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Determinants of tumor immune
evasion: the role of T cell
exposed motif frequency and
mutant amino acid exposure

E. Jane Homan* and Robert D. Bremel

ioGenetics LLC, Madison, WI, United States
Few neoepitopes detected in tumor biopsies are immunogenic. Tumor-specific

T cell responses require both the presentation of an epitope that differs from

wildtype and the presence of T cells with neoepitope-cognate receptors. We

show that mutations detected in tumor biopsies result in an increased frequency

of rare amino acid combinations compared to the human proteome and

gastrointestinal microorganisms. Mutations in a large data set of oncogene and

tumor suppressor gene products were compared to wildtype, and to the count

of corresponding amino acid motifs in the human proteome and gastrointestinal

microbiome. Mutant amino acids in T cell exposed positions of potential

neoepitopes consistently generated amino acid motifs that are less common

in both proteome reference datasets. Approximately 10% of the mutant amino

acid motifs are absent from the human proteome. Motif frequency does not

change whenmutants were positioned in the MHC anchor positions hidden from

T cell receptors. Analysis of neoepitopes in GBM and LUSC cases showed less

common T cell exposed motifs, and HLA binding preferentially placing mutant

amino acids in an anchor position for bothMHC I andMHC II. Cross-presentation

of mutant exposed neoepitopes by MHC I and MHC II was particularly

uncommon. Review of a tumor mutation dataset known to generate T cell

responses showed immunogenic epitopes were those with mutant amino acids

exposed to the T cell receptor and with exposed pentamer motifs present in the

human and microbiome reference databases. The study illustrates a previously

unrecognized mechanism of tumor immune evasion, as rare T cell exposed

motifs produced by mutation are less likely to have cognate T cells in the T cell

repertoire. The complex interactions of HLA genotype, binding positions, and

mutation specific changes in T cell exposed motif underscore the necessity of

evaluating potential neoepitopes in each individual patient.
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1 Introduction

Recognition of tumor-specific neoepitopes by cytotoxic

lymphocytes is the primary immunological mechanism for

elimination of tumor cells (1). A fundamental premise is that for an

effective tumor recognition response to occur, a mutation must

generate an epitope different from the unmutated wildtype (2).

Secondly, there must be one or more clones of T cells bearing

receptors that bind to the mutant peptide:MHC complex (pMHC).

Individual tumor-specific amino acidmutations create unique peptides

which are potential targets for neoepitope vaccines (1, 3). However,

very few mutations produce immunogenic neoantigens (4, 5). Here we

analyze some of the ways in which neoepitopes evade immune

surveillance. In particular, we show alterations in the frequency of

occurrence of the amino acid motifs exposed to the abT cell receptor

(TCR) by a mutated peptide, when bound and presented by an MHC,

compared to the frequency of occurrence of the same amino acid

motifs in the human proteome and in a representative gastrointestinal

(GI) microbiome. The GI microbiome is included as a recognized

source of diverse T cell stimulation linked to cancer outcome (6, 7). As

the amino acid combinations that engage the TCR may be continuous

pentamers (MHC I) or discontinuous pentamers (MHC II), we refer to

these as amino acid “motifs”.

T cell recognition of a tumor-specific mutation depends on

presentation of short peptides bound in MHC molecules. Amino

acids of the TCR a and b chains engage the MHC histotope and the

protruding amino acid side chains of the bound peptides (8–10). T

cell recognition is highly polyclonal; the exposed amino acid motif

of a bound peptide may be recognized by a hundred or more

cognate T cell clones with different alpha and beta subunits (11).The

amino acids in a peptide whose side chain atoms interact with those

within the MHC groove determine the pMHC binding affinity (12).

These groove-facing amino acids in the so-called ‘anchor positions’

are hidden from the TCR. Only amino acid side chains in the non-

anchor positions have atomic-level interactions with the TCR (9).

Thus, for T cell recognition of a neoepitope, the mutant amino acids

must to be in a position exposed to the TCR and not hidden in the

anchor positions (13, 14). Both CD8+ and CD4+ T cell responses

are needed for an effective tumor targeting response (15–20).

When a peptide is bound in an MHC, whether MHC I or MHC

II, the exposed amino acids comprise a pentamer (9, 21–23). We

refer to these exposed pentamers as the T cell exposed motif

(TCEM) and the hidden residues in the anchor positions as

groove-exposed motifs (GEM). In a 9mer peptide bound in an

MHC I, the TCEM comprises amino acids p4, p5, p6, p7 and p8
Abbreviations: BAM, Binary Alignment Map; GBM, Glioblastoma multiforme;

GDC, Genome Data Commons; GEM, Groove exposed motif; giPPF,

Gastrointestinal (GI) microbiome proteome pentamer frequency; HLA, Human

leucocyte antigen; hPPF, human proteome pentamer frequency; IEDB, Immune

Epitope Database; DAI, Differential Agretopicity Index; LUSC, lung squamous

cell carcinoma; pMHC, peptide bound MHC complex; RMSE, root mean square

error; SHASH, Sinh-arcsinh distributions (72).; TCEM I, T cell exposed motif of a

peptide bound in MHC I; In MHC II: TCEM II; TCEM, T cell exposed motif.; s,

standard deviation units.
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(TCEM I). When a 15mer peptide is bound in an MHC II amino

acids p2, p3, p5, p7, and p8 of the central 9mer are the dominant

TCEM (TCEM II) (9, 22, 24–27).

The total possible combinations of 20 amino acids as a

pentamer is 205 or 3.2 million. We have previously shown that,

when all possible sequential peptides are considered, the human

proteome only contains approximately 2.4 million of the possible

3.2 million unique pentamers for each MHC class (28). A dataset

comprising the proteomes of 67 representative bacterial species

found in the gastrointestinal microbiome (GI microbiome)

comprised 2.9 million of the possible pentamer motifs (28),

partially overlapping those in the human proteome.

Self-peptides in the human proteome are the basis of both positive

and negative selection of naïve T cells during thymic processing (29–34).

The number of times any self-peptide is presented on thymic epithelial

cells, and particularly presentation of the exposed amino acid pentamer

motifs they comprise, plays a role in shaping the initial T cell repertoire

(35). In early life peptides derived from exogenous proteins, including

peptides of the GI microbiome carried by antigen presenting cells, also

contribute to positive selection of T cell clones (36–40). The T cell

repertoire is further shaped over a lifetime of exposure to peptides with

recognized TCEM (41). Prior to puberty and early adulthood this

expands the diversity of the repertoire. In later life immunosenescence

leads to progressive fragmentation of T cell repertoire diversity, in part

due to exposure to chronic viral pathogens (42–45). T cells that

recognize uncommon TCEM are less likely to be selected in the

thymus, and progressively less likely to be represented in the T cell

repertoire as it narrows in ageing, thereby handicapping a response to a

low-frequency epitope.

The quorum of T cell clones which can respond to a given

pMHC is complemented by T cells which have arisen initially in

response to structurally similar “near-neighbor” epitopes (46, 47)

and by recognition of more distinct TCEM (23, 48, 49). Limited

exposure to rare TCEM in repertoire development would tend to

reduce the size of the responding quorum, and likely dampen the

overall response rather than eliminate it completely. Not all TCEM

will be equally presented to a T cell by individuals of differing HLA

genotype. The diversity of peptides presented may be reduced if one

or more HLA loci are homozygous (50–53). Intrathymic selection

of T cells is thus unique to an individual’s HLA genotype (54). The

lifelong sculpting of the T cell repertoire is a function of the

combination of peptide binding by individual HLA alleles,

diversity of personal antigenic challenge by exogenous epitopes,

and TCR cross reactivities (55). While acknowledging these

variables affecting the diversity of T cell repertoires, the

examination of tumor-specific TCEMs relative to the frequency of

matching motifs in the human proteome and other reference

datasets can offer insights into the mechanisms of immune

evasion. The potential impact of the frequency in the human

proteome of pentamers matching TCEM in microorganisms on

control of infection has been explored, concluding that the absence

of certain TCEM during positive thymic selection may create a

disadvantage in immune response to pathogens (35).

Mutations detected in tumor biopsies are the survivors of

immune pressure and selection, known as immunoediting, which

likely occurs over years before clinical presentation (56–58).
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Multiple modes of evasion have been described. Many mutated

proteins are not expressed and so would be expected to be

inconsequential to both tumor cell replicative advantage and

immune pressure (4). Peptides comprising mutations, but which

are not bound by MHCs, leave potential cognate T cells ignorant of

their existence (59). The expression of the HLA loci may be down-

regulated in tumor cells (60, 61). The tumor microenvironment

may provide physical and immunosuppressive barriers to effective

immunogenicity and surveillance (62–68).

In this study we demonstrate the impact of the frequency

patterns of TCEM presented to TCR on immune evasion of

tumors. Frequency patterns are overlaid on the binding of

mutated peptides by MHC, which determines whether a mutant

amino acid is exposed or is hidden in a groove facing position.

First, we wished to determine if the TCEM arising from tumor

mutations and potentially presented to TCR differ from their un-

mutated wildtype homologs when compared to the frequency of

matching pentamers in the normal human proteome (human

proteome pentamer frequency hPPF) and in the gastrointestinal

microbiome (giPPF). This was addressed by examining the

pentamer motif frequencies in a large array of recorded missense

mutations in 123 proteins previously classified as drivers of tumor

progression, either as oncogenes or tumor suppressors (69) and

recorded in the Genome Data Commons (GDC) (70).

Secondly, we asked whether mutated amino acids are more or

less likely to be hidden from a TCR when bound in the patient’s

MHC, and which of those amino acid motifs exposed to the TCR

were less common in the reference datasets.

The third question we addressed was whether the patterns of

TCEM frequency and HLA binding differed between oncogenes,

tumor suppressors, and passenger mutations, and whether the

characteristics of the driver mutations or cancer types differed in

their ability to escape immune surveillance. These questions can

only be addressed within the context of each patient’s HLA

genotype and the predicted binding position of each mutant

pMHC. To address the above questions, and that of differences

between tumor drivers and passengers, we downloaded mutation

lists and derived HLA alleles for 31 glioblastoma multiforme (GBM)

and 30 lung squamous cell carcinoma (LUSC) cases from the GDC.

These two cancers have quite different mutational burdens and a

mixture of driver and passenger mutations.

Finally, we accessed a set of tumor mutations previously

demonstrated by others to elicit T cell responses and examined

which of the criteria of MHC binding and motif frequency they

fulfilled (4).

Overall our results shed light on mechanisms of immune

evasion and hence guide potential approaches to specifically

targeting a tumor cell with an immunotherapeutic approaches.

2 Materials and methods

2.1 Determination of hPPF and
giPPF frequencies

Amino acid motif frequencies, corresponding to the continuous

and discontinuous pentameric configurations of TCEM,
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HUMAN_9606 retrieved from the UniProt repository and

excluding immunoglobulins (71). The longest isoform of each

protein was selected and used for extraction of the motif

frequencies. Each protein in the dataset was broken into

successive 15mers with a sliding window displaced by a single

amino acid, as previously described (28). This dataset comprised

approximately 11.63 million peptides. With this approach the first

amino acid of each sequential 15mer corresponds to a linear

sequence of the entire proteome. There is a small number of

15mers in the proteome repository that contain unidentified

amino acids (X,U,B); peptides comprising these were eliminated.

Likewise, the N and C terminal peptides shorter than 9 amino acids

were excluded. The first 9 amino acids of each 15mer were used to

assemble the database of 9mers comprising the pentamers

corresponding to TCEM I at their amino acids p4, p5, p6, p7, p8.

These were coded as ~~~XXXXX~, where X is the amino acid in the

9mer sequence and ~ represents any amino acid in the flanking

GEM (i.e. anchor) positions. A similar approach was carried out to

extract the TCEM II. In this case amino acids p5, p6, p8, p10, p11 of

the 15mer represented p2, p3, p5, p7, p8 of the central 9mer which

begins at amino acid 4 of the 15mer. TCEM II is coded as

XX~X~XX. The amino acid numbering convention we use is

shown in Figure 1. A master database of each of the possible 205

pentamers was created for each motif configuration and used to

determine the frequency distributions of the motifs in the proteome.

All pentamer extraction and frequency distributions were done

within JMP® datatables, (SAS Institute, Cary N.C). The TCEM I

and TCEM II frequency data are count data, where some of the

counts are zeros. The best fit of the pentamer frequency

distributions were computed as a zero inflated Poisson (ZIP)

distribution, where l is the Poisson mean and p is the portion of
FIGURE 1

Peptide binding numbering convention. Multiple binding positions in
an example peptide where proline (P) is the mutant amino acid.
TCEM = T cell exposed motif shown in gold. GEM = MHC groove
exposed motif (anchor positions) shown in blue. For MHC II the
numbering of the central core of the 15mer is shown.
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the distribution with zero counts in the reference dataset. The JMP®

univariate platform provides confidence limit estimates for the

Poisson distributions. For some graphical analyses the

distribution was standardized using a SHASH transform to

normal of the log2(1+actual frequency) (72). Because of the

underlying Poisson distribution, the SHASH transformed

distributions are not typical Gaussian normal distribution curves,

but they make the distributional changes easier to discern in

graphic presentation.

For the GI microbiome reference dataset the same process was

carried out for all open reading frames in the genomes of 67 bacterial

species in 35 genera assembled from the NIH Human Microbiome

Project Reference Genomes database (www.hmpdacc.org/HMRGD)

(28, 73) (Supplemental Table 1). The GI microbiome reference

dataset is about ten times larger than the human proteome,

approximately 109 million peptides.

The result of the above processes is two databases of 3.2 million

pentamers each, with tallies of the number of times that a particular

motif was present in the human proteome and the GI microbiome.

The tallies represent the frequency we refer to throughout the paper

as hPPF and giPPF.
2.2 Tumor mutation data acquisition

2.2.1 Oncogene and tumor suppressor set
Oncogenes and tumor suppressor genes were identified based

on listings by Vogelstein et al. (69). All recorded mutations of 54

oncogenes and 71 tumor suppressor genes were assembled from the

GDC in July 2022. Duplicate amino acid mutations created by

different codon mutations were excluded. The dataset was limited to

missense variants resulting in single amino acid changes.

Corresponding wildtype protein sequences were downloaded

from UniProt (71), and, based on the genomic annotation

convention, the single longest isoform of each protein was used

for all computation. Mutant versions of the proteins were assembled

and mutation positions of the target amino acids were verified in the

protein isoform. Two genes, CDH1 and SMARCA4, were removed

from consideration as the reported mutant amino acid changes

could not be resolved in any isoform. One reported mutant of

ATRX similarly could not be resolved and was excluded. A group of

12 ARID1B mutations were resolved within the shorter reference

sequence. The resultant dataset comprised 7,239 mutant protein

sequences across 54 oncogenes and 13,634 mutant protein

sequences of 69 tumor suppressor genes (Supplemental Table 2).

In each mutant and wildtype sequence the amino acid pentamer

motifs corresponding to the MHC I configuration of p4, p5, p6, p7,

p8 positions, and discontinuous pentamers in the MHC II

configuration of p2, p3, p5, p7, p8 were identified and the count

of the corresponding motifs determined in the human proteome

and GI microbiome datasets. The TCEM comprising mutant amino

acids were identified for comparison of frequency with their

wildtype counterparts. The mutant proteins were aligned relative
Frontiers in Immunology 04
to the mutant position (set at zero as shown in Supplemental

Figure 1) to facilitate graphical comparison of the TCEM hPPF.

This process was repeated for the giPPF.

2.2.2 GBM and LUSC sets
Data for 31 cases of glioblastoma multiforme (GBM) and 30

cases of lung squamous cell carcinoma (LUSC) were downloaded

from GDC. TCGA case numbers are listed in Supplemental Table 3.

The cases were selected at random from those for which BAM files

were available. This set included 8,207 proteins with missense

mutations, comprising approximately 100,000 peptides carrying a

mutant amino acid in overlapping 9mer and 15mers. All missense

mutations for each case were assembled and mutated sequences

constructed and verified as described above. A portion of each BAM

file comprising the sequences chromosome 6 were downloaded as

the basis for determining patient HLAs. Predicted HLA binding

affinity (as described below) was computed as a mean LN(ic50) of

25 member neural network ensembles for each allele in a patient’s

genotype. The standard deviation of the ensemble predictions is

also computed, providing an estimate of confidence limits around

the mean. Kurtosis and skew of binding affinity distributions varies

widely among the different alleles. To accommodate these

characteristics the ensemble predictions were placed on a

common Zscale by a SHASH transformation to normal

standardization to zero mean unit variance within protein for

each allele (74). Proteins identified as oncogenes or tumor

suppressor gene products, as above, were designated “drivers”;

other proteins were designated as “passengers”.
2.2.3 T cell responder set
Supplementary Tables of the report by Parkhurst et al. (4) were

used to construct mutant protein sequences from the GENCODE

ENST hg38 reference sequences. As described above for the GBM

and LUSC sets, we computed the Ln(ic50) for peptides in the

proteins for which we were able to verify the amino acid at the

indicated coordinate using the stable GENCODE ENST (two were

eliminated as unresolved). Based on the HLAs reported in the study,

the predicted binding affinity was computed for each HLA and

placed on a common scale by SHASH transformation to normal.

The authors had identified peptides ranging from 8-12 amino acids

as the “predicted minimal epitope” that had generated the CD4+

and/or CD8+ T cell peptide recall responses. As our prediction

system is restricted to 9mers for MHC I the 12mers were

decomposed into four successive 9mers. All the peptides in the

author-selected set exhibited a relatively high binding affinity for

several 9mer TCEM I binding registers. A 6(allele) x 5(TCEM

pentamer) matrix was used to compute the minimum Zscale

(highest predicted affinity) across the 6 MHC I genotype and the

5 TCEM I binding registers. The average TCEM I Zscale minimum

across all neoantigens in the set was -2.26s (stdev ± 0.78), indicating

the authors had selected high affinity peptides. A composite MHC I

and MHC II HLA genotype was created for each patient. We
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extracted the TCEM I and TCEM II amino acid patterns from the

peptide sequences and combined them with the SHASH

standardized within-protein predicted binding data.
2.3 HLA binding predictions

The approach to predicting binding behavior of peptide-MHC

(pMHC) complexes was described previously (75, 76). This is based

on a neural network application derived from the chemometric

approach of Wold et al. (77) who used partial least squared

regression (PLS) of the principal components of amino acid

physical properties as predictors of the structure activity

relationships of peptides. Use of principal component analysis

produces appropriately weighted predictors as input parameters; a

key feature in machine learning (78). The principal components used

as inputs to the neural networks are effectively dimensionless proxies

comprising a large number of amino acid physical properties.

As training sets we use curated public datasets of ic50 (nM)

pMHC retrieved from the IEDB repository (79) (minimum 200

pMHC trainers per allele) and only 9mer and 15mer peptides.

Neural network ensembles were created with the neural platform of

JMP® in a bootstrap aggregating (bagging) process (80, 81). This

current approach builds on our initial work, but now uses a much

larger, periodically updated, set of data as pMHC training sets (75,

76). The bagging process produces several different predictors from

the same training set. The predictors converge to unique solutions

that are statistically equivalent, due to the randomization of the

trainers by the bagging process. The prediction equations that

exhibit the best generalization performance, as determined by

four different statistical measures during the training, are used to

create an ensemble of neural networks. In practice we generate 300

unique predictors for each HLA allele and then use the best 25

statistical generalizations as the working ensemble set based on the

training statistics. Use of multiple ensemble predictions on an

individual peptide enables prediction of an ensemble mean and

an ensemble standard deviation for any peptide. The standard

deviation provides a metric of the precision and a statistical

confidence limit of the predictions outside of the training sets

used to create the ensembles.

As is common practice in ligand binding analysis, the ic50 input

parameter is natural logarithm (Ln) transformed to reduce the bias

in the least squares processes introduced by the thousand-fold range

in ic50 nM values. As described previously (74) the raw binding

data (Ln(ic50)) is standardized to a zero mean, unit variance

(ZScale) distribution within each protein using the SHASH or

Johnson distribution transformation in JMP®. This process places

the predictions for different alleles across a genotype on a common

scale for the protein under consideration and was shown to be an

effective way of analyzing binding and biological activity (75, 76).

The underlying concept is that the A alleles will compete with other

A alleles, the B alleles with other B alleles, and the C alleles with

other C alleles. It is not uncommon within large sets of peptides to

find some which are predicted to bind with similar affinities to

alleles of several different loci. As TCR tend to use different Valpha

and Vbeta families for different MHC this suggests that the same
Frontiers in Immunology 05
peptide may be presented to different cognate T cells sets in the

context of the histotope of the different MHC molecules.
2.4 Determination of the HLA genotype

A chromosome 6 BAM slice containing the HLA locus was

retrieved from the normal exome files for each GBM and LUSC

patient at GDC and converted into a paired fastq files using

SamToFastq from Genome Analysis Toolkit (82, 83). The HLA

genotypes were determined by tabulating the alignments to exon 2

and exon 3 of different HLA molecules using magicBLAST (84).

These two exons comprise the peptide binding domains of the

MHC sequences. HLA cDNA coding sequences were retrieved from

https://www.ebi.ac.uk/ipd/imgt/hla/ and used to create the BLAST

database reference used by magicBLAST.
2.5 Combined patterns of
TCEM and binding

Whether or not a cognate T cell receptor engages a particular

peptide depends on two factors: a) the binding affinity of the peptide

to the MHC; and b) which of the amino acids are protruding from

the MHC surface and available for TCR engagement (the TCEM)

and which are facing inwards towards the MHC groove (GEM) and

not directly accessible to the TCR. To represent the combined logic

of these two features for the MHC I A, B and C loci and the tumor-

specific mutant amino acids we used a 6-bit binary pattern (one for

each of 3 pairs of Class I alleles) with each bit representing the logic

of two features: a bit = 1 if the peptide binds and the mutant amino

acid side chain is protruding in a TCEM; and a bit = 0 if the peptide

does not bind or if it binds but the mutant amino acid is not

protruding, or both. Thus, a binding threshold was assigned (as a

Zscale cut point) and each mutated and each unmutated (wildtype)

peptide in the GBM and LUSC dataset was assigned a 6-bit binary

values representing the MHC I loci: one for wildtype and one for the

mutant. Therefore, there are 26 different patterns of genotype x

binding combinations, and each peptide is assigned one of the 64

patterns. A similar 2 bit representation was applied to the MHC II

DRB1 alleles. DP and DQ alleles were not included because the

presence of two different alpha and two different beta subunits

results in potentially 4 different heterozygous combinations of each

and without knowing the combinations in vivo it is not possible to

derive reliable binding affinity predictions. Using this categorical

HLA coding approach we created contingency tables of wildtype vs

mutant that identify the subsets of different peptides based on

presentation of a neoepitope or not. By standardizing all allele

binding to the Z scale the multivariate data from different alleles can

be combined into composite HLA genotype variables. For example,

one can assign a class I genotype to a 6-bit binary value AABBCC:

000000 = no allele binds, 001000 one of the B alleles binds, 100010

one A and one C allele binds at greater affinity than the threshold.

The first MHC I A allele for each patient was designated as A1, the

second as A2 etc.
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Such coding requires determination of an appropriate cut-off to

score binding. It has been common practice to use thresholds for

binding such as 50nM and 500nM in analysis of MHC binding.

However, reports suggest that even peptides with significantly lower

affinities are capable of generating T cell responses (2, 13, 59). We

previously compared the intra-protein standardized binding for

over 400 of different allele + pMHC molecules for which there were

curated responses in the IEDB database and in that study found T

cell responses to lower MHC binding affinities (74). We found an

overlap between positive and negative responses and derived a

statistical cut point from a random partitioning algorithm for intra-

protein standardized (ZScale) binding values. Depending on the

allele being considered this value equates to about 3-5 micromolar,

or an affinity about 10x lower than the 500nM value, and more in

accord with that reported by Duan et al. (2) and more recently by

Yamarkovich (59). Based on this original analysis and validation in

multiple infectious disease projects, we routinely apply -1s standard

deviation Zscale value (-1s) as a cutoff, which corresponds to

approximately the 16th percentile point.
2.6 HLA genotype binding simulation in the
human proteome

To better understand the multi-allelic binding patterns we

computed the binding affinities (as LN(ic50) for all 11.6 million

peptides in the human proteome described above for a simulated

genotype comprising a combination of common HLA alleles:

A*02:01, A*03:01, B*07:02, B*08:01, C*04:01, C*07:02,

DRB1*01:01, and DRB1*04:01. Using the ensemble approach

described above, predicted binding affinities and standard

deviations were computed for this combination of alleles for the

entire proteome comprising 11.6 million 9mers and 15mers. The

affinities were also standardized to Zscale by SHASH transform to

normal within protein across the entire proteome. This provided a

mechanism for determining the number of self-peptides that would

be bound individually and in combination across the HLA genotype

for the entire proteome. The Shannon entropy of the HLA binding

patterns describes the diversity of binding for any particular one of

the GBM and LUSC cases.
3 Results

3.1 Human proteome peptides bind to
common MHC genotypes

Using the Zscale standardization it was possible to derive a

picture of how a typical HLA genotype responds to the entire

human proteome. Binding of the peptides by the constituent HLAs

exhibits a sigmoid curve to which a standard 4 parameter logistic

plot of a Hill coefficient model can be fitted (Figure 2). Interestingly,

the inflection point of the curve is at a Zscale value of -1.12s for

A*02:01. The other alleles have similar values, supporting the use of

-1s as a convenient and reasonable approximation of the half-

maximal binding point for an entire genotype, and concordant with
Frontiers in Immunology 06
our previous results with T cell epitope responses to influenza (74).

The -1s Zscale metric is effectively a surrogate for the Kd

commonly used in receptor analysis. It should be noted that the

Zscale sigmoid curve midpoint is consistent with the binding

affinity described by Duan et al. (2). Proteome-wide peptide

binding patterns for this HLA genotype are summarized in

Supplemental Table 4.
3.2 T cell exposed motif frequencies
in oncogenes and tumor suppressor
gene products

3.2.1 Tumor mutations generate less common
T cell exposed motifs

Evaluation of the hPPF and giPPF characteristics of TCEM

across the 123 recognized oncogene and suppressor gene products

shows that when a mutant amino acid is located in a T cell exposed

position, the matching amino acid pentamer motif has a lower

frequency count in the human proteome (hPPF score), as shown in

the Zscale histogram in Figure 3. In approximately 10% of TCEM

the corresponding pentamer motif is completely absent from the

proteome (Figures 3A, B TCEM). To a lesser degree, the same

pattern is seen relative to the giPPF (Figures 3C, D TCEM).

Corresponding Poisson distributions are in Supplemental

Figure 3. Supplemental Figure S4 shows the impact on hPPF

frequency of the TCEM when the mutant amino acid is located

in each pocket position. A peptide which is preferentially bound so

that the mutant amino acid lies in a GEM position has with no

change in hPPF and giPPF relative to wildtype, however a mutation

in the GEM position will likely modify binding as discussed below.

As tabulated in Figure 3, there was no difference between the

patterns observed in oncogenes and in suppressor gene products,

so these are combined in both Figures 3, 4.
FIGURE 2

Simulated binding of peptides in the human proteome for a
hypothetical genotype of common MHC I alleles. The cumulative
peptide count was tallied at each of the Zscale cut-points of the
standardized binding affinity and the fraction of the proteome at
that standardized affinity is plotted vs. the Zscale cut point
(Supplemental Table 4). Numerical values of the predicted ic50 in
nM are indicated for A*02:01 back-calculated from the standardized
values. The values of other alleles is similar. The inflection point of
the curve with a 4 parameter logistic fit is -1.12s. A -1s cut point
indicated by the dashed line is used throughout.
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As shown in the table in Figure 3 for oncogene and suppressor

mutant peptides presented by MHC I, the hPPF of matching

pentamers changes from a count of 15.98 in the wildtype with

zero missing (hPPF=0) to a hPPF of 10.06 in the mutant, with 10%

mutant TCEM having no representation in the normal human

proteome. The Poisson summary statistics (l=mean, p = fraction of

zero counts) also shown in Figure 3 are highly significantly different.

The Poisson mean frequencies of the pentamer motifs in the

wildtype oncogenes and suppressors are overall about 3 times

that in the proteome as a whole, where l= 4.9. However, as it is a

Poisson distribution, while the TCEM hPPF frequencies of the

wildtype driver proteins appear quite common in aggregate, there is

a wide variance among the individual proteins.

The Poisson mean frequency count in the giPPF (l = 37.7,

compared to 4.9 hPPF) as a whole is higher than the proteome,
Frontiers in Immunology 07
reflecting the larger size of the GI dataset, which is approximately

10x the size of the human proteome. Just as noted in the hPPF, the

TCEM comprising the mutant amino acid in the oncogene and

suppressor proteins are also less common in the giPPF; the l
decreases from 78.29 (wildtype) to 68.64 (mutant). There is also a

statistically significant increase in the fraction of TCEM absent from

the GI microbiome (i.e. giPPF=0). Overall the motifs in the wildtype

driver genes are quite common in the giPPF and overlap with those

in the hPPF.

For MHC II, the patterns and frequency shifts of the TCEM

II motifs parallel those of TCEM I for both reference datasets. In

TCEM II, the hPPF l is decreased from 13.81 in the

wildtype to 9.64 in the mutated protein and the giPPF from 76.6

to 67.7 . Corresponding Poisson distr ibut ions are in

Supplemental Figure 2.
A

B D

C

FIGURE 3

Pentamer motif frequencies comprising the mutant amino acid in oncogene and suppressor gene products ranked by matching pentamer
frequencies in the human proteome and GI microbiome. The Y axis shows the count of pentamer motifs in the oncogene and suppressor gene
product mutation dataset. Counts of pentamer positions which place the mutant amino acid in the MHC I GEM I or TCEM I positions are shown in
red. Discontinuous pentamer positions which place the mutant amino acid in the MHC II GEM II or TCEM II positions are shown in blue. Wildtype
homologues are shown in grey. In (A, B) the X axis is the Z scale standardized frequency of each pentamer motif in the human proteome (hPPF). The
histogram bar on the far left of (A, B) TCEM indicates motifs absent from the human proteome, the second bar is singletons, the third bar
doubletons etc. In (C, D) the X axis is the Z scale standardized frequency of each pentamer motif in the GI microbiome (giPPF). This larger dataset
more closely approaches a normal distribution, while still underlain by a Poisson distribution. Summary statistics are for the standardized distribution
shown and for the corresponding Poisson distribution shown in Supplemental Figure 2. l= Poisson mean, p = fraction of zero counts.
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The entire dataset of mutated protein sequences was aligned by

setting the mutant position to zero. Figure 4 shows the sequential

peptides in positions either side of the mutant position, using Z-

scale scoring of each TCEM relative to their hPPF. The overall hPPF

of the five positions that comprise the mutant amino acid is clearly
Frontiers in Immunology 08
reduced for both MHC I and MHC II as is shown by the smoothing

line through the means at each position relative to the mutation at

zero. These patterns are a sliding window of TCEM indexed by one

amino acid so the observed concordance of changes is not a gradual

change, but an abrupt shift for TCEM at a specific position. Only at

the precise position where the mutant amino acid is placed in the

TCEM pentamer does the frequency change. Positions either side,

where the mutant amino acid would lie in the GEM positions or

outside the bound peptide, are unaffected.

Within this aggregate pattern, comprising 20,873 mutations,

there are different numbers of unique mutations for each oncogene

and suppressor gene product, and different numbers of cases are

associated with each mutation. The overall frequency trend is

towards a statistically significant lower hPPF (seen also in

Figures 3A, B). Any single missense mutation may create from

zero to ten TCEM motifs (TCEM I plus TCEM II) that are

completely absent from the human proteome. There is a very

small subset of mutations within the set that produce TCEM for

which the frequency increases.
3.2.2 Example proteins
The oncogene and suppressor gene product dataset includes

471 unique mutations in TP53 representing 3,147 cases

documented at GDC. TP53 stands out among the proteins

analyzed as having not only a large number of different

mutations, but also proportionally a high count of low-

frequency TCEM.

We examined the TP53 mutations to evaluate further whether a

higher count of rare motifs was created by the more commonly

recognized deleterious mutations. Of the 471 unique mutations, all

had a reduced hPPF count for the mutated TCEM, while 222 had 1

to 7 of the possible 10 TCEM I or TCEM II missing from the human

proteome. As shown in Figure 5, for the most common TP53

mutation, R175H, 4 of the 5 TCEM I that include the mutant

histidine are absent in the human proteome. One TCEM I is also

absent in the GI microbiome, while 3 more positions have very low

giPPF counts. This implies that of 5 possible CD8+ TCR binding

motifs, 4 would be unlikely to encounter a cognate T cell clone and

immune surveillance would be dependent on T cells responsive to

near-neighbor TCEM. Only the TCEM I ~~~EVVRH~ is

represented in the human proteome and in the GI microbiome.

Notably the hPPF of the wildtype TCEM is very low across these

TP53 pentamers, indicating that only a small reduction in

frequency is needed to create multiple missing motifs. We did not

determine the HLA of the 3,147 patients with TP53 mutations, and

thus did not predict the binding position of the TP53 mutant for

each case, but it is assumed that a wide diversity of allele

combinations would be present. Figure 5 shows the peptide

binding register that positions the mutated amino acid in p8 of

the MHC I binding pocket has a predicted high affinity binding of

both A*02:01 and A*24:02 (Z scale binding approximately -1.7s) as
compared to all other registers that would place the mutant in a

TCEM. In this scenario A*02:01 and A*24:02 would be likely to

bind and present the single TCEM that is represented in both the

proteome and GI microbiome albeit as a slightly lower frequency
A

B

FIGURE 4

Pentamer motif frequencies in mutated oncogenes and suppressor
gene products, aligned at the mutant position. Peptide 9mers
adjacent to the mutant position in 123 oncogenes and suppressor
gene products were aligned at the mutant position 0. (A) shows
TCEM I (MHC I). (B) shows TCEM II (MHC II). The Y axis shows the Z
scale standardized frequency in the human proteome of the
pentamer motifs corresponding to the potential TCEM at each
position. Overall, each plot shows 679,210 pentamer motifs
comprising each mutant amino acid in each possible position for
20,873 unique mutations. The points are randomly jittered for
visualization. The line shows the mean at each TCEM position and
shows the downward shift in hPPF for those TCEM containing the
mutant amino acid. A few rare motifs occur outside the main
pattern. These arise from 16 proteins in which the longest isoform
was non-canonical, and in which there were single rare motifs at
positions other than the mutant which then appears for each of
multiple mutants (e.g. RUNX1 isoform Q01196-8 has 84 mutants
and a single additional rare motif).
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motif compared to the wildtype pentamer. Interestingly, this

peptide has been reported by others as an immunogenic

neoantigen in TP53 R175H for A*02:01 (4, 85, 86).

KRAS presents a contrasting situation to TP53. The driver

dataset included 61 unique KRAS mutations in 1,263 cases. Of the

KRAS mutants, 78% are in positions G12 or G13. Within these two

positions, only one mutation (G12D) creates a single TCEM I that is

absent from the human proteome (~~~DGVGK~). Interestingly,

the adjacent TCEM, for G12D and for the other mutations at this

position, have a different pattern from TP53: a high hPPF and high

giPPF in the wildtype which is somewhat reduced in the mutant.

There is a difference in predicted binding of peptides exposing

G12D in the example alleles shown, with A*02:01 being likely to

present this TCEM and A*24:02 less likely to do so.
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3.3 Combined T cell exposed motif
frequency and HLA binding in GBM and
LUSC cases

GBM and LUSC mutant proteins exhibit patterns of lower

frequency TCEM comprising mutated amino acids relative to

wildtype, like those observed in the driver mutation dataset

described above. Supplemental Figure 4 shows the comparative

Poisson hPPF distribution of TCEM I and TCEM II comprising

mutant amino acids in the proteins of the GBM and LUSC cases. As

shown above for the driver mutations, the Poisson mean hPPF of

TCEM I for both GBM and LUSC relative to the wildtype decrease

about 50%, from a count of 18.6 (wildtype) to 9.0 (mutant) for

TCEM I and 21.0 (wildtype) to 11.2 (mutant) and with about 10%
FIGURE 5

Comparison of featured of sequential peptide position in TP53 R175H and KRAS G12D. Upper plot shows sequential 9mer peptides in TP53 wildtype
and R175H tracking the change in GEM vs TCEM position, TCEM amino acids, hPPF, and giPPF and predicted binding for A*02:01 and A*24:01. The
baseline hPPF in the wildtype is low, and in the mutant comprises multiple missing (hPPF=0). Lower plot shows the same fields for KRAS G12D,
where the baseline hPPF is high. Column headings: Position: index amino acid position in protein; Position mutant relative: index amino acid relative
to mutant position; pocket position indicated p1-p9 with TCEM shaded; A*02:01 and A*24:01 is the Z scale predicted binding affinity at every
position for these alleles shown in standard deviation units (s) where blue shading indicates higher affinity.
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of the TCEM I missing in each case. Likewise for MHC II, the

TCEM II hPPF decreases from a count of 17.4 (wildtype) to 9.2

(mutant) for GBM and 17.3 (wildtype) to 10.6 (mutant) for LUSC,

with 9-11% of the TCEM motifs missing from the proteome. There

are far more passengers than driver mutations in the GBM and

LUSC datasets and the wildtype hPPF and giPPF range widely. The

patterns are similar between MHC I and MHC II and between the

two different cancers, and like those observed in the large oncogene

and suppressor gene product set above. The TCEM giPPF

distributions are shown in Supplemental Figure 5. There is also a

decrease in the Poisson mean TCEM giPPF frequencies, but with a

smaller fraction missing. Thus, there is an overall pattern in this

large population of passenger mutations in which the mutation

creates more low-frequency motifs, and comprises a fraction of

motifs missing completely from the human proteome, the GI

microbiome or both.

3.3.1 Preferred binding register determines
mutant presentation to TCR

We compared the predicted MHC binding of peptides carrying

the mutant amino acids from passenger gene products to those of

drivers within the GBM and LUSC dataset. Zscale standardized

binding predictions comparing the predicted MHC binding of the

wildtype peptides to that of the mutant peptides for each 9mer

comprising a mutant amino acid is shown in Figure 6 for the

composite of the first (sort order) MHC I A alleles of all GBM and

LUSC cases. The dataset for each pocket position was fitted with a

regression line with a slope of one and an intercept of zero, that

effectively represents the null hypothesis. No difference was noted

between the wildtype and mutant peptides (Figure 6). The RMSE of

patterns around the regression line gives an estimate of the binding

variance between the peptide pairs that is induced when the mutant

is in the particular pocket position. The known effects of mutation

on binding to the pocket positions p1, p2, p3 and p9 are evident by

the larger RMSE values, whereas the variation when the mutant

amino acid is in TCEM I positions p4, p5, p6, p7,or p 8 is

substantially smaller. It is evident in Figure 6 that the patterns are

similar for drivers and passengers and for the two different types of

cancer across all patients.
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Mutations at each of the positions in the peptide may affect the

MHC I and MHC II binding and, if the changes are sufficiently

large, may alter the presentation register exposed to the potential

cognate T cells. Figure 7 is a composite multiple response analysis of

all alleles and all pocket positions for all the GBM and LUSC

mutations analyzed. Mutations in the GEM (anchor) positions can

either reduce or increase binding. If the binding affinity is increased

by the mutation, the mutant amino acid will be more likely to be

hidden from the TCR, effectively re-enforcing the presentation of

the wild-type TCEM. However, if the mutation decreases the

binding affinity, a new binding hierarchy of peptides can arise in

that region of the protein, causing a different TCEM register to be

exposed to the TCR. The effect of the mutation on the binding

register of the peptide containing the mutation is shown in Figure 7.

This depicts the pattern generated using the criteria of whether the

Zscale (-1s) activity threshold is lost or gained as a result of the

mutation, summarized across the entire composite genotype of

the GBM and LUSC cases. The patterns indicate that approximately

the same number can be lost, gained, or retained, with the

predominant effects being due to changes in p9, followed by p2,

p1, and p3 of MHC I and in p6 of the MHC II, which based on the

numbering system used is the same as p9 of MHC I (Figure 1).

There is no difference between the pattern for GBM and for LUSC

(not shown).

3.3.2 HLA genotype binding as a determinant of
potential neoepitopes

Many studies restrict analysis to a single MHC allele such as

A*02:01 and do not consider the full genotype. Such simplification

can seriously restrict the view of how a patient’s genotype may be

displaying each peptide across all their MHC alleles. The bitmap

pattern was devised to assign two of the most relevant features of a

tumor peptide for pMHC exposure to cognate T cells: exposure of a

mutant amino acid in the TCEM and its binding affinity. This

categorical coding strategy makes it possible to consolidate and

compare multiple cancer cases and illuminates the complexity of

multi-allele datasets with many peptides. Figure 8A shows that

among the cases of GBM and LUSC there is a large diversity in

binding and mutant amino acid presentation patterns among the
FIGURE 6

Comparison of binding of peptides with driver and passenger mutations in each pocket position. Comparison of predicted binding to mutant and
wildtype peptides by a single MHC A allele that is a composite of the first A alleles of all GBM and LUSC patients. Individual graphs show comparative
binding for successive peptides that position the mutant amino acid in pocket positions 1-9. Values are the neural network ensemble means that are
transformed to a common scale normal distribution (Z Scale) with SHASH. The symbols in gray show all passenger mutations. Blue triangles are
suppressor gene product peptides. Red squares are oncogene gene product peptides. The RMSE value is for a fit of the data in each panel with a
regression with a slope of one and an intercept of zero. The vertical black line in each cell is the -1s Zscale cut point.
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cases; a total of 54 of the possible 64 (26 MHC I) different bit

patterns are found among the 61 cases by this analysis.

Using the Zscale -1s threshold, a summary of the data over all

61 cases shows there is considerable variation between patients,

ranging from 12% to 35% of the peptides bound to any combination

of an individual patient’s alleles while also exposing the mutant

amino acid (Figure 8B). For the GBM cases the average is 0.33;

about 1/3 of the binding registers in all of the patient alleles that

bind the peptide at the Zscale cut-off affinity or higher place the

mutant amino acid in a binding register exposed to the T cell. The

average for LUSC is slightly lower. In both types of cancer the

pattern varies greatly between patients and is biased towards being

hidden. Overall the level of TCEM presentation is strongly

influenced by the diversity of binding patterns of the patient HLA

genotype. In patients where the mutant peptides are bound to more

HLAs in their genotype, a higher fraction of mutant amino acids are

exposed to the T cells.

3.3.3 Combination of mutant peptide binding and
TCEM exposure

Combining pMHC binding and TCEM exposure patterns for

both class I and also class II alleles generates a more complete

picture of the peptide binding and presentation on cells. Table 1

summarizes the down-selection, starting from the entire sets of

mutant peptides for GBM and LUSC, to the subset which are both

bound and for which the mutant amino acid is in the TCEM

presented to the TCR. The combined potential CD8+ and CD4+

immunogenic neoepitopes are on the bottom line. A complete

contingency table providing the underlying data is in

Supplemental Table 5. Table 1 shows the 74-78% of the total
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peptides do not bind to any combination of class I or class II

alleles at a higher affinity than the selected Z scale cutoff.

Approximately 22-26% of the total bind to MHC I and about 4%

of the total meet both the MHC I and MHC II criteria. Nevertheless,

it is possible to identify a set of peptides that satisfy the bound/

mutant exposed presentation criteria for both MHC I and MHC II

in each case.

3.3.4 Frequency overlaid on HLA genotype
By combining the predicted Zscale binding value for all 9-mer

peptides that contain the mutant amino acid over the patient’s

entire MHC I genotype matrix of Zscale values (6 (alleles) x5

(registers of potential exposure)), the most probable (dominant)

pMHC combination(s) that expose the mutant amino acid can

be determined.

To get an overall picture of the effects of combining the three

variables: binding, TCEM exposure, and PPF frequency, we

combined the binding results of the LUSC and GBM datasets

with the hPPF over the range of rare motif frequencies from 0 to

10, the latter being the average mutant TCEM Poisson frequency in

the driver and suppressor dataset (see Figure 3). The cumulative

fractions of most probable pMHC-exposed mutant combinations

were then computed from the 6x5 matrix described above. This

showed clear differences between the two types of cancer, as well as

differences between the drivers vs passengers, not appreciable in the

prior analyses.

Figure 9 shows the cumulative fraction of all mutants which are

bound (Y axis) against the hPPF (X axis) for drivers and passengers.

Panels A and B show the results for the lowest frequency pentamers,

those having hPPF in the range of 0-10 counts in the proteome. In

GBM the TCEM hPPF scores for peptides bound and presented are

more rare for both drivers and passengers than in LUSC and this

difference is maintained at all levels of hPPF. Moreover, there is a

difference between the drivers as compared to the passengers.

Figures 9C, D show the cumulative fraction for each cancer type,

comparing the hPPF of drivers and passengers over the full range of

human proteome motif frequencies found in the tumor mutant data

sets. As the hPPF motif frequency count increases an inflection is

reached that is comparable to the Poisson mean hPPF in each

cancer type. The underlying basis for the differential effects between

cancers and drivers vs. passengers is not obvious, but in both types

of cancers the passengers comprise the vast majority of the

mutant peptides.
3.4 TCEM frequencies in a group of known
neoepitope immunogens

The study reported by Parkhurst et al. (4) is very detailed and

provides a comprehensive analysis of mutant identification

including tumor, normal, and RNA sequences, mutant curation

of allele specific expression, and isolation and characterization of

peptide recall responses of reactive T cell clones. This enables us to

examine whether the peptides eliciting responding T cells fulfill the

criteria of binding and mutant amino acid exposure and to
FIGURE 7

Multiple comparison analysis of predicted peptide binding changes
by MHC pocket positions for all mutations in all GBM and LUSC
cases analyzed. Multiple categorical comparison which places the
peptide amino acid in the indicated pocket position. For this
visualization the threshold for the changes was set at a -1s standard
deviation level (approx. 16% percentile). If the binding affinity was <=
-1s before mutation and > -1s after mutation (reduced affinity) =
‘Lost’. An affinity > -1s before mutation and <= -1s after mutation =
“Gained” and if there was no change = “Retained”.
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determine the possible fate of TCEM that are pentamers missing

from the proteome.

The results are shown in Figure 10. The shift towards a less

common hPPF in the mutant TCEM I as compared to wildtype seen

in the datasets analyzed above is also present here. The wildtype

hPPF Poisson mean l is 10.4 compared to the mutant l of 7.6, and

12% of the TCEM are absent from the human proteome. The cross-

hatched area in the histograms in Figure 10 show the hPPF score of

the peptides that the authors identified as the predicted minimal
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epitope. All but two of the peptide-allele combinations identified by

the authors as producing T cell responses are found in the human

proteome. For these two peptides we predicted that a different, or

additional, MHC allele than that initially indicated may have been

preferentially binding and presenting the mutant amino acids in a

position that generated a more common TCEM. We find that the

9mer peptides identified in that paper were predicted as potential

responders by all three factors in our multivariate selection criteria.

The authors did not report MHC II activity, but all of the peptides
TABLE 1 Summary statistics of peptides analyzed in 31 GBM and 30 LUSC cases.

GBM LUSC

Protein missense mutations 1,234 6,860

Total missense peptides 9mers + 15mers
comprising mutant amino acid

14,807 85,883

Total 9mers comprising mutant amino acid 11,106 64,425

Non-binding mutated 9mers 5,971 54% 38,175 59%

Non-binding + non TCEM I presenting 8,246 74% 50,006 78%

Binding 9mers
Z < -1s for 1 or more alleles in genotype

5,135 46% 26,250 41%

Binding 9mers
Z < -1s + TCEM I presenting

2,860 26% 14,419 22%

Binding 9mers presenting both TCEM I and II
Z<-1s, TCEM _I and Z<-1s, TCEM_II

484 4% 2,442 4%
A B

FIGURE 8

Diversity in HLA genotype binding patterns of mutant peptides in GBM and LUSC cases. Each dot indicates one case GBM: green circles, LUSC pink
triangles. (A) Variation in the number of MHC I TCEM presentation patterns between different cases compared to the number of total mutant
proteins in the particular case. X axis shows the number of mutations per case. The Y axis TCEM I genotype pattern shows the number of the
possible 64 combinations in each case that simultaneously fulfill two criteria: 1) expose the mutant amino acid in any of the TCEM I positions and 2)
have a predicted MHC binding above the threshold for one or more HLA I allele in the patient’s genotype. The maximum number of combinations
would be 64 = 26 in the situation where some of the mutant peptides are bound to all of the different alleles (see Section 2.5). Thus, one of the
LUSC case with the highest mutational diversity has approximately 300 mutated proteins and these mutant peptides are distributed across over 40
TCEM exposure-MHC binding combinations, including some peptides with exposed mutations binding to four different alleles. At the lower end of
the Y axis are cases where exposure and binding are restricted to a very small number of TCEM-MHC binding combinations, even though some of
the cases have a large number of mutated proteins. (B) Shows for each case the fraction of all the mutated peptides in which the mutation is
exposed in any of the 5 TCEM I motif registers exposing the amino acid side chains and binding occurs to one or more alleles in the patient HLA
genotype at Z< -1s. Each point is the average over all mutations in all proteins in the case. Note that the mean is at approximately 0.3; if binding
occurred equally in all of the 9 positions, a mutant amino acid would be placed in a TCEM 5 out of 9 times and the mean would be 0.55. This
underscores the dominance of binding placing the mutant in positions 2 or 9 and thereby evading T cell detection.
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in the dataset had overlapping longer peptides with relatively high

DRB1 MHC II binding affinity.
4 Discussion

Mutations detected in tumor biopsy proteins are those which

have not been previously eliminated by effective immune

surveillance. We show that tumor mutations identified in biopsies

have TCEM pentamers that have lower counts in the human

proteome, lower counts in the gastrointestinal microbiome, or in

both, than their unmutated wildtype counterparts. A mutant TCEM

in a driver protein has, on average, six fewer copies of matching

pentamers in the human proteome than does the corresponding

TCEM in the wildtype protein (Figure 3). Approximately 10% of the

TCEMs comprising the mutant amino acid in an oncogene or

tumor suppressor gene product have no matching pentamer in the

human proteome. A lower hPPF reduces the probability that a

cognate T cell clone was selected in the thymus. Mutants also

generate pentamer motifs less commonly found in the larger GI

microbiome reference dataset, also indicative of a lower probability

of a cognate T cell in the repertoire.

We confirm the observations of others that mutant amino acids

are more likely to be found in peptide positions 2 and 9 of a MHC I

binding groove than in the TCEM, and so are more likely to be

hidden from the TCR (2, 14, 87, 88). Mutations can change the
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peptide binding hierarchy within the context of the patient HLA

genotype. We show that MHC II mutant amino acids are found

preferentially in position 6 of the central 9mer of a binding 15mer

peptide, also an anchor position concealed in the MHC groove.

When a mutant amino acid is in the anchor positions, the amino

acid motifs exposed to the TCR are not differentiated from wildtype.

In both GBM and LUSC datasets more mutant amino acids are

hidden in GEM positions than exposed to T cells. In peptides

predicted to have affinity to one or more of the patient HLA

molecules, the mutant amino acid was in the exposed p4, p5, p6,

p7, p8 positions on average in only 25-30% of them. If the

distribution were random, one would expect 5 of 9 amino acids

(i.e. 56%) to be exposed. So there is approximately a two-fold

selection against mutant exposure and in many of cases of both

cancer types the evasion bias was even greater.

Applying the -1s Zscale as a threshold, 54% of the GBM and

59% of the LUSC peptides containing mutants did not bind to any

of the 6 MHC I alleles of the patients. When the predicted TCEM

frequency is combined with HLA binding in the GBM and LUSC

cases, only 22-25% of the peptides comprise mutant amino acids

positioned where they are presented to the TCR by one or more

HLA alleles, and also have a TCEM that is a pentamer motif found

in the human proteome (hPPF >0). The combination of non-

exposure and rare motifs significantly reduces the chance that the

tumor amino acid mutation will be an immunogenic neoepitope

through TCR engagement and T cell activation. While a TCEM

pentamer with no match in the human proteome is the extreme

case, the mean frequency count was reduced across all tumor

mutants in these patients.

Similar combinatorial binding and frequency relationships were

observed for MHC I bound peptides with potential to stimulate a

CD8+ cytotoxic T cell response and for MHC II bound peptides

with potential to stimulate a CD4+ T cell response. The probability

of MHC I and MHC II both fulfilling the criteria for binding and

mutant exposure was determined for each GBM and LUSC patient

and found to be approximately 4% of the total mutant peptides.

Although GBM and LUSC differ in the number of mutations each

cancer type typically comprises, and in many other features, the

patterns of TCEM hPPF were very similar, with the Poisson mean

of the hPPF reduced in mutants and a fraction of the mutant TCEM

pentamers missing altogether from the proteome. Similar patterns

of binding and TCEM hPPF were observed in both mutated driver

and passenger gene products.

When a group of mutated tumor 9mer peptides previously

demonstrated (4) to elicit T cell responses in the patients were

examined, they were found to fulfill the criteria of binding for one or

more of the patient’s HLA alleles and the corresponding TCEM

having an adequate hPPF. Notably, 51 of 53 responders presented

TCEM with hPPF >0; only 2 were are absent from the human

proteome but were found to be present in the GI microbiome.
4.1 Limitations

The present study has several limitations. First, we evaluated the

TCEM within each mutated protein without consideration of
A B
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FIGURE 9

Comparing driver and passenger gene products: Cumulative fraction
HLA genotype binding of peptides with TCEM exposed mutants by
hPPF count in the human proteome. Cumulative binding computed
as in Figure 2 except for a defined set of peptides presenting the
mutant amino acid in the TCEM. (A) GBM and LUSC driver
mutations. (B) GBM and LUSC passenger mutations. (C) GBM driver
and passenger mutations. (D) LUSC driver and passenger mutations.
GBM = green circles; LUSC = pink triangles. Data is for all cases of
GBM or LUSC combined and is for hPPF selected using -1s Zscale
affinity cut off. The data is best fit with a Weibull growth model: a(1-
Exp(-(x/c)b)) where a=upper asymptote, b=growth rate,
c=inflection point.
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thelevel of expression of that protein in the tumor or whether the

mutant was found in the RNA. Expression of the mutated gene, and

particularly of the mutant haplotype, is one of the major limitations

of neoepitope antigenicity. Only a small percentage of the alleles

with in-frame mutations in coding sequences detected in tumor

DNA are actually transcribed (4, 89, 90). Levels of expression may

differ widely between proteins and cell types even in normal tissue,

and may be further distorted in tumors by changes in gene copy

number. Parkhurst et al. (4) show that as few as 30% of mutated

amino acids could be detected in in the transcriptome, even in

highly expressed mRNA. Our own observation of clinical cases is

that in some cases as few as 15% of mutated amino acids can be

found in transcripts (unpublished observations). While overall

tumor burden (percent of cells in a biopsy carrying the mutation)

can affect targeting and detection, we did not address it here as a

factor in determining immunogenicity.

In considering the probable frequency of presentation of a given

motif from the human proteome during positive thymic selection

we were not able to consider differential transcription in the thymic

epithelium nor biases which may be created by thymoproteasomal

or enzymatic cleavage in the thymus (91–95). We also did not

evaluate potential changes in cathepsin cleavage in mutated

proteins as a factor in presentation of tumor-specific peptides by

antigen presenting cells in the tumor microenvironment. A number
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of commonly observed SNPmutations generate amino acid changes

that would affect cleavage by endosomal cathepsin B, L or S.

We limited the tumor mutations analyzed to single amino acid

missense variants. We excluded mutations which resulted in a loss of

a stop signal, indels, splice variants, and fusions. There is no reason to

think that other types of mutation, if expressed and generating

tumor-specific TCEM, have a different pattern of immune escape,

and this is consistent with our unpublished observations.

We analyzed relatively small case numbers of two cancers with

different mutational burdens. In these, consideration of MHC II was

limited to DRB alleles. This allowed us to develop estimates of

variability and gain insight into how to undertake a systematic

larger-scale analysis to include a wider variety of cancer types.

Different cancer types will exhibit variations on the patterns we

observed. Furthermore, we did not address non-classical MHC-T

cell interactions (96, 97).

We include the GI microbiome ecosystem in our consideration

because it is a recognized contributor to T cell repertoire diversity

and it has been shown to predict the T cell response to checkpoint

inhibitors (7, 37, 98). The representative GI microbiome dataset we

used is necessarily a generalization of a dynamic and diverse

population of microbes that differ between individuals and over

time. While derived from open reading frames, the dataset does not

address levels of expression. Other exogenous epitope exposures,

including pathogenic, environmental and interventional epitopes,

such as biopharmaceuticals or vaccines, also contribute to the

repertoire of peptides and hence exposures that shape the T cell

repertoire over a lifetime, although likely to a less continuous and

less diverse degree than the microbiome.

Immunogenicity is a two-sided relationship. We have examined

here the potential presentation and exposure of tumor-specific

neoepitopes. We have not addressed the other side of the

relationship: the avidity of the TCR for the pMHC, nor the

cognate T cell clonal population sizes within a patient’s T

cell repertoire.
4.2 Impact of TCEM pentamer frequency
on tumor immunogenicity

An amino acid pentamer is limited to 3.2 million possible

different combinations. The role of this limitation in

polyspecificity of T cell responses has been recognized (28).

Polyspecificity of T cells, in which a TCR may engage the same

exposed motif in multiple antigens, is essential to accommodate

responses to all the possible novel antigens which an individual may

encounter (99–101). Any reduction in T cell repertoire diversity

increases the potential for gaps permitting some epitopes to escape

detection. The earliest T cell repertoire is the product of thymic

selection (34). A focus on negative selection in central tolerance

overlooks the impact that absence of a pentamer from the human

proteome may have on the diversity of positive selection and the

foundational T cell repertoire by precluding its presentation in the

thymus (33, 90, 101). An individual’s repertoire is maintained, in

active circulation and memory, by a lifetime of exposure to
A

B

FIGURE 10

Poisson and Zscale distributions of the peptides previously
demonstrated to elicit cognate T cell responses. Counts are for all
peptides and all binding registers of potentially T cell exposed amino
acids in the 9mers of all cases where authors had identified
responding T cells The data assembly process is similar to that used
in Figure 3 including the GEM (i.e. tetramer) frequencies as well. The
highlighted areas are the peptides indicated by the authors to be the
predicted minimal epitopes. (A) MHC I, (B) MHC II, compared to
wildtype (grey). Lines in the histogram show two different Poisson
fits: green=standard fit; blue=-zero inflated model.
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endogenous and exogenous stimuli. The age at which such

exposures occur determines whether this builds a more diverse T

cell repertoire or depletes it. Ageing is accompanied by a progressive

loss of T cell repertoire diversity (42, 43, 45, 102). In cancer, a

patient with a less diverse or declining repertoire eventually arrives

at a pivot point at which immune evasion occurs and tumor

progression ensues (42, 43). The appearance through mutation of

less common TCEM will exacerbate the chance of evasion.
4.3 Homozygosity as a risk factor and
the role of multiple-HLA allele
presentation of peptides

Heterozygosity of HLA has long been recognized as enhancing

the breadth of immune surveillance (103). Homozygosity at any

HLA locus is a risk factor for tumor immune evasion (104, 105).

Such increased risk may come about in multiple ways. HLA

homozygosity reduces the options for presentation of a self-

peptide during positive selection in the thymus, reducing the

breadth of the initial T cell repertoire. The same limitation

applies in the lifetime stimulation of T cells and replenishment of

memory in response to exogenous antigens. In cancer, HLA

homozygosity offers fewer means to present a neoepitope to T

cells. While several of the patients in the GBM and LUSC datasets

were homozygous for some alleles, the datasets are too small to

address the impact of this definitively.
4.4 Combined CD4+ and CD8+
T cell responses

An optimal response to a tumor-specific neoantigen requires

both CD8+ and CD4+ T cells (15). Using the overlay of binding and

mutant amino acid exposure to the TCR embedded in our

categorical approach and co-selecting for both class I and class II

responses yields only 4% of mutants with TCEM matched by

pentamers in the human proteome. For MHC II, only the DR

alleles were considered; perhaps the DP and DQ alleles offer an

advantage, but as noted, these present analytical challenges.

However, even a multiple of the 4% value by each of these loci

would still leave a major response limitation. This low number

approximates that found experimentally, when consideration is

given to the limited allele-specific expression (4). These estimates

based on the human proteome are mitigated by the effect on the T

cell repertoire of exposure to exogenous epitopes, including the GI

microbiome. However, the implication is that for cases with low

mutational loads, it may be difficult to obtain significant numbers of

targets as immunogenic neoepitopes.

The approach used here to generate predicted peptide binding

for the whole proteome for a simulated genotype of common HLA

alleles, and to determine the potential cross-presentation makes it

possible to derive a view of multi-allele MHC occupancy and thus T

cell presentation. The sigmoid curve on a logarithmic scale

(Figure 1) is like that in a receptor binding assay. Using the

Zscale cut point near the inflection point is akin to a Kd value, a
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parameter often used in receptor binding comparisons. It is possible

to use simulated patient genotype-proteome binding data in

conjunction with transcript levels or protein expression levels to

derive a quantitative view of pMHC occupancy diversity. Although

derived here in a different way from the work of Yarmakovich et al.

(59), the mid-point of 3300 nM when back calculated from a Z scale

to the A*02:01 scale is comparable to the 1000 nM in that report, as

well as values reported by Duan et al. (2). It is less stringent than the

500nM often used but likely all lie within a range that would be

indistinguishable in bench-level receptor assays. Parkhurst et al.

were able to obtain peptide recall responses of T cells with about

1.7% of the total neoepitopes evaluated (4). Considering that the

mutant amino acid was found in about 30% of the transcriptomes in

that study, our values would be very similar to their findings when

allele specific expression is considered. This gives credence to the

down-selection approach we describe. It further suggests that

emphasis on only the highest affinity peptides, such as are

detected by mass spectroscopy, may underestimate the full scope

of potential immunogenic neoepitopes, and especially when the

source of high affinity may be due to the mutant amino acids hidden

in the anchor positions (88, 106).
4.5 Epitope dissimilarity from wildtype

Dissimilarity between wildtype and mutant peptides has

been considered an indicator of likely immunogenicity (5). Our

results suggest a more granular approach is needed, in which the

portions of the peptide involved in binding to the MHC and those

involved in T cell recognition are dealt with in their functional

context. The differential agretopicity index (DAI) was designed to

describe the difference in MHC binding between mutant and

wildtype, as described by the scoring in NetMHC (https://

services.healthtech.dtu.dk/), noting that the widest differential in

binding was associated with changes in positions 2 or 9 of a 9mer

MHC I bound peptide (2). We show here that the differential

predicted binding between wildtype and mutants for any individual

HLA is rarely large, and that mutation does not significantly change

binding of many peptides, except when the mutant occurs in the

binding groove, as observed by Duan et al. (2). Quantifying changes

in DAI as an index of dissimilarity presumes that the mutated amino

acid is in a GEM anchor position. But this in turn means the mutant

amino acid is not exposed to the TCR in a TCEM and thus is unlikely

to engage a different set of T cell clones than the wildtype.

Others have taken a more complex approach. Luksza et al.

(107–110) use the concept of epitope “fitness” based on binding

affinity and the similarity of a neoepitope to immunogenic antigens

in public repositories. Again, this depends on MHC binding, but

introduces the concept of cross reactivity and similarity (or lack

thereof) to non-self peptide epitopes curated by IEDB as having

generated a T cell peptide recall response. Our approach uses a

discrete numerical frequency of TCEM-matched pentamer

frequencies within the reference human proteome and GI

microbiome. The hPPF and giPPF scores relative to these

proteomes is a different metric for fitness more directly related to

TCR engagement.
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TCEM motifs that do not match pentamers found in the

proteome are the archetype of ‘non-self’. However, as noted in

the context of microorganisms (28, 35), the simple concept of self

and not-self is confounded by the polyspecificity of T cell

recognition. Two peptides may share identical TCEM, but have

completely different, or very similar, binding affinities and bind to

different HLA alleles.
4.6 Unique individual combinations

The role of each mutant amino acid in a tumor protein must be

considered at each possible position within a potential peptide that

may bind to each HLA allele the patient carries. The role of the

mutant amino acid in the binding groove is as a determinant of

MHC binding affinity, but when exposed it is critical to TCR

engagement (111). This must then be considered for each MHC

allele, locus and class. Many investigators only consider one allele,

most often A*02:01. Others have opted to generalize and use a mean

value for agretopicity across multiple neopitopes (112). However, a

complete understanding of the functional changes that each

mutation generates requires consideration of the entire HLA

genotype of the individual. The combinatorial selection based on

statistical standardization principles and multiple relevant

properties is specific to a patient’s HLA genotype and the

frequency spectrum of peptide motifs presented by their tumor.

Among just the 61 patients in the GBM and LUSC sets, we found 54

of the possible 64 patterns (26 HLA alleles) of possible binding and

TCEM exposure with several patients having proteins with mutated

peptides that bound to as many as 20 different peptide-HLA

combinations, illustrating the uniquely personal differences.
4.7 Mutated tumor proteins differ in
potential modes of evasion

Not all tumormutations produce motifs missing from the human

proteome, but virtually all produce lower frequency motifs. In KRAS,

G12D generates a single TCEM that is missing from the human

proteome; but also 4 TCEM I that have a reduced frequency. The

other mutations which are recorded at this position in KRAS (G12V,

G12C, etc.) also have a reduced hPPF relative to wildtype but not

missing from the human proteome. Surrounding the mutant motifs

at positions 12 and 13 in KRAS are many commonmotifs, among the

highest counts in the entire proteome and GI microbiome. This may

contribute to the reported downregulated tumor microenvironment

for KRAS (113) and the detection of responding T cells effective in

adoptive therapy (114). The shift of the passenger cumulative binding

curves for the passenger mutations towards more common motifs

(Figures 9C, D) could be interpreted as another manifestation of the

same underlying behavior. Conversely, the most common TP53

mutation R175H occurs in a region with very few common TCEM

reducing the chance of generating a CD8+ T cell response. Not all

HLA alleles provide binding that would expose the one remaining

R175H TCEM with higher human proteome and microbiome
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representation, although A*02:01 and A*24:02 are predicted to bind

appropriately (Figure 5). Detection in vitro of T cell responses to a

single TCEM is challenged by the sampling probability of capturing

representatives of a set of likely small clones. Nevertheless, such

narrow windows of opportunity can generate effective T cell

responses (4, 85, 86). Not surprisingly, given the overall

uncommon TCEM arising from this mutation, others were unable

to detect T cell responses to R175H with cells from healthy

donors (108).
4.8 Cross-reactive T cells

Each peptide-MHC pair may stimulate many different cognate

T cell clones, each with different ab TCR and different degrees of

binding affinity (46). Not only are T cells necessarily polyspecific,

but T cell clones arising initially from stimulation by near-neighbor

epitopes, may engage with a particular TCEM (47). Thus, the T cell

recall response to any peptide is a quorum response comprising a

combination of unique TCR. In some cases this may occur with

other less closely associated TCEM (49). When a TCEM is missing

from the human proteome and microbiome, the T cell response

would be more dependent on recognition by T cells responsive to

such near-neighbor epitopes. This was not found to compensate for

rare TCEM in infectious agents (35).

Many of the TCEM-matched pentamers that are absent or low

frequency in the human proteome comprise cysteine, tryptophan,

methionine, or histidine (28). While this is a product of codon

numbers, it is also likely to reduce the chance of near-neighbors

generating cross reactive T cells. This is the case especially for

histidine and tryptophan, given the chemical dissimilarities of their

amino acid side chains. More featureless TCEM are likely to have

greater T cell cross reactivity (115).
4.9 Role of the microbiome

Our work shows the criticality T cell repertoire diversity in

tumor immune surveillance. We assessed the TCEM pentamers

relative to the GI microbiome because this is a source of a diverse

array of pentamers that overlaps, but differs from, those in the

human proteome (28). There is increasing awareness of the role of

the microbiome in T cell repertoire development (37) and the

benefits of a diverse microbiome early in life (116). The impact on

tumor immunity of the microbiomes of mice raised in different

environments has been clearly demonstrated (6). Notably tumor

control following administration of check-point inhibitor drugs is

related to differences in the patient’s GI microbiome (7, 98), and

prior antibiotic administration (117). A microbiome that maintains

a more diverse T cell effector repertoire would be consistent with

better targeting of the uncommon TCEM created by tumor

mutations, when unleashed by checkpoint inhibition. Greater

microbial cross-reactivity therefore correlates with better

neoantigen “fitness” (107).
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4.10 Long time course and passengers

Analysis of mutations in tumors is inherently a study of

survivorship bias. Tumor mutations detected in biopsies reflect a

long development process, often years, from the initial occurrence

of nucleotide mutations to clinical presentation. Tumor progression

presupposes a replicative advantage accrues to the cells bearing

mutations (118). The findings of this study support the key role of

immune selective pressure in determining the subset of expressed

mutations and their neoepitopes that remain at the time of biopsy

(58). While a similar pattern of MHC binding combined with

TCEM frequency was observed in GBM and LUSC cases, it is

possible that the pattern is different in tumors of other tissues, rates

of development, and initiation. For instance, patterns may differ in

pediatric cancers with low mutational burdens, tolerization, and an

immature T cell repertoire. The finding of a similar pattern of

TCEM hPPF in passenger mutations as in the driver oncogenes and

suppressors was unexpected. Passenger mutations are generally

thought to accumulate progressively after an initial driver

mutation (69). That they exhibit similar patterns of TCEM

frequency, exposure and binding suggests that they may have

been subject to the same selective pressures and, in some

instances, may also be long-standing. Whether this holds true in

metastases or in tumors of viral origin remains to be determined.

The occurrence of rare TCEM motifs occur in both driver and

passenger gene products suggests that they differ from amino acid

changes that might be expected from evolutionary changes over

millennia. For example, KRAS mutation G12C adds an

unpaired cysteine into the KRAS protein. That free cysteine may

form inappropriate disulfide bonding with other similarly

mutated KRAS molecules forming dimers of unknown properties

or form bimolecular complexes with other proteins. Similarly,

random insertion of other amino acids with inappropriate

physicochemical properties into other proteins could be

detrimental to protein structure, activity, or stability. Others have

noted that some MHC prediction algorithms sometimes give

aberrant results with neoepitopes (59, 106). Given the insertion of

highly rare combinations of amino acids by tumor mutations, the

use of algorithms that depend on substitution matrices, which are

derived from evolutionary amino acid changes, may be less suitable

for prediction of unusual amino acid substitutions occurring

in cancer.
4.11 Tumor specificity as a microcosm

An effective T cell response to a tumor is remarkably different

from the response to an infectious agent in the precision that it

requires. In a tumor T cell recognition and distinction of a single

missense mutation from the wildtype homologue rests on only five

TCEM I and five TCEM II pentamer registers comprising the

mutated amino acid. A virus or bacteria confronts the T cell

repertoire with a large array of potential targets overlaid along the

full length of each of its proteins, giving multiple opportunities for

MHC I and MHC II cross-presentation to effect a successful
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immune response. As we show, specific cross-presentation is a

rare coincidence in tumor mutations. Targeting the tumor

neoepitope is thus far more exacting, demanding alignment of

MHC binding to expose the mutant and the presence of cognate

T cells responsive to specific TCEM. Hence, there is a far greater

probability of failure in targeting a tumor than an infectious agent.

Conversely, the very narrow focus, indeed the relative simplicity, of

defining a tumor-specific response also enables us to better

understand the criteria for immunogenicity that play out in

concert across every position in a microbial protein.
4.12 Immune pressure and
genomic changes

Underlying the tumor-specific amino acid mutations in a tumor

biopsy is an array of nucleotide mutations. Distinctive genome

signatures in tumor biopsies are potentially indicators of initial

causality and changes in gene function (119–122). Most nucleotide

mutations in a tumor do not lie within protein coding regions.

Mutations may, or may not, confer replicative advantage, whether

they occur in in introns, 5’ and 3’ gene control regions, intergenic

regions, or in exons. However, only mutations in protein coding

regions will affect the immune pressure. The rare motifs in tumor

mutated proteins emerge in the TCEM that engage TCR, not when

the mutants are hidden from TCRs in the GEMs. This supports the

role of immune pressure as a dominant factor in determining the

landscape of those protein mutations surviving to be detected in

biopsies (58).

The most common nucleotide changes are C>T, which

dominate genome signatures of ageing (119, 120). The common

arginine to histidine missense mutations are the product of a G>A

nucleotide change, equivalent to a counterstrand C>T. Histidine

features frequently in rare TCEM. Similarly, the common proline to

leucine is produced by a C>T mutation and will almost certainly

modify the processing by cathepsins in macrophages, dendritic or B

cells and thus drastically change pMHC presentation to CD4+T

cells (123–125).
5 Conclusions

Immune evasion handicaps an effective T cell response directed

to a tumor cell expressing a mutated protein. Such evasion,

combined with tumor cell replication, eventually tips the balance

towards tumor progression. Our results shed light on some of the

factors contributing to immune evasion and the low number of

tumor mutations that result in an immunogenic neoepitope. We

identify the previously unreported role in immune evasion of the

frequency characteristics of the pentamers produced by mutation in

T cell exposed motifs that engage the TCR. Tumor mutations are

characterized by less common T cell exposed pentamer motifs than

their wildtype counterpart and have a lower probability of

encountering cognate TCR in the T cell repertoire.
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The discussion of implications and limitations identified here

underscores the complexity of the interface between tumorigenesis

and immune surveillance and the challenges of analyzing a

highly complex multivariate system. To understate this

complexity in the design of immunotherapeutic interventions is

to risk unexpected outcomes.

The interaction of HLA genotype and peptide binding, mutant

positioning, and the mutation-specific T cell exposed motif

frequency emphasize the need to evaluate potential neoepitope

targets precisely, individually, and within the unique context of

each patient and their complete HLA genotype to optimally utilize

the immunogenic epitopes. These are important considerations in

the design of neoepitope vaccines.
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