Pfizer BNT162B2 or Moderna mRNA-1273

mRNA vaccines prior to assaying T cells for non-Spike responses.

All study subjects remained living throughout the period of

observation. Heparinized blood samples were collected one time

from each subject at an average of 162.3-214.7 days post-symptom

onset (as in Figure 1B). Other demographic information, including

comorbidity information, is contained in Figure 1B. Comorbidities
frontiersin.org
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were self-reported and diagnosed prior to SARS-CoV-2 infection.

Neuro-PASC patients completed a cognitive function evaluation in

the clinic coincident or near the date of their blood sample

acquisition with the National Institutes of Health (NIH) Toolbox

v2.1 instrument, including assessments of: processing speed

(pattern comparison processing speed test); attention and

executive memory (inhibitory control and attention test);

executive function (dimensional change card sort test); and

working memory (list sorting working memory test) (20).

PROMIS-57 patient-reported quality of life assessments were

administered to Neuro-PASC and COVID convalescent subjects

an average of 72 days post-sample collection. Both PROMIS-57 and

NIH Toolbox results are expressed as T-scores with a score of 50

representing the normative mean/median of the US reference

population and a standard deviation of 10. Toolbox results are

adjusted for age, education, gender, and race/ethnicity. Lower

cognition T-scores indicate worse performance while higher
Frontiers in Immunology 03
fatigue, depression, anxiety, or pain interference T-scores indicate

greater symptom severity.
PBMC and plasma collection

30mL of venous blood from study volunteers was collected in

blood collection tubes containing sodium heparin from BD

Biosciences. Whole blood was layered on top of 15mL of

Histopaque 1077 (Sigma-Aldrich) in 50mL Leucosep blood

separation tubes (Greiner Bio-One) and spun at 1000g for 18min

at RT. Plasma was collected and stored at -80°C. The PBMC layer

was collected and washed 2x in sterile PBS before red blood cell lysis

with ACK buffer (Quality Biologicals). PBMCs were used in assays

either immediately or frozen down for use in the near term, as

freezing cells does not significantly affect antigen specific T cell

reactivity (21).
B

C

D

A

FIGURE 1

Study design and clinical data (A) Study design. (B) Demographic table for Neuro-PASC (NP), convalescent controls (CC), and healthy control (HC) study
participants. (C) PROMIS-57 patient-reported outcome survey T scores for NP patients (n=36) and CC subjects (n=13). (D) NIH Toolbox cognitive T
scores for NP patients (n = 55). Horizontal black line represents the U.S. national average T score of 50; p values relative to demographic-matched US
national average by one sample Wilcoxon signed rank test. *p<0.05, ***p<0.005, ****p<0.0001 by two-tailed Student’s t test.
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SARS-CoV-2 peptide antigens

All S, N and M peptide arrays used in ELISPOT and flow

cytometry studies were obtained from BEI Resources, NIAID, NIH:

Peptide Array, SARS-Related Coronavirus 2 Spike (S) Protein; NR-

52402, Nucleocapsid (N) Protein, NR-52404; Membrane (M)

Protein, NR-52403. The S peptide array consisted of 181 peptides

of 13-17aa in length and split into 6 sub-pools (S1-S6) containing

30-31 peptides each. The N peptide array consisted of 59 peptides of

13-17aa each split into 3 sub-pools containing 29-30 peptides each

(Figure 2B) or with 1 sub-pool further divided into 5 pools of 3-4

peptides each (Figure 2D). The M peptide array consisted of 31
Frontiers in Immunology 04
peptides of 12-17aa; details in Figure S1. All peptides were dissolved

in either sterile H2O or 50% sterile H2O-DMSO up to 1mL for a

universal 1mg/mL stock concentration. Peptides were used at a final

concentration at 2mg/mL in all assays.
IgG Spike RBD, nucleocapsid, and
haemagglutinin ELISA

Antigen-specific total antibody titers were measured by ELISA

as described previously (22). In brief, 96-well flat-bottom

MaxiSorp plates (Thermo Scientific) were coated with 1 µg/ml
B C

D

E

A

FIGURE 2

T cells from Neuro-PASC patients have elevated responses to select SARS-CoV-2 structural proteins compared to convalescent controls. (A) NP patients
and CC subjects display similar IFN-g responses to SARS-CoV-2 S peptides, but NP patients have enhanced N- and M peptide-specific responses.
(B) Spike RBD antibody responses are similar in NP and CC subjects. (C) NP patients have elevated anti-N IgG titers compared to CC and HC controls.
(D) NP patients have higher T follicular helper cell (Tfh) activation after N antigen stimulation compared to CC subjects. (E) Influenza A Haemagglutinin
(HA) antibody responses are similar in all groups. +ctrl = plasma from patients who received the Influenza vaccine within 3 weeks before sample
collection; -ctrl = plasma from patients collected pre-2019. Only unvaccinated subjects were examined for anti-Spike responses in A and B Horizontal
black line in B,C,E = limit of detection. Data representative of 7 experiments with all conditions plated in duplicate. *p<0.05, **p<0.01, ***p<0.005,
****p<0.0001 by one-way ANOVA with Tukey’s posttest.
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of Spike RBD for 48 hr at 4°C. Plates were washed three times

with wash buffer (PBS + 0.05% Tween 20). Blocking was

performed with blocking solution (PBS + 0.05% Tween 20 + 2%

bovine serum albumin), for 4 hr at room temperature. 6 µl of sera

was added to 144 µl of blocking solution in the first column of the

plate, 1:3 serial dilutions were performed until row 12 for each

sample, and plates were incubated for 60 min at room

temperature. Plates were washed three times with wash buffer

followed by addition of secondary antibody conjugated to

horseradish peroxidase, goat anti-human IgG (H + L) (Jackson

ImmunoResearch) diluted in blocking solution (1:1000) and 100

µl/well was added and incubated for 60 min at room temperature.

After washing plates three times with wash buffer, 100 µl/well of

Sure Blue substrate (SeraCare) was added for 1 min. Reaction was

stopped using 100 µl/well of KPL TMB Stop Solution (SeraCare).

Absorbance was measured at 450 nm using a Spectramax Plus 384

(Molecular Devices). SARS-CoV-2 RBD and N proteins used for

ELISA were produced at the Northwestern Recombinant Protein

Production Core by Dr. Sergii Pshenychnyi using plasmids that

were produced under HHSN272201400008C and obtained from

BEI Resources, NIAID, NIH: Vector pCAGGS containing the

SARS-related coronavirus 2, Wuhan-Hu-1 spike glycoprotein

gene (soluble, stabilized), NR-52394 and receptor binding

domain (RBD), NR-52309, nucleocapsid gene NR-53507.

Purified H1 Haemagglutinin protein obtained from BEI

Resources, NIAID, NIH: NR-51668.
Cell stimulation and IFN-g ELISPOT

Multiscreen-IP plates (Millipore-Sigma) were coated

overnight at 4°C with 2mg/mL anti-IFN-g (clone 1-D1K,

Mabtech) washed with sterile PBS, and blocked with complete

RPMI-10% FBS. PBMC isolated from Neuro-PASC, COVID

convalescent, and healthy control subjects were used either

freshly isolated or after thawing and resting overnight in media

containing 10ng/mL recombinant human IL-15 (Peprotech) at 37°

C, 5% CO2. Cells were then plated at a concentration of 2.5x105

cells/well in 200mL of media and stimulated with the indicated

antigen mixtures from SARS-CoV-2 at a concentration of 2mg/mL

in complete RPMI medium containing 5% human AB serum

(Sigma-Aldrich) and 5ng/mL IL-15. Plates were incubated at 37°

C, 5% CO2 for 20h and washed 5x with dH2O and PBS-0.05%

Tween-20 (PBS-T). 2mg/mL biotinylated IFN-g (clone 7-B6-1,

Mabtech) diluted in PBS-10% FBS (PBS-F) was added to the

respective wells and plates were incubated for 1.5h at RT. Plates

were subsequently incubated for 40 minutes at RT in streptavidin-

alkaline phosphatase in PBS-F (Jackson ImmunoResearch) was

added after washing plates 5x in PBS-T. ELISPOT plates were

developed using an Alkaline Phosphatase Conjugate Substrate Kit

according to manufacturer’s instructions (Bio-Rad Laboratories,

Carlsbad, CA). IFN-g producing cells were quantified using an

ImmunoSpot plate reader (Cellular Technologies, Ltd., Shaker

Heights, OH).
Frontiers in Immunology 05
T cell receptor variable beta
chain sequencing

Immunosequencing of the CDR3, V, and J regions of human

TCRb chains was performed using the immunoSEQ® and T-MAP

COVID® Assays (Adaptive Biotechnologies, Seattle, WA).

Genomic DNA extracted from individual subjects’ PBMC was

amplified in a bias-controlled multiplex PCR, followed by high-

throughput sequencing. Sequences were then filtered to identify and

quantitate the absolute abundance of each unique TCRb template

for further analysis as previously described (23). TCR specificities to

SARS-CoV-2 Spike, Nucleocapsid, Membrane, Envelope, Orf1ab,

Orf3a, Orf6, Orf7a, Orf7b, Orf8, and Orf10 were determined using

immuneCODE, a publicly available database accessed via the

immunoSEQ Analyzer platform. Peptide antigens specific for

each TCR from immuneCODE were then aligned to the

Nucleocapsid amino acid sequence to demarcate regional

specificity (“N1” vs. “N2” vs. “N3”). The value for the top

expanded N3-specific TCR clone was counted for each NP and

CC subject for Figure 3E. HLA typing was done by the

bioinformatics group at Adaptive Biotechnologies through their

HLA classifier platform (Figures S4, S5).
Antibodies and flow cytometry

Fresh or frozen PBMCs isolated from the indicated patient

groups were stimulated with antigen mixtures as above for 20-22h

at 37°C, 5% CO2. For intracellular staining and cytokine detection,

the Brefeldin-A Golgi plug (Biolegend) was added at a 1:1000

concentration 2 hours after antigenic stimulation commenced.

Cells were washed with PBS-1% BSA after incubation and stained

with the indicated antibodies for surface phenotyping by AIM

assay or for intracellular cytokine staining (ICS; antibodies used

described in Supplemental Table S1). Cells from each subject were

left unstimulated in medium containing 5ng/mL IL-15

(“background”) or stimulated in the presence of the indicated

antigens. Fixation and permeabilization was performed using

Cytofix/Cytoperm (BD Biosciences). Surface staining was done

in the dark at 4°C for 30 minutes, while ICS was done in the dark

at RT for 45 minutes. Flow cytometry was conducted on 2-5x105

cells per condition. Data was acquired on a BD FACSymphony

Spectral analyzer and analyzed using FlowJo v10 (BD Biosciences)

and SPICE-Pestle (24).
SomaScan profiling

Heparinized plasma from 48 Neuro-PASC patients and 20

healthy COVID convalescents whose T cell and antibody

responses were characterized in Figures 2–4 were assayed for the

presence of more than 7,000 proteins using the SOMAscan

proteomics platform. The SOMAscan assay is a sensitive, high-

throughput technique that uses chemically modified DNA aptamers
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to specifically bind and quantify proteins of interest from very small

quantities of plasma (25). The assay measures a wide range of

receptors, intracellular signaling proteins, growth factors, and

secreted proteins. All plasma samples were analyzed at SomaLogic

Operating Co, Inc. (Boulder, CO).
Frontiers in Immunology 06
For statistical comparison, all relative fluorescence unit (RFU)

values for individual proteins were first analyzed by Gene Set

Enrichment Analysis (GSEA version 4.2.3; Broad Institute;

Molecular Signatures Database: hallmark, curated, KEGG, and

reactome gene sets) to determine significantly enriched pathways
B

C D

E
F G H

I J

A

FIGURE 3

Neuro-PASC patients have elevated reactivity to the C-terminal region of N protein. (A) Diagram showing partition of SARS-CoV-2 N peptides into 3
pools comprising the N-terminal (N1), middle (N2), and C-terminal (N3) regions (top) and further splitting of N3 into 5 sub-pools A-E for ELISPOT
experiments. (B) T cells from NP patients display enhanced reactivity to the C-terminal third of N protein. (C) T cell reactivity to N protein is mainly
localized to aa 309-402. (D) Distribution of SARS-CoV-2-specific TCRs stratified by ORF specificity in unvaccinated NP and CC subjects. (E) Elevated
proportion of N3-specific TCRs in NP patients. (F) Quantification of template copies from the top TCR clone specific for the N3 region in NP and CC
subjects. (G) N3-specific IFN-g production from a subset of NP and CC participants in E-F. (H) Percentage of N3-specific TCR templates from CD4 vs.
CD8 T cells in NP vs. CC. (I) N antigen functionally stimulates more TNF-a production from CD4+ T cells in NP patients. (J) CDR3 sequence, TRBV, and
TRBJ usage in top N3 clone from each subject. NP patients have higher TRBV07-09 usage, which is not observed in CC subjects. ELISPOT data
combined from 6 independent experiments with the indicated n values. *p<0.05, **p<0.01, ***p<0.005, ****p<0.0001 using one-way ANOVA with
Dunnett’s posttest (B, C, I) or two-tailed Student’s t Test with Welch’s correction (F, G). ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1155770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Visvabharathy et al. 10.3389/fimmu.2023.1155770
between NP and CC groups (Figure 5A). The false discovery rate

cutoff was 0.05. RFUs for proteins belonging to a particular pathway

(immunoregulatory or TASOR antiviral) that were enriched in NP

or CC were then analyzed using two-tailed t-Test (Figure 5B).

Within-group correlations for Neuro-PASC symptoms with

individual protein concentrations were determined using Pearson

correlation (Figure 5C).
Quantification and statistical analysis

Statistical tests to determine significance are described in figure

legends and conducted largely in Prism (GraphPad). For pie graphs in

Figure 6, SPICE analysis was used to determine statistical significance.
Frontiers in Immunology 07
SPICE is a data-mining software application that analyzes large

FLOWJO datasets from polychromatic flow cytometry and organizes

the normalized data graphically. SPICE defines a statistic for the

nonparametric comparison of complex distributions based on multi-

component measurements (24). For pie graphs or heatmaps generated

using SPICE software analysis, statistics were determined by

Permutation test following unstimulated background subtraction,

with additional thresholding of 0.03% to account for noise, using

SPICE-Pestle. p-values lower than 0.05 were considered statistically

significant. Quartile stratification was performed within group for the

Neuro-PASC cohort in Figures 6C–F. Clinical data were collected and

managed using REDCap electronic data capture tools hosted at

Northwestern University Feinberg School of Medicine. All error bars

on figures represent values ± SEM.
A B

D

E

C

FIGURE 4

Elevated Nucleocapsid-specific CD4+ T cell and attenuated CD8+ memory T cell activation in Neuro-PASC patients. (A) CD4+ T cells from NP patients
have enhanced N antigen-specific TNF-a production compared to CC. (B) CD8+ TEM from NP patients have enhanced IL-6 production after N antigen
stimulation compared to CC subjects on a per-cell basis (mean fluorescence intensity; MFI). (C) Increased soluble IL-6 and IL6Rb in NP patient plasma
compared with CC subjects. (D) CD8+ TEM from NP patients show decreased activation after stimulation with N peptides. (E) Higher percentages of
CD8+ TEMRA cells are found in NP patients compared to control groups. (F) CD8+ TEMRA cells from NP patients are less activated by N antigens
compared with CC subjects. Data combined from 5 independent experiments with the indicated n values. *p<0.05, **p<0.01, ***p<0.005, ****p<0.0001
using two-tailed Student’s t test with Welch’s correction. ns, not significant.
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Study approval

This study was approved by the Northwestern University

Institutional Review Board (Koralnik Lab, IRB STU00212583).

Informed consent was obtained from all enrolled participants.

Samples were de-identified before banking.
Results

Clinical characteristics of Neuro-PASC
patients and control participants

We enrolled a total of 172 participants, including 144 prior to

SARS-CoV-2 vaccination and 28 participants post-vaccination.

We recruited from the Neuro-COVID-19 outpatient clinic at

Northwestern Memorial Hospital or from the surrounding
Frontiers in Immunology 08
Chicago area. Patients were enrolled on a rolling basis as they

were seen in the clinic. These included 94 Neuro-PASC patients

(“NP”; confirmed RT-PCR+ or anti-SARS-CoV-2 Spike IgG+)

meeting Infectious Disease Society of America clinical criteria

for COVID-19 from March, 2020 until October, 2021 who had

neurologic symptoms lasting at least 6 weeks post-infection, as

previously reported (9). Among those, 77 (82.0%) were never

hospitalized for pneumonia or hypoxia and had mild disease. We

additionally recruited 44 healthy COVID convalescents without

symptoms persisting more than 4 weeks from onset, including 43

(97.8%) who had mild acute presentation not requiring

hospitalization, hereby referred to as “convalescent controls

(CC; RT-PCR+ or seropositive for anti- SARS-CoV-2 Spike

IgG pre-vaccination). We also included 34 healthy controls

who were unexposed to SARS-CoV-2 (“HC”; RT-PCR- and

seronegative for SARS-CoV-2 Spike-IgG pre-vaccination.

Study design is shown in Figure 1A.
B

C

D

A

FIGURE 5

Correlation of cognitive and psychiatric clinical measures with virus-specific immune responses in Neuro-PASC patients. (A) N3-specific IFN-g
production is negatively correlated with self-reported cognition scores (top) and positively correlated with anxiety scores (bottom) in NP patients.
(B) NP patients with lower scores on Attention or Executive Function cognitive tests had higher N3-specific IFN-g responses and RBD IgG titers. (C) High
Pain Interference scores correlate with more IL-6 production from CD8+ T cells in response to S peptides. (D) High depression scores correlate with
lower polyfunctionality in CD8+ TEM. Data representative of 5 independent experiments with n=39-51 for correlation data analysis (A, B) and n=8-9 NP
subjects per quartile for SPICE analysis (C, D). Correlations calculated using simple linear regression (A), nonparametric Spearman rank correlation (B), or
Permutation test (C, D). All pie graphs are background subtracted (unstimulated conditions). *p<0.05, **p<0.01, ***p<0.005, ****p<0.001.
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Neuro-PASC patients displayed a constellation of neurological

symptoms similar to those previously reported (26) such as

headache, fatigue, brain fog, and myalgia (Figure 1B). Neuro-

PASC patients scored significantly lower on physical function and

higher on anxiety, depression, fatigue, sleep disturbance, and pain

interference measures compared with convalescent controls or the

U.S. national average on patient reported outcomes (PROMIS-57)

(27) surveys (Figure 1C). NIH toolbox tests objectively assessing

cognitive function (20) also found Neuro-PASC patients to have

significantly lower scores in the attention domain, indicating

cognitive dysfunction relative to a demographic-matched U.S.

population (Figure 1D).
Alterations in T cell responses to
SARS-CoV-2 nucleocapsid protein
in Neuro-PASC

T cell responses to SARS-CoV-2 structural proteins were

determined by IFN-g ELISPOT. Peripheral blood mononuclear
Frontiers in Immunology 09
cells (PBMC) from each subject were stimulated with overlapping

peptides from the Spike (S), Nucleocapsid (N), or Membrane (M)

structural proteins of SARS-CoV-2 (Figure S1). We first

determined whether the severity of acute disease affected virus-

specific T cell responses in our Neuro-PASC cohort. Importantly,

hospitalization during acute SARS-CoV-2 infection did not impact

cognitive scores (Figure S2A) or T cell responses (Figure S2B),

justifying the inclusion of post-hospitalized Neuro-PASC patients

in our subsequent analyses. IFN-g+ responses to S peptides were

similar between Neuro-PASC patients and convalescent controls

(Figure 2A left panel). However, Neuro-PASC patients exhibited

higher IFN-g+ responses against N and M peptides (Figure 2A,

middle and right panels) compared with convalescent controls.

Though antibody responses to Spike receptor-binding domain

(RBD) did not differ between groups (Figure 2B), Neuro-PASC

patients had significantly higher antibody responses to N protein

(Figure 2C) and higher N-specific T follicular helper cell (Tfh)

responses that facilitate antibody class-switching (Figure 2D). This

was determined by the activation-induced marker assay (AIM;

CD134+CD137+ Tfh cells; gating in Figure S7C) which measures
B

C

A

FIGURE 6

Neuro-PASC patients have elevated immunoregulatory and decreased antiviral response-associated proteins in plasma correlating with enhanced
symptom severity and cognitive dysfunction. (A) Gene set enrichment analysis (GSEA) demonstrating elevations in immunoregulatory pathway-related
proteins (top left panel) in NP patients contrasting with elevated pro-inflammatory and antiviral pathway-related proteins (top right, bottom panels) in CC
subjects. List of proteins analyzed in each pathway found in Tables S2–S5. (B) Quantification of individual immunoregulatory (top) and TASOR antiviral
pathway-associated protein levels (bottom) between Neuro-PASC patients and healthy COVID convalescents. (C) Patient-reported outcomes of
symptom severity and cognitive scores are significantly correlated with expression levels of immunoregulatory proteins (left) and TASOR pathway
proteins (right). RFU: relative fluorescence units. FDR: false discovery rate. NES: normalized enrichment score. *p<0.05; **p<0.01; ***p<0.005;
****p<0.0001 by Student’s t test (B) or Pearson correlation (C).
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cytokine-independent, antigen-specific, TCR-mediated T cell

activation and has been previously used to detect SARS-CoV-2-

specific CD4+ (CD137+CD134+) and CD8+ (CD69+CD137+) T

cells (28). No differences in antibody titers were found against

the irrelevant Haemagglutinin protein from Influenza virus

(Figure 2D), demonstrating immune responses were SARS-CoV-

2-specific. These data show that N-specific T cell and antibody

responses are elevated in those with Neuro-PASC compared to

convalescent controls.
Enhanced IFN-g production and CD4+ T
cell activation to C-terminal region of N
protein in Neuro-PASC

Having shown elevated IFN-g responses to N protein in Neuro-

PASC patients, we queried whether specific regions of N protein

enhanced T cell activation activation. We focused on N over M

protein because N-specific immune responses can persist for up to

12 months post-infection (29), and Neuro-PASC patients were

enrolled at an average of 7 months post-infection allowing for

accurate detection. As the early roll-out of COVID-19 vaccines in

our area made it difficult to find unvaccinated individuals after

January 2021, we used both vaccinated and unvaccinated subjects in

these experiments to increase our sample size. There were no

differences in T cell or antibody responses to N protein before

and after vaccination with SARS-CoV-2 Spike protein (Figure S3).

Nucleocapsid peptides were divided into 3 antigen pools (Figure 3A,

top), and elevated IFN-g responses in Neuro-PASC patients were

traced to the C-terminal region of the protein (N3; Figure 3B),

particularly within amino acids 309-402 (Figures 3A–C).

To confirm these findings, we performed T cell receptor

sequencing (TCR-Seq) on a subset of unvaccinated Neuro-PASC

patients and convalescent controls using the ImmunoSEQ™

platform from Adaptive Biotechnologies. Employing the COVID

classifier tool in the ImmunoSEQ™ Analyzer, we identified total

numbers of TCR templates specific for individual ORFs from SARS-

CoV-2. No significant differences in the relative percentages of

ORF-specific TCRs were found between groups (Figure 3D).

However, when N peptide antigens were assigned to the regions

shown in Figure 3A, a greater percentage of TCR reactivity mapped

to the N3 region (Figure 3E) due to enhanced N3-specific TCR

expansion in Neuro-PASC patients (Figure 3F). IFN-g ELISPOT

data from study participants included in the TCR-Seq analysis

corroborated these findings (Figure 3G). Elevated N-specific T cell

responses in Neuro-PASC patients were primarily due to expanded

CD4+ T cell reactivity (Figures 3H, I). Interestingly, 9 of 28 (32.1%)

of NP patients used TRBV07-09 in the top N3-specific TCR clone

(Figure 3J). In contrast, none of the 10 CC participants used the

same TCR b gene. No significant HLA-A, -B, -DP, -DQ- or -DR

skewing was observed in either group (Figures S4, 5), though

Neuro-PASC patients had more HLA diversity potentially due to

their higher numbers in the analysis. Taken together, these data

show enhanced TCR clonal expansion to the C-terminal region of

the N protein in Neuro-PASC patients that could not be explained

by differences of HLA alleles between the two groups.
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Attenuated N-specific CD8+ memory T cell
activation in Neuro-PASC patients

CD8+ memory T cells are important for effective anti-viral

immunity and can persist for several years after the related SARS-

CoV-1 infection (30). However, little is known about whether

CD8+ memory T cell function is altered in Neuro-PASC.

Immunophenotyping showed no differences between groups in

total percentages of most T cell subsets in the unstimulated

condition (Figure S6); therefore, we conducted functional assays

investigating T cell memory responses. CD8+ T effector memory

cells (TEM or TEMRA; gating strategy in Figure S7A), poised for

rapid cytotoxic function upon antigen re-encounter, exhibited

significant N-specific activation in convalescent controls but not

in Neuro-PASC patients (Figure 4A). Percentages of CD8+

TEMRA cells were significantly elevated in Neuro-PASC patients

(Figure 4B) but less activated by N antigens compared with

convalescent controls (Figure 4C). N peptides also promoted

higher IL-6 production in CD8+ TEM from Neuro-PASC

patients compared to convalescent controls (Figure 4D; FMO in

Figure S7B). Similarly, Neuro-PASC patients had significantly

higher plasma levels of IL-6 and IL-6 receptor b (IL-6Rb) when
evaluating serum samples from patients in Figure 4D (Figure 4E).

Stimulation of PBMCs with a pool of overlapping peptides

comprising S, N, and M proteins likewise showed enhanced IL-6

production from monocytes and neutrophils from Neuro-PASC

patients compared with convalescent controls (Figure S8). These

results suggest that Neuro-PASC patients have decreased N-

specific CD8+ recall responses but enhanced IL-6 production to

N antigens compared to convalescent controls.
Impaired cognition and decreased quality
of life metrics correlate with distinct
patterns of virus-specific T cell activation

We next determined if within-group differences in antiviral

immune responses correlated with clinical measures of symptom

severity in Neuro-PASC. Lower cognitive scores and higher anxiety

scores were correlated with high levels of IFN-g-stimulated by N3

peptides (Figure 5A). Correlation analyses further demonstrated

negative correlations between attention and executive function

scores and IFN-g responses to the N3 region as well as RBD-

specific antibody responses (Figure 5B). To determine associations

between clinical scores and T cell effector functions, we partitioned

T scores from NIH Toolbox or PROMIS-57 measurements

(Figures 1C, D) into quartiles and used only the lowest and

highest groups (Q1 vs. Q4) for analysis. Neuro-PASC subjects

reporting high degrees of pain produced significantly more IL-6

and less cytotoxic effector molecules from CD8+ T cells than those

with low pain scores (Figure 5C). Further, patients reporting high

depression scores had elevated virus-specific granzyme production

(Figure 5D). Taken together, these data show correlations between

cognitive dysfunction and impaired quality of life and altered

patterns of CD8+ T cell effector functions.
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Enrichment in immunoregulatory proteins
and reduction in antiviral- response
proteins in Neuro-PASC patients correlate
with cognitive dysfunction

The multiplexed proteomics platform SOMAscan has been

successfully used in previous studies to identify biomarkers

associated with conditions such as hepatocellular carcinoma (31),

Alzheimer’s disease (32), and drug treatment of myocardial

infarction (33). The technology utilizes the natural 3D folding of

single-stranded DNA-based protein recognition aptamers to

quantify levels of more than 7000 unique proteins in biological

fluids (25). We used this platform to determine whether Neuro-

PASC patients had distinct plasma proteomic signatures through

pathway analysis as well as comparison of individual protein levels.

Gene set enrichment pathway analysis (GSEA) has previously been

used on proteomics data to identify dysregulated circuits in

complex disease states (34). GSEA similarly identified an

enrichment in immunoregulatory pathway proteins in Neuro-

PASC patients and conversely, elevated antiviral and Th1-type

inflammatory pathway proteins such as IL-12 and IL-3 in

convalescent controls (Figure 6A). Comparison of individual

proteins enriched in the immunoregulatory pathway identified

significantly elevated CDH1 (E-cadherin), SIGLEC7, MICA, and

other molecules involved in inhibiting T cell function (35)

(Figure 6B, top panel). In contrast, plasma from convalescent

controls were enriched in the antiviral TASOR pathway proteins

H2BC12, METTL3, and MAP4K1 (Figure 6B, bottom panel),

among others, which are involved in preventing intracellular viral

replication and T cell differentiation (36). A number of protein

targets were correlated with cognitive performance or neurologic

symptom severity in both pathways (Figure 6C), with a particularly

significant negative correlation between self-reported cognition

scores and expression of the inhibitory NK cell/CD8+ T cell

receptor KLRC1 (Figure 6C, left panel) and conversely, positive

outcome correlations for those expressing high levels of METTL3,

an important driver of T cell differentiation from the naïve state.

These results highlight the interconnection of enhanced

immunoregulatory and reduced antiviral pathway signatures with

cognitive dysfunction in Neuro-PASC patients.

Overall, our study demonstrates that Neuro-PASC patients

have elevated T cell responses to the C-terminal region of

Nucleocapsid protein, impaired N-specific CD8+ memory

responses, and elevated N-specific IL-6 production compared

with convalescent controls. In addition, we show unique

correlations between cognitive dysfunction and quality of life

impairments and increased N-specific T cell responses, suggesting

that elevated virus-specific T cell responses are not always linked to

better clinical outcomes if directed against N protein. Importantly,

proteomics analysis found upregulations in immunoregulatory

signatures and downregulation in inflammatory and antiviral

response signatures in Neuro-PASC patients that were highly

correlated with neurocognitive dysfunction. Altogether, we show
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that Neuro-PASC patients exhibit distinct SARS-CoV-2-specific T

cell responses that may facilitate identification and treatment of

long COVID.
Discussion

We identified a distinct pattern of T cell activation in Neuro-

PASC patients which provides novel insights into Neuro-PASC

pathogenesis using multimodal analyses including TCR sequencing

and evaluation of the plasma proteome. Prior studies have either

focused on characterizing T cell responses to acute infection in

COVID convalescents broadly as opposed to those with PASC (37,

38), or on immunophenotyping and autoantibody responses in

Neuro-PASC patients (17). We aimed to fill this knowledge gap and

examine how virus-specific T cell responses in patients with Neuro-

PASC may differ from healthy convalescents and contribute to

neurologic symptom severity.
Proposed mechanisms for Neuro-PASC

Several hypotheses have been put forward defining the

underlying mechanisms of Neuro-PASC. One theory is that

Neuro-PASC symptoms may be caused by direct infection of the

CNS, though studies have been equivocal. SARS-CoV-2 may gain

entry into the CNS through the olfactory bulb, a theory supported

by the presence of viral protein in neurons from post-mortem

autopsies and live virus in the brain in mouse models (39, 40).

However, other studies were unable to find evidence of SARS-CoV-

2 in the CNS of patients who died with neurologic symptoms (41)

or in the cerebrospinal fluid (CSF) (42), suggesting that infection of

the nervous systemmay be transient or may not occur in all infected

individuals. Importantly, SARS-CoV-2 RNA or intrathecally-

produced antiviral antibodies were undetectable in the CSF at 90

days post-infection in Neuro-PASC patients (43) which suggests

that direct CNS infection may not be the underlying cause of

Neuro-PASC. Despite this, autopsy studies have identified

persistent viral RNA or antigen in extra-respiratory sites other

than the brain (44), and some patients have been found to test

N-antigen positive in the nasopharynx for months after acute

infection while experiencing long COVID symptoms (45). We

also found that Neuro-PASC patients had elevated anti-N

antibody titers though we obtained their samples more than 7

months after acute infection when anti-N antibody titers would fall

below detection in most COVID convalescents (46). This is

suggestive of N antigen or viral persistence in cryptic reservoirs,

but future studies are needed to evaluate the presence of infectious

virus, preferably using highly sensitive quantification techniques

such as viral outgrowth assays (47). However, clinical trials to test

SARS-CoV-2 antiviral drugs in the treatment of long COVID have

already begun (48), demonstrating traction for the persistent

infection hypothesis within the medical and research communities.
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Enhanced T cell reactivity to the C-
terminal region of SARS-CoV-2 N protein

Neuro-PASC patients displayed high IFN-g responses to the C-

terminal domain of N protein (N3 region) while convalescent

controls had limited reactivity. It is possible that N3-specific T

cell responses remain high Neuro-PASC patients due to increased

CD4+ T cell clonal expansion and cytokine production compared

with convalescent controls, which we found in our cohort. Though

increased antiviral T cell responses may ordinarily be thought to be

protective, studies have found conflicting associations between

increased SARS-CoV-2 T cell responses and COVID-19 disease

outcomes. Virus-specific TCR expansion was higher in COVID

convalescents with more severe acute disease (49). However,

another group found that elevated T cell responses to an N-

terminal peptide from N protein in patients expressing HLA-

B*07-02 had less severe acute disease (50). However, neither

study determined whether convalescent subjects had PASC at the

time of sample collection, and we found no significant differences in

the prevalence of HLA-B*07-02 between groups. Further research is

needed to determine whether enhanced T cell responses to the C-

terminal region of N protein in Neuro-PASC patients are

detrimental to patient outcomes, which may inform vaccination

and treatment strategies.
Attenuated CD8+ T cell memory responses
and increased IL-6 in Neuro-PASC patients

Effective generation of T cell memory responses can be

important to protect against future infections with the same

pathogen. CD8+ T effector memory (TEM) cells from Neuro-

PASC patients displayed reduced antigen-specific activation

compared with convalescent controls, suggestive of a diminished

effector response. The costimulatory molecule CD137 may play a

role in this because it provides necessary orthogonal signal

activating virus-specific T cells (51), but this marker was reduced

on CD8+ memory T cells from Neuro-PASC. Prior studies have

shown that asymptomatic individuals display a robust T cell recall

response to SARS-CoV-2 Nucleocapsid protein after infection (38),

suggesting that the lack of T cell memory responses in Neuro-PASC

patients is detrimental. We also observed a significant elevation in

CD8+ TEMRA cells in Neuro-PASC patients compared to control

groups. CD8+ TEMRA cells can accumulate during persistent viral

infections and contribute to immunosenescence (52). Their

decreased virus-specific activation in Neuro-PASC patients

suggests lower cytotoxic capacity compared with convalescent

controls. Our data suggest that CD8+ TEMRA cells may be

functionally anergic in Neuro-PASC patients compared with

convalescent controls and may contribute to the pathogenesis

of PASC.

Significantly, CD8+ TEM from Neuro-PASC patients expressed

higher levels of IL-6 in response N antigens which was recapitulated
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in unstimulated patient plasma compared to convalescent controls.

CD8+ T cell expression of IL-6 was also significantly correlated

patient-reported pain scores. IL-6 can play a regulatory role in T cell

responses during viral infections by suppressing Th1 differentiation

(53), and promoting pathogen survival while exacerbating clinical

disease in SARS-CoV-1 infection (54). In fact, blocking IL-6 activity

enhances virus-specific CD8+ T cell immunity (55), and

overexpression of IL-6 can lead to viral persistence by impairing

CD8+ lytic functions (56) and the development of CD8+ T cell

memory (57). Indeed, high serum levels of IL-6 were associated with

poor clinical outcomes in severely ill COVID-19 patients (37). IL-6

has also been associated with fatigue and cognitive impairment in a

cohort of PASC patients who had mild acute infection (58). Thus,

our data suggest that enhanced IL-6 production by CD8+ T cells

may be involved in the etiology or pathogenesis of Neuro-PASC and

open new avenues of research for the treatment of long COVID by

blocking IL-6 activity.
Antiviral immune responses correlate with
impaired cognition and lower quality of life
in Neuro-PASC

Neuro-PASC patients reported significantly elevated levels of

anxiety, depression, pain, and other symptoms compared with

convalescent controls. The severity of these deficits was correlated

with antiviral adaptive immune responses, and it is possible that T

cells can contribute to these symptoms. Studies in rodents have

shown that T cell responses can affect the severity of pain and

analgesia (59); it may follow that particular T cell activation

patterns can be linked to high pain scores in Neuro-PASC.

Inflammation-related transcriptional programs are also

differentially regulated in T cells from patients with depression

(60), providing a possible link between enhanced granzyme

production and elevated depression scores. Thus, the association

of SARS-CoV-2-specific cytokine signatures with the severity of

Neuro-PASC symptoms may provide predictive value in terms of

clinical outcomes.
Elevated immunoregulatory and lower
antiviral signatures in Neuro-PASC patients

Proteomic analysis demonstrated that Neuro-PASC patients

had relatively blunted inflammatory and antiviral response

signatures compared to convalescent controls, while simultaneously

having elevated immunoregulatory protein expression. Further

analyses at the individual protein level showed upregulation of

immunoregulatory proteins such as NCR1 involved in T cell

suppression of antiviral CD8+ T cell responses (61). These data

support our findings showing decreased antiviral CD8+ T cell recall

responses and suggest that an imbalance between immunoregulatory

and antiviral pathways may play a role in Neuro-PASC pathogenesis.

In line with this, one of the strongest associations we found with poor
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cognitive scores involved the NK and CD8+ T cell inhibitory receptor

KLRC1 that downregulates cytotoxic capacity (62). KLRC1

expression on CD8+ T cells is upregulated by IL-6 (63), and

enhanced KLRC1 expression has been found on exhausted CD8+ T

cells from acute COVID-19 patients (64). Based on our data, it is

therefore possible that enhanced IL-6 production from CD8+ T cells

may upregulate KLRC1 and suppress CD8+ T cell function in Neuro-

PASC patients, which may increase Neuro-PASC symptom severity.

Together, these data illuminate a specific T cell signature composed of

decreased CD8+ T cell memory responses and increased IL-6

stimulated by Nucleocapsid protein antigens that associate with

Neuro-PASC.
Limitations of study

One limitation is the relatively small sample size of

unvaccinated convalescent control subjects. This was due to the

wide implementation of SARS-CoV-2 vaccines in Chicago area

soon after beginning study enrollment. Another limitation was

not being able to control for time of sample collection with respect

to date of COVID-19 symptom onset because we recruited

patients on a rolling basis as they were seen in the Neuro-

COVID clinic. Additionally, as we hypothesize that Neuro-

PASC could be the result of a persistent or protracted infection,

future studies would require testing of potential cryptic viral

reservoirs, including stool or post-mortem multi-organ tissue

sampling from Neuro-PASC patients.
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Figure S1: SARS-CoV-2 peptides used in study

Peptide pools derived from S, N, and M proteins from USA-WA1/2020 strain of SARS-CoV-2 (BEI Resources). 
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Figure S2: Non-hospitalized and post-hospitalization PASC patients have similar cognitive scores and T cell responses to SARS-CoV-2 antigens. 

A.) NNP and PNP groups score similarly on Processing Speed, Attention, Executive Function, and Working Memory modules by NIH Toolbox. B.) Non-hospitalized Neuro-PASC (NNP) and post-hospitalization Neuro-PASC (PNP) patients did not exhibit differences in IFN-γ responses after stimulation with SARS-CoV-2 S, N, or M pools. Data representative of 10 experiments with all conditions plated in duplicate.
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Figure S3: Pfizer and Moderna SARS-CoV-2 Spike mRNA vaccines do not impact T and B cell responses to N protein in NP and CC.

A.) Unvaccinated and vaccinated NP and CC subjects have similar IFN-γ responses to the C-terminal region of Nucleocapsid (N3). B.) Anti-N antibody responses were assessed in the same NP or CC patient pre-vaccination and at 3 months post-vaccination. No significant differences were found. Data representative of 5 independent experiments with all conditions plated in duplicate for A. 
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Figure S4: HLA-A, -B, & -C typing in Neuro-PASC patients and convalescent controls. NP patients have more HLA-A diversity than CC subjects. No significant differences in HLA-B*07-02 expression were found between groups, though the allele frequency trended higher in NP patients.
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[bookmark: _Hlk125362326]Figure S5: HLA-DP, -DQ, and -DR typing in Neuro-PASC patients and convalescent controls. No significant skewing in HLA-DP, -DQ, or -DR expression was found between NP and CC groups.
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Figure S6: Total percentages of unstimulated CD4+ and CD8+ T cell subsets between groups.

NP, CC, and HC groups displayed no significant differences in percentages of total CD8+, CD8+ TCM or TEM cells. While there was a significant increase in CD4+ TEM cells as a percentage of total CD4+ T cells in NP vs. HC, no other cell subsets including CD4+ TCM, TEMRA, or Tfh cells were significantly different between groups.
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Figure S7: Gating strategies and fluorescence-minus-one (FMOs) for cytokine production

A.) Gating strategy for memory T cells by CD45RA/RO, CCR7, and CD27 expression. B.) FMOs used for gating in determining cytokine positive T cells. C.) Gating strategy for CD4+ Tfh cells.




[image: Diagram

Description automatically generated]

Figure S8: Monocyte/neutrophil production of IL-6

A.) Gating strategy for quantifying IL-6 expression in CD14+ classical monocytes and in CD15+ neutrophils. B.) Elevated IL-6 production in monocytes and neutrophils after stimulation with viral peptides in Neuro-PASC patients vs. convalescent controls.
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