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The advent of mRNA vaccines represents a significant advance in the field of

vaccinology. While several vaccine approaches (mRNA, DNA, recombinant

protein, and viral-vectored vaccines) had been investigated at the start of the

COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior

immunogenicity at a low dose, strong safety/tolerability profiles, and the

possibility of rapid vaccine mass manufacturing and deployment to rural

regions. In addition to inducing protective neutralizing antibody responses,

mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses

comparable to natural viral infections; thereby, drawing significant interest

from cancer immunotherapy experts. This mini-review will highlight key

developmental milestones and lessons we have learned from mRNA vaccines

during the COVID-19 pandemic, with a specific emphasis on clinical trial data

gathered so far for mRNA vaccines against melanoma and other forms of cancer.
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1 Introduction

For the past decade, cancer immunotherapy has been a mainstay treatment for

advanced melanoma and non-small-cell lung cancer (NSLC). Reversal of the suppressive

tumor microenvironment by checkpoint blockade against PD-1, PD-L1, and CTLA4 could

potentiate immunosurveillance which may significantly impact clinical outcomes for

patients (1). Efforts to further adjuvant the immune system through cancer vaccines

had, unfortunately, yielded largely disappointing results in Phase 3 trials due to limited

ability of peptide vaccines to induce CD8+ T-cell responses, induction of T cells with a

restricted repertoire insufficient to counter cancer cells with heterogeneous epitope

expression profiles, and inadequate induction of additional arms of the immune systems

(CD4+ T cells and B cells) for synergistic tumor killing (2, 3). mRNA vaccines represent a

promising strategy to tackle these challenges. They have been under development for two

decades, but brought to the limelight through the COVID-19 pandemic. Massive

deployment of the vaccines to billions of people in over a hundred countries across the

world has modernized our infrastructure to ramp up production of such vaccines and has
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1155728/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1155728/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1155728/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1155728&domain=pdf&date_stamp=2023-03-30
mailto:DFISHER3@mgh.harvard.edu
https://doi.org/10.3389/fimmu.2023.1155728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1155728
https://www.frontiersin.org/journals/immunology


Xu and Fisher 10.3389/fimmu.2023.1155728
allowed us to gain a deep appreciation of the immune responses

induced by as well as adverse effect profiles associated with mRNA

vaccination in a relatively short period of time (4). Researchers and

oncologists are excited to learn that mRNA vaccines can not only

elicit neutralizing antibodies, commonly regarded as a key correlate

of protection against SARS-CoV-2 infection, but also induce CD8+

T cell responses that mediate early protection against the virus and

help surveil and eradicate tumor reservoirs in cancer patients (5).

Several mRNA vaccine candidates have been advanced into clinical

studies and induced positive clinical responses in several early phase

clinical trials, particularly against melanoma. This review seeks to

highlight lessons we have learned about mRNA vaccines during the

COVID-19 pandemic and recent clinical trial data of various

mRNA vaccine candidates against melanoma.
2 Overview of historical development
of mRNA vaccine

In vitro transcribed (IVT) mRNAs were first used as a vector for

gene transfer, whereby Wolff et al. first reported in vivo expression

of transgenes in mouse muscles inoculated with the mRNA vector

(6). Shortly after, scientists observed mRNAs encoding influenza

hemagglutinin and cancer embryonic antigen (CEA) were capable

of eliciting CD8+ and antigen-specific antibody responses,

respectively, and started to appreciate its potential as a vector for

vaccination (7, 8). However, development of the mRNA vaccines

stalled in the early phase as scientists started to realize challenges

associated with this platform. First, mRNA transcripts are

inherently temperature-sensitive— upon dilution, they can last 6

to 12 hours at room temperature, and such cold-chain transport of

the vaccines for deployment in humans can create logistical

nightmares (9). Second, mRNA vaccines could trigger significant

local inflammatory responses through activation of the cellular

pattern recognition receptor (PRR) which can lead to dose-

limiting toxicity (DLT) and significantly reduce in vivo transgene

expression (10). Over the years, a majority of these challenges have

been addressed through advanced purification and liposome

formulation techniques to improve ex vivo and in vivo stability of

mRNA transcripts, incorporation of modified nucleoside bases with

lower likelihood of triggering PRR, and sequence-level engineering

to optimize transcript stability and translation efficiency.
2.1 Optimization of mRNA transcripts

Foreign mRNAs are inherently immunogenic to the innate

immune response. TLR7 and TLR8 receptors in the endosomal

compartment can recognize single-stranded mRNA transcripts

which are rich in unmodified guanosine and uridine-rich motifs.

TLR7/8 activation can lead to type I interferon production,

mediating premature degradation of the mRNA transcript and

local injection reactions clinically (10). Importantly, modified

nucleotides such as pseudouridine (Y), N6-methyladenine (m6A),

5-methylcytosine(m5C), 2-thiouracil (s2U), and 5-methyluracil
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(m5U) can help cloak mRNA vaccines from the innate immune

system; thereby, improving the translation efficiency of the mRNA

vaccines (Figure 1) (11, 12).

In vitro transcribed mRNAs frequently retain triphosphates at

the 5’-end which could inadvertently trigger PRR and Type I

interferon pathway activation. In eukaryotic cells, m7GpppN cap

can be added to nascent mRNA transcripts through concerted

actions of RNA triphosphatase, RNA guanylyltransferase, and

RNA (guanine-7)-methyltransferase (13). To bypass this complex

biochemical process, naturally occurring 7-methylguanosine

(m7GDP) could be added directly to the in vitro transcription

reaction mixture. Further, to avoid incorrect incorporation of

m7GDP in the mRNA transcripts, anti-reverse cap analogs

(ARCA) could be used alternatively to force RNA polymerase to

incorporate ARCA in the forward orientation and produce fully

translatable mRNA transcripts with ARCA at the 5’-end (14).

Finally, the 3’-polyA tail of in vitro transcribed mRNA could

also be optimized. Poly-A tails are frequently added to the 3’-end of

mRNA transcripts directly by RNA-polymerase or by Poly-A-

polymerase . They impede RNA degradation by RNA

exonucleases, significantly increasing in vitro and in vivo half-life

of the transcripts. Stability of the Poly-A tail could be further

improved with the use of the hydrolysis-resistant ATP analogue,

ATPaS, during in vitro transcription. Alternatively, an oligo(dT)

domain can be directly incorporated into the template DNA

plasmid to precisely control the number of nucleotide bases in

the Poly-A tail (15, 16).
2.2 Sequence-level engineering

Optimization of mRNA transcript sequence is also critical to the

vector’s stability and translational efficiency. Transport RNAs

(tRNAs) occur at different frequencies in different target tissues.

Therefore, design of the mRNA sequence should carefully consider

the mode of vaccine delivery (intradermal, intramuscular versus

intravenous) to fully utilize the endogenous tRNA pool (codon

usage). In addition, mRNA sequence is frequently optimized for

both mouse and humans to enable preclinical evaluation of the

vaccine candidates in animal models (17). In addition, increasing

mRNA GC content can improve thermal stability and reduce local

innate immunogenicity of the transcripts (18). Finally, secondary

structures (such as stem loops and hairpins) should be minimized in

the mRNA transcripts, as they can slow ribosomal scanning and

reduce transgene expression (19).

The 5’ and 3’ untranslated regions (UTR) not only affect

thermal stability of mRNAs but also could regulate translation of

the transcripts (20). Incorporation of internal ribosomal entry sites

or the Kozak sequence in the 5’-UTR can facilitate ribosomal

loading and translation initiation. The 3’-UTR could either

incorporate a stabilization motif such as the b-globulin 3’-UTR to

prolong transcript half-life or a regulatory motif such as the

miRNA-122 binding site to achieve tissue specific expression and

minimize systemic toxicity by reducing off-target transgene

expression in the liver (21, 22).
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2.3 Advanced purification and
formulation techniques

Double stranded RNA (dsRNA) can be either recognized by

TLR3 in the endosome or RIG-I in the cytosol to trigger local type I

interferon responses (23). Careful removal of the dsRNA

byproducts from in vitro generated transcripts through High

Performance Liquid Chromatography (HPLC) can thereby reduce

local reactivity of mRNA vaccines (24). More recently, Baiersdorfer

et al. reported the use of cellulose in ethanol-containing buffer to

selectively bind dsRNA byproducts, to rapidly purify in vitro

generated mRNA transcripts (25).

Formulation of purified mRNA transcripts has a significant

influence on the transcript thermal stability (and thereby, shelf-life),

transgene uptake by the target tissues, and the vaccine’s adverse

effect profiles. Non-formulated (naked) mRNAs have previously

been studied in several clinical trials. However, they demonstrated

limited uptake and immunogenicity due to low thermal stability

and poor transit across cellular membrane secondary to the negative

charges on the RNA backbone (26). Self-assembled cationic

polymers, such as protamine, have also been used to encapsulate

negatively charged mRNAs for in vivo delivery. Currently, there are

several protamine-formulated mRNA vaccines under clinical

investigations. CV-9201, for example, is a vaccine encoding five
Frontiers in Immunology 03
non-small cell lung cancer (NSCLC) tumor-associated antigens

(TAAs) used to treat Stage IIIb or IV NSCLC in a Phase 1/2

study. The study demonstrates that CV-9201 was well-tolerated and

could induce antigen-specific T cell responses but failed to improve

overall survival in vaccine recipients as compared to historical

controls (27). Finally, lipid nanoparticles (LNPs) are now

considered as the mainstay vector for in vivo mRNA delivery and

have been used in both the Pfizer/Bio-N-Tech as well as the

Moderna COVID-19 vaccines. LNPs utilize a mixture of

cholesterol, charged lipids and polyethylene glycol (PEG)

derivatives to form micelles that can stabilize negatively charged

mRNA transcripts, be preferentially taken up by antigen-presenting

cells (APCs) such as dendritic cells and macrophages, and offload

cargos in acidic endosomes (28). In addition to being vaccine

carriers, LNPs can directly serve as vaccine adjuvants through

induction of IL-6 secretion, which is critical for follicular T helper

(Tfh) cell maturation (29). Furthermore, the LNPs can be further

functionalized through decoration of monoclonal antibodies on

their surfaces to potentiate specific targeting of these LNPs to

desired cell types, thereby reducing toxicity associated with

systemic administration. For example, CD5-targeted LNPs could

selectively deliver mRNA to T cells for in vivo engineering of CAR-

T cells against fibroblasts to treat heart failure in a murine

model (30).
FIGURE 1

Key strategies to improve in-vivo expression and immunogenicity profiles of mRNA-based immunotherapeutics.
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3 Lessons learnt from the
SARS-CoV-2 pandemic

An unprecedented opportunity was created for the development

of mRNA vaccines during the COVID-19 pandemic. As the original

Wuhan strain was extremely contagious and associated with high

mortality, academic institutions and pharmaceutical companies

rapidly designed, produced and tested vaccine candidates at record

speed. For the Pfizer/BioNTech vaccine, animal studies were

commenced in Jan 2020 following the release of the SARS-CoV-2

genome. Phase 1/2 study initiated in April whereas Phase 2/3 study

commenced in July of 2020, with the vaccine approved by the US

FDA under Emergency Use Authorization (EUA) in December 2020.

It was rapidly deployed to healthcare workers fighting at the

frontlines against COVID-19 (31). Pre-approval clinical studies and

post-marketing surveillance data generated for both Pfizer/BioNTech

and Moderna vaccines were reported to be positive. For Pfizer/

BioNTech vaccines, two doses of vaccine at 30 mg doses three

weeks apart conferred 95% protection two months following

vaccination and retained a protective efficacy of 83.7% after four

months (32). The Moderna vaccine given at 100 mg dose four weeks
apart conferred 94.1% protection within 64 days of vaccination and

remained 90% protective after six months (33). Adverse events were

mostly self-limiting, with fever and fatigue being reported as the most

common events for the Pfizer vaccine in 3.8% of trial participants,

and 38.1% and 15.8% of trial participants developing moderate and

severe side effects after receiving the second dose of the Moderna

vaccine, respectively (32, 33). Both vaccines had reduced protection

against variants of concern, with the Pfizer vaccine conferring 56%

and 74% protection against the omicron variant after the second and

third dose respectively, due to significant mutations in the Spike

protein promoting viral evasion from neutralizing antibodies

generated by mRNA vaccines which were designed for the original

Wuhan strain (34). Both vaccines also generated strong T-cell

responses. The Moderna vaccine, for example, generated strong

Th1-based CD4+ T cell responses in humans (35). While the initial

analysis did not detect robust CD8+ T cell responses from the

Moderna vaccine by intracellular cytokine staining (36), a

subsequent study using MHC-I specific CD8 T cell sorting showed

one or two doses of mRNA vaccines induced polyfunctional CD8 T

cells with magnitudes comparable to natural viral infection, and with

faster kinetics as compared to induction of CD4+ and neutralizing

antibody responses (37). The unique ability of mRNA vaccines to

induce CD8+ T-cell responses, as compared to other routes of

vaccination such as protein subunit vaccines, make them an

attractive platform to develop cancer vaccines.
4 mRNA cancer vaccines under
clinical development

Currently several mRNA cancer vaccine candidates are under

clinical investigation. These vaccines may target tumor associated

antigens (TAA or antigens overexpressed in cancerous cells that

may also be present in normal tissue), tumor-specific antigens (TSA
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or antigens that spontaneously arise in tumors and are therefore

unique to cancer cells), or seek to prime the endogenous immune

system (immunostimulants).

mRNA vaccines against TAA are currently being investigated

for treatment of metastatic castration-resistant prostate cancer

(NCT04382898, NCT01817738), ovarian cancer (NCT04163094),

and NSCLC (NCT05142189, NCT00923312, NCT01915524) with

or without CPI (NCT04382898, NCT05142189) and with or

without adjuvant/neoadjuvant chemotherapies (NCT04163094,

NCT05142189). NSCLC-specific mRNA vaccines CV9201

(NCT00923312) and CV9202 (NCT01915524) were found to be

safe, and induced antigen-specific T-cell responses in 63% and 84%

subjects respectively. However, CV9201 was not found to improve

progression-free survival or overall survival in trial participants (27,

38). As TAAs are highly expressed in most cancer tissues, vaccine

cocktails targeting these antigens do not need to be individualized

and can be given to patients with a specific oncologic diagnosis

without a priori knowledge of tumor transcriptomic signatures.

However, as TAAs are also expressed in healthy tissues, vaccines

have the theoretical risk of inducing autoimmunity (39). Central

and peripheral tolerance mechanisms can also limit the magnitude

of induced T cell responses (40).

To overcome these hurdles, vaccines could also be designed

against TSA. For examples, vaccines could target components of

oncogenic viruses (such as HPV E6 and E7 protein), which are only

expressed in infected and transformed cells. BNT113 is an HPV E6/7

mRNA vaccine used for treatment of HPV-positive head and neck

squamous cell carcinoma currently being studied in Phase 1

(NCT03418480) and Phase 2 (NCT04534205) trials along with PD-

1 inhibitor pembrolizumab (41). TSAmRNA vaccines may also target

neo-epitopes that spontaneously arise from mutational events within

cancer cells. These vaccines may target cancer-driver mutations- the

mRNA-5671 vaccine which targets four KRAS mutations in colorectal

cancer, pancreatic cancer and NSCLC is currently being studied in a

Phase I trial (NCT03948763) in combination with pembrolizumab

(42). To increase the breadth of induced T-cell repertoire against

tumors, these vaccines may alternatively encode a cocktail of non-

driver neo-epitopes that are identified through deep sequencing of

tumor exomes or transcriptomes and predicated to have high patient-

specific MHC Class I binding affinity through in silico binding

algorithms. For example, the mRNA-4650 (NCT03480152) was a

personalized neo-antigen vaccine encoding up-to 20 neo-epitopes

against metastatic gastrointestinal tumors. In a Phase 1 study, the

vaccine induced neoantigen-specific CD8+ and CD4+ T-cell

responses in three of four subjects but did not induce significant

clinical responses. Further analysis showed predominant elicitation of

CD4+, as opposed to CD8+, T cell responses by vaccines despite

selection of HLA-I restricted epitopes during vaccine design,

highlighting challenges with the in silico prediction algorithm (43).

mRNA can also be used as a vector for potent in vivo expression of

biologics such as monoclonal antibodies and cytokines. mRNA

encoded cytokines are often injected intratumorally to limit systemic

adverse effect. For example, a Phase 1 trial investigates (NCT03739931)

intra-tumoral injection of mRNA-2752 encoding three cytokines

OX40L/IL23/IL36g along with anti-PD-L1 antibody durvalumab in

patients with solid tumors or lymphoma. Preliminary analyses showed
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dose-limiting toxicity (due to cytokine release syndrome) in one of

thirty patients receiving 8mg mRNA-2752, increased cytokine IFNg
and TNFa expression in both tumor and plasma, and partial responses

in two of the forty-five patients, highlighting some potential (as well as

limitations) of this approach (44).
5 Development of mRNA vaccines
against melanoma
Melanoma arises from pigment-producing melanocytes and is

the most aggressive form of skin cancer. It is the 5th most common

form of cancer in the US and is affected by both environmental

(exposure to UV radiation) and host (pigmentation characteristics,

immunosuppression, hereditary) factors (45). While the early form

of melanoma is readily curable through resection, the five-year

survival rate for Stage 4 melanoma is only 34% (46), although recent

therapeutic progress has begun to improve prognosis. As cutaneous

melanoma typically harbors a relatively high mutational burden

(and therefore, potentially immunogenic neo-epitopes) and is

readily accessible, multiple immunotherapies have been developed

in the past decade. CPI has been shown to significantly prolong

survival in patients with advanced melanoma and is approved as

single agent and in combination approaches by the FDA (47).

Several attempts had been made to develop melanoma specific

mRNA vaccines to further improve the efficacy of CPI.

Preclinical development of mRNAmelanoma vaccines has been

extensive. In mice, orthotopic models using B16F10 melanoma cells

have been used to test vaccine candidates (48). Kreiter et al.

developed an mRNA vaccine, which harbors multiple MHC class

I/II-restricted neoepitopes sequenced from B16F10 cells (49). The

vaccine induced potent tumor-specific CD4+ and CD8+ T-cell

responses in mice and protected 60-80% from lethal tumor

challenge. More recently, Chen et al. reported a novel formulation

of LNP, called 113-O12B, with improved trafficking to lymph nodes

as compared to liver. 113-O12 encapsulated mRNA vaccine

encoding Trp2 180-188 epitope conferred complete response in

40% of mice challenged with B16F10 melanoma cells (50).

Currently, there are several LNP-formulated mRNA melanoma

vaccines in clinical trial (Table 1). BNT111 is one of the lead candidates

by BioNTech targeting melanoma tumor-associated antigens (NY-

ESO-1, MAGE-C3, Tyrosinase and TPTE) currently in a Phase 2 trial

(NCT04526899). In the prior Phase 1 trial, BNT111 was found to

induce both CD4+ and/or CD8+ T cell responses in 39 of 50 patients

(78%). In one arm where checkpoint inhibitor-experienced patients

received both the vaccine and PD-1 targeting antibody cemiplimab, six

of the 17 patients (35%) had partial responses to the regimen and two

patients (12%) had stable disease (51). Two personalizedmRNA cancer

vaccines (Moderna vaccine mRNA-4157 and BioNTech vaccine

BNT122) have also been advanced to Phase 2 clinical trials

(NCT03815058, NCT03897881). While the data for BNT122 in

melanoma is still pending at the time of this writing, the BioNTech

vaccine platform attained promising results against pancreatic ductal

adenocarcinoma (PDAC) in a Phase 1 trial, inducing neoantigen-

specific T cell responses in 8 out of 16 participants (50%) from
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undetectable levels to a median of 2.9% in peripheral blood. In

addition, those patients with de-novo immune responses had a

significantly longer recurrence-free survival (RFS) (52). For mRNA-

4157, the Phase 1 trial (NCT03313778) showed that the vaccine was

well-tolerated and induced neoantigen-specific T cell responses. While

the data has not been published in a peer-reviewed journal, Moderna

andMerck recently announced that their Phase 2 trial (NCT03897881)

comparing adjuvant treatment with mRNA-4157 in combination with

pembrolizumab, reduced risk of recurrence or death in patients with

stage 3 or 4 melanoma following complete resection, by 44% (HR=0.56

[95% CI, 0.31-1.08]) as compared to patients receiving pembrolizumab

alone (54). mRNA-4157 has now been advanced to a Phase 3 trial

where recruitment of participants will begin in 2023. While these

various vaccines encode either TAA or TSA, non-coding RNA may

also be used as adjuvant to enhance endogenous anti-tumor responses.

CV8102 by CureVac consists of a non-capped, non-coding RNA

complexed with a carrier peptide that is directly injected

intratumorally to activate cellular TLR7/8 and RIG-1 pathways to

enhance native immunity. In a Phase 1 trial (NCT03291002), CV8102

alone or in combination with CPI was observed to induce regression of

injected and distant tumors in several subjects with melanoma (55).
6 Conclusion and prospects

Since their invention three decades ago, mRNA vaccines have

come a long way withmultiple advances. These include modification of

nucleotides, capping, sequence engineering, purification and LNP

formulation, that collectively help to overcome key barriers (thermal

instability and local reactogenicity) and empower the platform to be a

promising tool in our fight against cancer. The COVID-19 pandemic

significantly expedited RNA vaccine development, producing a deep

appreciation for its immune/adverse effect profile and comfort in

designing novel vaccines for quick first-in-human studies. mRNA

vaccines are unique in their ability to activate multiple arms of the

immune system (B cells, CD4+ and CD8+ T cells), and preliminary

(not yet published) data with the Moderna melanoma neoantigen

vaccine appears promising in the Phase 2 study.

However, key challenges in the field still remain.While CD8+ T cell

responses are induced by the mRNA vaccines, the magnitudes of

responses in humans appear to be significantly lower than those in

animal studies, corresponding tomore limited anti-tumor efficacy in the

context of advanced disease studies to date. Further attempts to amplify

cellular responses through self-amplifying RNAs (57) or antigen design

through protein engineering might further improve response rates (58–

60). For neoantigen-based vaccines, only a fraction of the predicted

epitopes appear effective at inducing CD8+ T-cell responses (61).

Ongoing improvements with in- silico prediction algorithms or novel

in vitroHLA-binding assays will likely improve antigen design and best

utilize the RNA cassettes. Finally, even the best-designed vaccine might

not adequately overcome the suppressive tumor microenvironment at

distant metastatic sites. A multimodal approach involving vaccines, CPI

and immunostimulants might work synergistically (62), and should be

utilized in future trial designs to attain optimal outcomes in patients

with advanced melanoma or other types of malignancies, including

those with lower intrinsic mutational burdens.
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TABLE 1 Summary of the recent clinical trial data with mRNA melanoma vaccines/immunotherapies.

Target/
Administration

Clinical
Trial

Number
Phase Adjuvant

therapy Adverse event profile Efficacy Profile Reference

BNT111 (NY-ESO-1,
MAGE-C3, Tyrosinase
and TPTE), given I.V.

NCT02410733 I

With or
without

Cemiplimab

Flu-like symptom, no dose-
limiting toxicity

Expansion and activation of circulating
tumor-antigen-specific T cells with

memory-function and strong cytotoxic
activity

(51)

NCT04526899 II

Monotherapy: 3/25 partial response, 7/25
stable disease, 1/25 complete metabolic

remission; Combined with CPI: 6/17 with
partial response

BNT122 (20 tumor-
associated neo-antigens
against melanoma),

given I.V.

NCT03815058 I

With or
without

Atezolizumab

1/16 with Grade III fever/
hypertension, no other Grade
III or higher AE reported

De-novo neoantigen-specific T cell
response in half (8/16) of patients, those
with T-cell response had significantly
longer progression-free survival than

those without

(52)
BNT122 (20 tumor-

associated neo-antigens
against PDAC), given

I.V.

NCT04161755 I

mRNA-4157 (multiple
tumor-associated neo-
antigens against solid
malignancy), given

I.M.

NCT03313778 I
With or
without

pembrolizumab

No Grade III or higher AE
reported; no dose-limiting

toxicity observed

Neoantigen specific T cell responses have
been detected by IFN-g ELISpot from

PBMCs.
(53)

mRNA-4157 (multiple
tumor-associated neo-

antigens against
melanoma), given I.M.

NCT03897881 II
With

pembrolizumab

Serious treatment-related
adverse events occurred in

14.4% of patients who received
the combination arm of
mRNA-4157/V940 and

KEYTRUDA versus 10% with
KEYTRUDA alone

Adjuvant treatment of mRNA-4157 in
combination with pembrolizumab

reduced the risk of recurrence or death in
patients with metastatic melanoma by
44% (HR=0.56 [95% CI, 0.31-1.08]) as

compared to patients receiving
pembrolizumab alone

(54)

CV8102 (non-coding,
non-capped RNA),
given intratumorally

NCT03291002 I

With or
without anti-

PD-1
antibodies

Most frequent AEs were Grade
1/2, including fatigue, fever,

chills, and headache

Increased intra-tumoral T cell infiltration
in 4/8 patients receiving CV8102 alone,

and 10/18 patients receiving CV8102, and
anti-PD-1 therapy

(55)

mRNA-2752 (three
cytokines OX40L/IL23/

IL36g), given
intratumorally in
patients with

lymphoma and solid
tumors including

melanoma

NCT03739931 I
With or
without

durvalumab

Dose-limiting toxicity (due to
cytokine release syndrome) in
one of thirty patients receiving

8 mg

Increased IFNg and TNFa expression in
both tumor and plasma; Partial responses
in 2/45 patients (DLBCL and squamous-
cell bladder carcinoma); 15/45 patients

with stable disease

(56)
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