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Immune-mediated inflammatory diseases (IMIDs) consist of a common and

clinically diverse group of diseases. Despite remarkable progress in the past

two decades, no remission is observed in a large number of patients, and no

effective treatments have been developed to prevent organ and tissue damage.

Brain-derived neurotrophic factor precursor (proBDNF) and receptors, such as

p75 neurotrophin receptor (p75NTR) and sortilin, have been proposed to mediate

intracellular metabolism and mitochondrial function to regulate the progression

of several IMIDs. Here, the regulatory role of proBDNF and its receptors in seven

typical IMIDs, including multiple sclerosis, rheumatoid arthritis, systemic lupus

erythematosus, allergic asthma, type I diabetes, vasculitis, and inflammatory

bowel diseases, was investigated.
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1 Introduction

Immune-mediated inflammatory diseases (IMIDs) are a group of highly disabling

chronic diseases characterized by immune dysregulation and chronic inflammation as the

basic manifestation, which affect different organs and systems (1, 2). The prevalence of

IMIDs in well-developed countries is about 5%–8% (1), and its global incidence gradually

increases (3, 4). IMIDs consist of more than 100 different types of diseases, such as multiple

sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), allergic

asthma, type I diabetes (T1D), vasculitis, and inflammatory bowel diseases (IBD), involving
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multiple disciplinary fields (5–8). At present, no effective targeted

treatment has been developed for IMIDs; thus, exploring novel

therapeutic targets for IMIDs is necessary.

Based on previous reports, targeting brain-derived neurotrophic

factor (BDNF), BDNF precursor (proBDNF), and its receptors exert

therapeutic effects in IMIDs. The administration of anti-proBDNF

monoclonal antibodies (mAb-proB) can effectively improve the

neurological score and reduce the number of lymphocytes in the

experimental autoimmune encephalomyelitis (EAE) mouse model,

a classic model of MS. ProBDNF and its high-affinity receptor, p75

neurotrophin receptor (p75NTR), were upregulated in peripheral

blood mononuclear cells (PBMCs) from patients with RA

compared with healthy controls. Treatment of the extracellular

domain of p75NTR (p75ECD) can significantly relieve inflammatory

pain in collagen-induced arthritis (CIA) model mice, which is a

standard RA model. MAb-proB could also reduce the production of

auto-antibodies and attenuate kidney injury in SLE by altering the

mitochondrial respiratory chain complex transcription level and

cholesterol metabolism (9, 10).

ProBDNF plays an important role in the mitochondria-

mediated release of cytochrome C (cyt C) to regulate cell death

by binding the receptor complex of p75NTR and sortilin (11).

P75NTR signaling could regulate glucose uptake (12), and sortilin

is a crucial regulatory molecule of lipid metabolism (13, 14). In this

review, the potential effects of proBDNF and its receptors on
Frontiers in Immunology 02
glucose, lipid, and mitochondrial metabolism in IMIDs were

explored and concluded.
2 ProBDNF and its receptors

2.1 Role of proBDNF signaling in immune
cells and IMIDs

BDNF is a widely studied member of the neurotrophin family.

The BDNF gene produces preproBDNF protein in the endoplasmic

reticulum, which is processed to proBDNF in the Golgi for sorting

into either constitutive or regulated secretory vesicles (15).

ProBDNF may be cleaved into mature BDNF (mBDNF)

intracellularly by furin in the trans-Golgi network or

proconvertases in secretory vesicles. ProBDNF and mBDNF can

be secreted from neurons in an activity-dependent manner. In

addition, proBDNF can be cleaved into mBDNF extracellularly by

plasmin or selective matrix metalloproteinases (MMPs), including

MMP3, MMP7, and MMP9 (16, 17) (Figure 1). ProBDNF and

mBDNF play contrasting biological roles in the synaptic structure,

plasticity, transmission, and activity in the central nervous system

(CNS) (18). MBDNF binds tyrosine kinase receptor B (TrkB) to

promote cell survival, whereas proBDNF induces apoptosis (16,

19–22).
FIGURE 1

Processing and function of proBDNF and its receptors. The BDNF gene produces preproBDNF protein in the ER, which is processed to proBDNF in
Golgi. ProBDNF may be cleaved into mBDNF intracellularly by furin or proconvertases, or extracellularly by plasmin or MMPs. ProBDNF binds to
p75NTR, sortilin or FSTL4 to exert different effects including apoptosis, growth cone motility, synaptic depression, long-term depression, pruning,
retraction and other functions.
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ProBDNF consists of 129 amino acids in the N-terminal

prodomain and 118 amino acids in the C-terminal mature

domain (23). In the CNS, proBDNF is primarily located in the

spinal cord dorsal horn, nuclei tractus solitarius, spinal trigeminal

nuclei, spinal trigeminal nuclei, hypothalamus, and amygdala (24).

Multiple expressions of proBDNF are also found in peripheral

tissues, such as the skin, intestine, adrenal gland, pituitary gland,

spinal cord dorsal horn (24), and liver (25). ProBDNF inhibits

neural stem cell proliferation, differentiation, and migration, and

reduces the number of neurons, oligodendrocytes, and astrocytes,

whereas anti-proBDNF antibodies reverse neural stem cell

proliferation and differentiation (26). Recombinant proBDNF

protein modulates neuronal architecture and alters the long-term

plasticity in the hippocampus in vitro; however, the role of

endogenous proBDNF remains unclear (27).

ProBDNF can be expressed not only in the CNS and peripheral

tissues, but also in immune cells such as monocytes/macrophages

(28), T cells (29, 30), and B cells (9). In addition, proBDNF plays an

important role in IMIDs. Studies have shown that peripheral

macrophages can secrete proBDNF under certain inflammatory

conditions (31, 32). Our previous studies also indicated that

proBDNF, as a key mediator of neuroinflammation in spinal cord

injury and inflammatory pain, is released from infiltrating

macrophages, and its activity can be reduced using mAb-proB

(31, 32). The increased proBDNF expression on monocytes/

macrophages promotes inflammatory response in type A aortic

dissection patients with severe systemic inflammation (28). The

injection of lipopolysaccharide (LPS) could induce the upregulation

of proBDNF in CD4+ T cells (30, 33) and further modulate sepsis-

associated encephalopathy (30). The activation of Rac1 and TRPM7

channels in innate immune cells, such as microglia, can mediate the

combination of proBDNF and p75NTR, which induced a sustained

increase in intracellular Ca2+ concentration and enhanced IFN-g-
induced nitric oxide production (34). Interestingly, proBDNF does

not always exert pro-inflammatory effects. Our recent study

revealed that endogenous proBDNF in proinflammatory

monocytes/macrophages played a protective role by regulating

MMP‐9 signaling in acute myocardial infarction (AMI).

Administration of mAb-proB skewed monocytes/macrophages

into a proinflammatory phenotype after AMI (35).

Studies have shown that the receptors binding to proBDNF

include p75NTR (9), sortilin (32, 36), and follistatin Like 4 (FSTL4)

(37), which play different roles in nerve-immunity-endocrine

network (Figure 1).

P75NTR, a member of the tumor necrosis factor receptor

superfamily, is a receptor with high affinity to proBDNF.

ProBDNF binds to p75NTR to promote cell death and inhibit

long-term potentiation and neuronal axon outgrowth (38, 39),

and to be involved in regulating neurotransmitter release in the

entorhinal cortex (18). ProBDNF does not always induce cell death

but can also be involved in regulating synaptic activity, pruning, and

network reorganization (18). In the CNS, proBDNF/p75NTR

weakens synaptic transmission under the synergistic effect of

sortilin protein, negatively regulating synaptic plasticity; triggering

neuronal apoptosis, axon pruning, and axon collapse; and exerting

biological effects contrary to mBDNF (27, 39–43).
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By the end of the 1980s, studies have found that in addition to

neurons, the expression of p75NTR can also be detected on various

immune cells such as PBMCs (44). Increased expression of

proBDNF and p75NTR could be detected in PBMCs after

strenuous exercise in normal adult males (45). This result

indicates that when vigorous exercise reaches a certain threshold,

immune cells produce proBDNF in an autocrine and/or paracrine

manner to regulate apoptotic pathways. ProBDNF binds to p75NTR

on monocytes, thereby activating the NF-kB pathway and

enhancing the immune function of peripheral lymphocytes (29,

46). In addition, B cells can self-secrete proBDNF, and the

combination of proBDNF and p75NTR with the cooperation of

sortilin transporter induces apoptosis of B cells (47).

Sortilin belongs to the VPS10 family (48) and exerts a dual

function involved in intracellular protein transport and cell signal

transduction to regulate neuronal death or survival and the process

of immune cells. It is primarily expressed on macrophages and

dendritic cells and, to a lesser extent, on B and T cells (49). In

neurons, sortilin serves as a membrane-bound coreceptor complex

with p75NTR to facilitate the affinity of proBDNF-binding p75NTR to

signal cell death (40, 50, 51). Studies have pointed out that sortilin

plays a role in the survival and activation of B cells by regulating the

transport of BDNF, and silencing sortilin can decrease the secretion

of BDNF and increase the apoptosis of B cells (47). The loss of

sortilin on cytotoxic T cells can decrease the release of IFN-g and
increase the expression of granzyme A in T cells (52). Rogers et al.

found that sortilin binds to p75NTR to mediate NK cell apoptosis,

and blocking sortilin with neurotensin could reduce NK cell death

(53). In addition, sortilin plays a role in the antigen processing of

DCs (49).

FSTL4, also known as SPARC-related protein containing

immunoglobulin domains 1 (SPIG1), belongs to the SPARC

family (54). It consists of a signal peptide, a follistatin-like

domain, an extracellular calcium-binding domain with two EF-

hand motifs, and two immunoglobulin-like domains (54, 55). Based

on previous reports, FSTL4 negatively regulates BDNF maturation

by binding to proBDNF (54). Furthermore, Suzuki et al. confirmed

that the extinction of aversive memories was enhanced in Spig1-KO

mice, revealing that FSTL4 suppresses synaptic plasticity in the

extinction of inhibitory avoidance memory, which might be

associated with its negative regulation on BDNF maturation from

proBDNF (55). Our study indicated that the proBDNF/FSTL4

pathway contributed to neuronal apoptosis, whereas its

downstream signaling remained unknown (37).
2.2 ProBDNF and its receptors mediate
the regulation of metabolism
and mitochondria

ProBDNF treatment could cause a significant dose-related

decrease in mitochondria membrane potential, but it could not

alter LDH released from dying or damaged cortical neurons (56). A

study reported that proBDNF binds to p75NTR and sortilin to

induce mitochondrial apoptosis by inhibiting the PI3K signaling

pathway, which contributes to neuronal apoptosis in dorsal root
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ganglia (57). The age-dependent increase in proBDNF expression

was found to be associated with a decrease in mitochondrial

metabolism activity and content of epididymal white adipose

tissue (eWAT) (58). Therefore, upregulated proBDNF expression

in adipose progenitor cells of aged animals triggered the death of

adipocytes, leading to the infiltration of immune cells and

disruption of metabolic fitness. In addition, val66Met single-

nucleotide polymorphism in the prodomain of BDNF induces

altered trafficking of BDNF within neurons and decreases the

activity-dependent secretion of mBDNF (59). Moreover, this

variant could increase food intake in mice, which is consistent

with the orexigenic activity of p75NTR (60). Based on these reports,

proBDNF may exert stronger control of energy regulation.
Frontiers in Immunology 04
ProBDNF could be cleaved to BDNF if energy supply is sufficient

even excessive, converting the orexigenic activity to anorexigenic.

Three main downstream signaling pathways are identified after

p75NTR activation, including RhoA, JNK, and NF-kB pathways (43,

46, 61, 62). Among these, the canonical pathway mediating cell

death is JNK signaling activated by the p75NTR/sortilin complex,

which causes the activation of proapoptotic Bak and Bax proteins in

the Bcl-2 family, cyt C release from the mitochondria, and

formation of apoptosome, followed by caspase9/3 activation,

which contributes to cell death and synaptic depression (11, 63)

(Figure 2A). Although p75NTR signaling has been well-characterized

over the years, few studies have well interpreted the signaling

pathways involved to exert effects on mitochondrial metabolism.
B

C

A

FIGURE 2

ProBDNF and their receptors mediate the regulation of metabolism and mitochondria. ProBDNF binds specifically to p75NTR through interaction with
sortilin, which induces JNK signaling to increase the release of cytochrome C from mitochondria and promote cell apoptosis and synaptic
depression. ProBDNF binds p75NTR and sortilin promotes growth cone motility and cell survival via activating RhoA and NF-kB, respectively (A).
P75ICD forms a complex with Rab5 and Rab31 GTPases to enhance glucose uptake via promoting GLUT4 translocation to the plasma membrane (B).
Sortilin also enhances LDL uptake and LDLR degradation, whereas decreases clearance of LDL-C. Sortilin promotes glucose uptake and storage via
interacting with GLUT4 (C).
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Furthermore, signaling cascades required for the regulation of

mitochondrial metabolism remain unclear.

P75NTR is expressed in WAT, skeletal muscle, and liver, and it

serves as a central regulator of glucose metabolism and energy

balance (64, 65). P75NTR knockout (p75NTR−/−) mice showed

improved glucose tolerance, insulin sensitivity, and inhibited

hepatic glucose production (64). In addition, p75NTR−/− mice are

protected from high-fat diet (HFD)-induced obesity as a result of

enhanced energy expenditure and insulin sensitivity (65). In

adipocytes, the intracellular domain of p75NTR (p75ICD) forms a

complex with Rab5 and Rab31 GTPases to regulate Glut4 trafficking

(Figure 2B) (64). P75NTR also directly interacts with protein kinase

A (PKA) and mediates cAMP signaling in adipocytes, thereby

inhibiting lipolysis, and thermogenesis. Adipocyte-specific p75NTR

knockout or transplantation ofWAT from p75NTR−/− into wild-type

mice fed a HFD protects mice against weight gain and insulin

resistance; thus, the p75NTR/PKA signaling pathway is a potential

therapeutic target for metabolic disorders (65). However, p75NTR

serves as a neurotrophin receptor; thus, future studies must be

conducted to determine whether or not p75NTR regulates PKA

signaling in the CNS and the integral mechanism of p75NTR-

regulated-metabolism affecting metabolic diseases.

Sort1 (encoding sortilin), a novel lipid gene, could regulate body

weight and cholesterol metabolism (66). This gene also has a basic

expression in hepatocytes, and it plays a key role in lipid

metabolism and glucose metabolism (Figure 2C). Sortilin

increases adipose mass and cholesterol absorption and decreases

energy expenditure via the KLF4-LXR signaling pathway, leading to

downregulated FGF21 and adiponectin and upregulated NPC1L1

(66). Sort1 is also expressed on macrophages. Sort1 deficiency could

downregulate macrophage cellular cholesterol levels by reducing

LDL uptake. Correspondingly, sortilin overexpression in

macrophages increased the uptake of LDL and foam cell

formation (14). Thus, a close correlation is observed between

macrophage sortilin and lipid metabolism. Sortilin could also

interact with PCSK9 to promote the secretion of PCSK9, which

induces the degradation of the LDL receptor and reduces the

clearance rate of LDL-C (13, 67). In addition, several studies have

shown that sortilin plays an essential role in glucose metabolism.

Sortilin−/− mice had enhanced glucose uptake and reduced

inflammatory cytokine production compared with wild-type mice

(68). Sortilin also served as a sorting partner for the glucose

transporter GLUT4 to promote glucose storage (69).
3 ProBDNF and its receptors in MS

MS is a chronic inflammatory demyelinating disease of the CNS

characterized by axonal degeneration and neurodegeneration (70)

as well as an autoimmune inflammatory disease (71). The

infiltration of heterogeneous cell populations such as T cells, B

cells, macrophages, and microglia triggers chronic inflammatory

pathological damage in the CNS (72). Based on the most extensive

global study to date, a total of 2.8 million people worldwide has MS

(73). MS is classified into three phenotypes: relapsing/remitting MS
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(RR–MS), secondary progressive MS (SP–MS) and primary

progressive MS (PP–MS) (74).

Studies have shown that proBDNF induces apoptosis by

activating p75NTR-mediated downstream signaling pathways (75).

ProBDNF and mBDNF in the serum of RR–MS patients decreased,

whereas truncated BDNF increased compared with healthy controls

(76). Thus, low proBDNF in the serum of RR–MS patients may not

be sufficient to limit the proliferation of autoreactive T cells; in

addition, low mBDNF in the serum could not exert enough

neuroprotection (76). Our previous study found that the

expression level of proBDNF and p75NTR significantly increased

in the peripheral blood, spleen, and spinal cord of patients with MS

and EAE model mice and co-localized with T and B cells. The

administration of proBDNF-neutralizing antibodies, such as mAb-

proB, can effectively improve the neurological score of EAE model

mice, inhibit the expression of inflammatory cytokines in the spleen

and spinal cord, reduce the percentage of T cells and B cells, and

improve demyelinating lesions and inflammatory infiltration of the

spinal cord. The mechanism is due to the hyperactivation of

downstream NF-kB signaling by proBDNF/p75NTR on peripheral

human PBMCs (29). In early 2008, the New England Journal of

Medicine reported that about 20.3% of patients with MS would

relapse after B cell depletion therapy with anti-CD20 monoclonal

antibody (77). Extensive B cell depletion therapy may lead to

infusion reactions and increase the risk of serious opportunistic

infections, including progressive multifocal leukoencephalopathy,

bone marrow suppression, and liver damage (78). MAb-proB would

not eliminate all lymphocytes in EAE model mice, indicating that

mAb-proB may be a safe and effective clinical candidate drug for

MS treatment.

By the end of the last century, glial cells in MS plaques have

been reported to enrich for p75NTR (79). Kust et al. found that the

expression level of p75NTR was increased in endothelial cells of the CNS

of EAE model mice. The proportion of B cells, monocytes/

macrophages, and segmental neutrophils was decreased in the spinal

cord of p75NTR−/−-induced EAE. By contrast, the proportion of T cells

doubled, and inflammation in the CNSwas significantly enhanced. The

results indicate that p75NTR in endothelial cells plays a role in

protecting the integrity of the blood–brain barrier and regulating

immune cells in EAE model mice, particularly the interaction with T

cells (80, 81). Studies have found that p75NTR is expressed only on B

lymphocytes (B220+ cells) in the brain and spinal cord of EAE model

mice, whereas its expression on T lymphocytes is weak (82). P75NTR

does not directly act on T cells that infiltrate into the CNS of EAE

model mice. In addition, Steven et al. found that p75NTR is expressed

on NG2-positive (an integral membrane chondroitin sulfate protein

glycan expressed by oligodendrocyte progenitor cells) oligodendrocyte

progenitor cells in periventricular plaques, in the subventricular zone

adjacent to plaques, and in the corpus callosum of patients with MS

(83). The abovementioned studies suggest that p75NTR can participate

in the regulation of neuroimmune pathology in EAE model mice

through various pathways. In lesioned brain tissues of patients withMS

and EAE mice, sortilin was highly expressed on infiltrating

macrophages and activated microglia. However, the knockdown of

sortilin had no effect on the progression of EAE (49). Therefore,
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proBDNF may play a role in the neuroimmune inflammation of MS/

EAE by binding to p75NTR.

Several independent investigations have demonstrated that the

diffused neurodegeneration in patients with MS involves

mitochondrial dysfunction, such as mitochondrial respiratory

chain deficiency, inadequate ATP production, and accumulated

mitochondrial ROS (84–86). The accumulation of ROS and the

consequent DNA and protein and lipid damage occur in hypoxia-

induced neurotoxicity during MS progression. During hypoxia,

p75NTR undergoes oxygen-dependent cleavage by g-secretase to

provide a positive feedforward mechanism as an adaptive

response to low oxygen tension (87). The cellular adaptation to

hypoxia is mediated by the transcription factor hypoxia-inducible

factor-1a (HIF-1a), which controls a group of genes engaging in

cell migration, proliferation, metabolism, and inflammation.

Hypoxia stimulates the g-secretase-dependent release of

endogenous p75ICD and its interaction with absentia homolog 2

(Siah2), which decreases auto-ubiquitination. Then, Siah2 targets

prolyl hydroxylases for proteasomal degradation to stabilize HIF-1a
(87). The accumulation of HIF-1a triggers mitochondrial signaling

pathways to induce neuronal apoptosis by activating p53 or

upregulating the proapoptotic gene NIX (Figure 3). Therefore,

targeting the oxygen-dependent cleavage of p75NTR may exert

potential therapeutic effects on MS. Compared with the role of

proBDNF in promoting cell apoptosis by inducing cyt C release

frommitochondria, BDNF contributes to endogenous neurotrophic
Frontiers in Immunology 06
support in MS plaques by binding to TrkB, thereby inducing the

expression of NF-kB (88). Carito et al. found that polyphenolic

compounds may exert neuroprotective effects and reduce the risk of

MS disease by upregulating BDNF to control oxidative stress,

inflammation, apoptosis, and mitochondrial dysfunction (89).
4 ProBDNF and its receptors in RA

RA is an autoimmune disease, wherein the immune system

attacks the joints of the whole body, thereby causing joint

inflammation, which, in severe cases, may lead to permanent

joint damage and disability. In addition, RA may induce

complications by damaging the heart, lungs, blood vessels, skin,

and eyes. The prevalence of RA is approximately 0.5% worldwide,

and it is higher in women (90). Our previous studies have

demonstrated that mitochondria, as a key disease-related

organelle, promote the pathogenesis of RA (91–93).

Recently, a study has shown that increased proBDNF and

p75NTR were detected in inflammatory cells of synovial tissue of

patients with RA through immunohistochemistry compared with

osteoarthritis. Abundant proBDNF was co-localized with p75NTR in

RA synovial tissue. In addition, proBDNF was co-localized with

CD14+ monocytes and some CD20+ B cells in RA synovial tissue,

and p75NTR was primarily expressed in CD4+ T cells of synovial

tissue. Moreover, the expression of proBDNF and its receptors,
FIGURE 3

P75NTR activates signaling pathways regulating neuronal death in MS during hypoxia. Hypoxia increases the g-secretase of p75NTR to release p75ICD

and then increases Siah2, which results in the ubiquitination and degradation of prolyl hydroxylases (PHD), thereby promoting stabilization and
accumulation of HIF-1a. The pool of HIF-1a triggers mitochondrial signaling pathways to induce neuronal apoptosis by activating p53 or by up-
regulating the proapoptotic gene NIX.
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namely, p75NTR, and sortilin, were all higher in PBMCs in patients

with RA than in healthy controls. Furthermore, the serum p75NTR

and sortilin levels were positively and significantly correlated with

the Disease Activity Score in 28 joints (94). Intervention with

p75ECD can significantly decrease proinflammatory cytokines and

proBDNF/p75NTR/sortilin in the serum and spinal cord of CIA

model mice, which indicates that proBDNF/p75NTR/sortilin

signaling promotes inflammatory response in RA (94). Our

previous study found that in inflammatory pain model mice, the

expression level of proBDNF and p75NTR was upregulated in nerve

fibers and inflammatory cells of local tissues. An anti-proBDNF

antibody can relieve pain in different inflammatory pain mouse

models, inhibit inflammatory cell infiltration, and activate

proinflammatory cytokines (31). Therefore, we hypothesize that

the proBDNF/p75NTR signal derived from immune cells may be

closely related to the course of RA, and inhibiting the proBDNF/

p75NTR signal may provide a new therapeutic strategy for

improving pain in patients with RA.

A recent study using single-cell RNA sequencing has found that

fibroblast-like synoviocyte (FLS) from active patients with RA

overexpressed p75NTR and sortilin compared with patients with

RA in the remission stage (95). P75NTR was significantly enriched in

PRG4pos lining FLS and THY1pos COL1A1pos sublining FLS, as well

as remarkably expressed in FLS (95). After IL-1b stimulation in

vitro, the expression level of p75NTR on FLS of patients with RA was

significantly upregulated. Consequently, p75NTR signaling activated

the inflammatory response in FLS, and neutralizing, or inhibiting

p75NTR could reduce the inflammatory factors IL-6, IL-8, and

MCP1 in FLS, which was related to the activation of downstream

JNK/p38 MAPK signaling (95). Chronic glucose metabolic changes

induced by hypoxia and inflammatory mediators in FLS and
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synovial T cells will activate many signaling pathways, including

MAPK, NF-kB, and PI3K/Akt pathways (96), which are crucial for

the expression of adhesion molecules, secretion of cytokines, and

inhibition of apoptosis, as well as for migration and invasion (96)

(Figure 4). Therefore, proBDNF/p75NTR signaling may regulate

glucose metabolism, particularly in FLS and CD4+ T cells during

RA inflammatory response. In addition, serum BDNF contributed

to proinflammatory responses in patients with RA. Thus, BDNF

may also play a similar role in regulating glucose metabolism and

mitochondria by releasing proinflammatory cytokines (97).

In addition, sortilin is highly expressed in nine clusters of

synovial macrophages, particularly in SPP1pos macrophage cluster

and TREM2pos macrophage cluster. Based on the accumulation of

mitochondrially encoded electron transport chain (ETC) subunit

genes, TREM2pos macrophages have stronger oxidative

phosphorylation (OXPHOS) activity. On the contrary, SPP1pos

macrophages are more involved in the glycolytic pathway (98,

99). However, data connecting mitochondrial activity and

function and sortilin in different synovial macrophage subsets

must be further studied during RA pathogenesis.
5 ProBDNF and its receptors in SLE

SLE is an autoimmune disease of unknown etiology, which is

characterized as the deposition of auto-antibodies caused by the

hyperactivation of autoreactive B cells and dysregulation of

antibody-secreting cells (ASCs) (100–102). In general, SLE is

characterized by the inappropriate expansion of ASCs, leading to

the production of auto-antibodies such as anti-DNA antibodies and

antinuclear antibodies (103). ASCs can develop from multiple types
FIGURE 4

Mitochondria and glucose metabolism regulation by proBDNF/p75NTR/sortilin signaling in RA FLS. ProBDNF/p75NTR/sortilin signaling promotes the
release of inflammatory cytokines, which stimulate Akt phosphorylation and then up-regulate expression and phosphorylation of hexokinase 2 (HK2).
Increased binding of HK2 accompanies the phosphorylation of HK2 by Akt to mitochondrial outer membrane voltage-dependent anion channel
(VDAC). Binding to VDAC enhances the affinity of hexokinases. Thus, HK2 mitochondria binding promotes glucose metabolism to induce FLS
proliferation, migration, invasion and cytokine secretion, contributing to joint destruction in RA. Mitochondrial HK2 might also suppress FLS
apoptosis by decreasing cytochrome C release from mitochondria.
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of activated B cells with highly and strongly positive cell surface

markers, namely, CD38 and CD27 (104–106). As ASCs develop and

mature, they exhibit multiple transient cellular phenotypes to

diversify their antibody repertoire and then develop distinct cell-

fate endpoints (107–109). For example, ASCs with high expression

of CXCR3 migrate to inflamed tissues (110). Furthermore, some

subsets of ASCs such as CD27hiHLA-DRhi (111) and TLR4+

CXCR4+ plasma cells (112) contributed to auto-antibody

production and glomerulonephritis compared with other

plasma cells.

Our recent study has shown that proBDNF and p75NTR were

upregulated in ASCs (CD19+ CD27hi CD38hi). Moreover, the

expression of proBDNF on ASCs has a significant clinical

correlation with the auto-antibody level and disease activity of

patients with SLE, indicating that ASCs+ proBDNF+ cells can be

used as a clinical marker of SLE. In animal experiments, proBDNF/

p75NTR signaling was significantly upregulated in B cells of

spontaneous and induced lupus mice. The intraperitoneal

administration of mAb-proB can alleviate the condition of

spontaneous and induced lupus mice, reduce the proportion of

ASCs and production of auto-antibody and proinflammatory

cytokines, as well as delay kidney damage (9, 10). Intraperitoneally

administering pristane to induce lupus in B cell-specific p75NTR

knockout (CD19cre p75f/f) mice showed that the knockout of B cell

p75NTR signaling can also alleviate the progression of SLE. RNA-Seq

suggested the downregulation of immune-related and antibody

secretion-related genes in lymph nodes of CD19cre p75f/f mice.

R848 stimulation significantly upregulated the proBDNF/p75NTR

signal on B cells in vitro. Moreover, anti-proBDNF antibody

intervention or B cell conditional knockout of p75NTR could inhibit

R848-induced generation of ASCs. In vitro intervention with mAb-

proB inhibited the CpGB-stimulated B cell differentiation and

production of IgG and IgM in PBMCs from healthy volunteers and

patients with SLE. Therefore, the proBDNF/p75NTR signaling
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pathway promoted the proliferation of ASCs, which plays a

pathogenic role in SLE and may be a potential therapeutic

biological target for SLE (9, 113). Our recent research indicated

that mAb-proB inhibited the overexpansion of CD3+ B220+ cells and

altered transcription levels related to cholesterol metabolism, cell

cycle, and cell apoptosis, which may contribute to the attenuation of

conditions of MRL/lpr lupus mice (10).

Several studies on SLE have observed mitochondrial damage

and dysfunction in SLE B cells and T cells, which are characterized

as enhanced mitochondrial membrane depolarization, OXPHOS,

and mitochondria mass (114, 115). In addition, mitochondrial

dysfunction in B cells is associated with plasmablast

differentiation and disease activity in SLE (114). A previous

report used spinal cord injury model mice to confirm that p75NTR

overexpression induced mitochondrial damage and cell apoptosis in

spinal cord neurons by downregulating neurotrophic tyrosine

receptor kinase 3 (116). Our study also indicated the significant

difference in gene ontology of mitochondrial respiratory chain

complex assembly between pristane-immunized CD19cre p75f/f

mice and p75f/f control mice by RNA-seq. Therefore, p75NTR

signaling may exert potential effects on mitochondrial metabolism

in B cells to participate in the regulation of SLE pathogenesis

(Figure 5). Similar to the upregulation of proBDNF, BDNF levels

in B cells and serum increased in patients with SLE compared with

healthy controls (117, 118). However, the level of serum BDNF and

the number of BDNF+ B cells were independent of the SLEDAI

score (117).
6 ProBDNF and its receptors in
allergic asthma

Asthma is an immune-mediated inflammatory condition

characterized by increased responsiveness to broncho-constrictive
FIGURE 5

ProBDNF/p75NTR signaling in SLE B cells. ProBDNF/p75NTR signaling promotes B cell differentiation, proliferation, release of proinflammatory
cytokines and autoantibody production and mitochondrial respiratory chain complex assembly. Mitochondria damage and dysfunction including
decreased mitochondria membrane potential and enhanced OXPHOS and mitochondria mass, which may increase disease activity through inhibiting
plasmablast differentiation by proBDNF/p75NTR signaling pathway.
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stimuli (6). Inhaled allergens can cause biphasic and reversible

airflow obstruction. In the late phase of the response, activated T

lymphocytes and eosinophils infiltrate in the airways because of

increased bronchial reactivity (119–122). Possible sources of

neurotrophins in allergic inflammation include neurons, neuron-

associated cells (123–125), and immune cells, such as T cells, B cells,

mast cells, macrophages, epithelial cells, and eosinophils (126–133).

Neurotrophins not only affect neurons but also interfere with

functions of immune cells associated with allergies, such as mast cell

degranulation, Th2 cytokine synthesis, B cell antibody production,

and eosinophil survival (130, 134–136). The pathophysiological

roles of neurotrophins in allergic asthma are as follows: first,

elevated neurotrophin levels in bronchoalveolar fluid (BALF);

second, blood neurotrophin levels correlate with airflow

limitation; third, the induction of airway hyperactivity and airway

obstruction through the production of ROS- and MAPK-mediated

allergen-induced airway inflammation, modulation of neurite

formation and cellular contractility, and proinflammatory

cytokine release; finally, airway smooth muscle proliferation and

matrix metalloproteinase induction (137).

Studies in animal models of allergic asthma have shown that

p75NTR plays a key role in the accumulation of eosinophils in the

lungs. Christina et al. observed that eosinophils in peripheral blood

and BALF expressed p75NTR after segmental allergen provocation

(138). Therefore, neurotrophins can mediate bronchial eosinophil

activation by combining with p75NTR and may play a role in

regulating eosinophil inflammation in allergic asthma. In

addition, studies showed that p75NTR−/− mice had significantly

reduced allergic inflammation and non-increased airway

eosinophils (139, 140). Meanwhile, blocking p75NTR by anti-

p75NTR antibody treatment can prevent eosinophi l ic

inflammation in the lungs in mouse models (140). The activation

of p75NTR signaling plays a dual role in regulating the function of

plasmacytoid dendritic cells (pDC), which not only reduced blood

glucose levels and delayed the onset of autoimmune diabetes in

RIPCD80GP mice but also aggravated graftversushost disease in a

xenotransplantation model (141). Its mechanism may be related to

the activation of IRF3, IRF7, c-Jun, and IKKa/b, which reveals a

novel regulatory circuit in pDC-mediated immune responses. By

contrast, during allergic airway inflammation, BDNF plays a central

role in modulating airway hyperresponsiveness but not the

inflammatory response induced by allergen exposure (142).
7 ProBDNF and its receptors in T1D

Diabetes refers to a group of chronic diseases distinguished by

hyperglycemia (143). The two prevalent types of diabetes are T1D

and type 2 diabetes (143). The International Diabetes Federation

estimates that 1 in 10 adults currently suffers from diabetes,

corresponding to 537 million people worldwide. Diabetes is a

major health threat, which causes 4 million deaths annually (144).

Long-term hyperglycemia may lead to multiple complications,

including heart diseases, nerve damage, oral health, vision loss,

chronic kidney diseases, hearing loss, and impaired foot health and
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mental health (145). The prevalence of T1D is highest in children,

although T1D can occur at any age (146). T1D is an autoimmune

process that begins years before the clinical onset, with

autoimmune-mediated selective damage to pancreatic b cells

(147). The main clinical manifestation of T1D is hyperglycemia,

which initiates polyuria, polydipsia, and weight loss. In severe cases,

acute ketoacidosis may occur.

Peripheral neuropathy is a serious but often neglected

complication of diabetes. The prevalence of diabetic neuropathy is

as high as 50% in patients with diabetes, and it is characterized by

damage of neurons, Schwann cells (SCs), and blood vessels in the

peripheral nervous system (148). A study on T1D found that

pancreatic sympathetic neurons contain abundant p75NTR

mRNA, which is directly activated on pancreatic sympathetic

axons and is responsible for rapid nerve damage in patients with

T1D (149). This degree of nerve damage can significantly suppress

glucagon response to sympathetic activation (150, 151). Segmental

axonal degeneration is secondary to p75NTR activation on

sympathetic axons (152), and p75NTR knockout prevents most

islet nerve damage (149).

The effects of oxidative stress and mitochondrial disorders in SCs

on neuronal dysfunction during diabetes become more evident. In

addition, long-term hyperglycemia is widely considered as a trigger of

excessive ROS formation in cells, including SCs (153). Hyperglycemia

increases flux through the ETC (154). Schwann cells induced by high

glucose cause oxidative stress via intramitochondrial stress, including

the overactivation of caspase-9 and Bax, and decrease Bcl-2 (155).

Furthermore, a previous study utilized a mouse model of Ngfr-specific

deletion in SCs (SC-p75NTR-KO) and RNA sequencing to demonstrate

several metabolic pathways activated by p75NTR, including cholesterol

metabolism and glycerolipid metabolism (148). Direct evidence has

also shown that diabetic peripheral neuropathy is related to the

decreased production of neurotrophins and increased p75NTR

expression on SCs in humans and mouse models of T1D (156–158).

In an in vitromodel of hyperglycemia stress, Tan et al. found that high

glucose treatment inhibited Cav-1 transcription and protein expression

within SCs, which enhanced the mitogenic response of SCs to human

recombinant neuregulin-1-b1-(176–246) (NRG1-b1). NGF suppresses

the glucose-induced downregulation of Cav-1 transcription and

protein expression through p75NTR-mediated JNK activation (159).

NGF/p75NTR signaling increases the expression of p53 and promotes

its activation by JNK in sympathetic neurons (160, 161). On

the contrary, p53 could upregulate the transcription of the human

CAV-1 gene (162). Therefore, NGF/p75NTR cassette modulates the

response of SCs to neuregulin, which may affect the regenerative/

degenerative response of these cells to hyperglycemic stress.

In the study of diabetic nephropathy (diabetic kidney disease

[DKD]), Bryan et al. found that the symptoms of DKD were

reduced after treating the streptozotocin-induced diabetic model

mice with THX-B, a small-molecule p75NTR antagonist, or a

monoclonal antibody neutralizing proNGF. Diabetes increased

urea and creatinine levels, decreased albumin levels in plasma,

and downregulated p75NTR expression in the kidney, all of which

were reversed by THX-B treatment. In addition, microRNAs (miR-

21-5p, miR-214-3p, and miR-342-3p) were tightly related to and
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highly expressed in the diabetic kidney. Moreover, the renal

inflammation marker miR-146a and the elevated mRNA level of

Fn-1 and Nphs, which are markers of fibrosis and inflammation,

were partially, or completely reversed after THX-B or anti-proNGF

mAb treatment. Therefore, p75NTR antagonists and antibodies

against neurotrophins may be novel tools for treating or

alleviating DKD and other diabetes-associated complications (163).

BDNF also played a role in T1D. Mitsugu et al. demonstrated

that the intermittent administration of BDNF ameliorated blood

glucose levels in diabetic mice. The same team confirmed that

BDNF reduced food intake and lowered blood glucose levels in

obese diabetic animal models. Furthermore, BDNF had a

hypoglycemic action independent of appetite alteration in diabetic

mice. Meek et al. further confirmed that BDNF lowered blood

glucose levels because of decreased glucose uptake, which is

consistent with the role of p75ICD but contrary to the role of

sortilin in glucose uptake (164).
8 ProBDNF and its receptors
in vasculitis

Vasculitis is a condition that covers a group of rare diseases

characterized by inflammation of blood vessels, which causes organ

ischemia and damage. Vasculitis usually shows a marked age

tropism. For example, giant cell arteritis (GCA) predominantly

affects those aged >50 years, whereas Kawasaki disease (KD)

primarily affects young children (165).

Masayuki et al. found that sortilin is elevated in the acute phase

but decreased in the convalescent phase of KD. The ratio of sortilin

to platelet (sortilin/platelet) still increased after initial intravenous

high-dose immunoglobulin treatment in unresponsive cases,

whereas CRP decreased in unresponsive and responsive cases,

indicating that sortilin/platelet may reflect the activity of KD

more sensitively than CRP (166). In patients with GCA, the

overexpression of BDNF, and their receptors was observed in the

temporal artery, which may be related to the presence of

proinflammatory cytokines in the inflamed arterial wall (167).

Reports have demonstrated that vascular inflammation and

innate immunity contribute to cardiovascular diseases such as

aortic dissection (28, 168, 169). ProBDNF was upregulated in

M2- but not M1-like monocytes in patients with Stanford type A

acute aortic dissection (AAD). Furthermore, sera from patients with

AAD promoted inflammatory responses in PBMCs from healthy

controls, which was attenuated by mAb-proB treatment. Therefore,

the upregulation of proBDNF in M2-like monocytes may promote

the proinflammatory response in AAD (28). Furthermore,

proBDNF, and BDNF, as well as its receptor, may serve as

inflammatory biomarkers in vasculitis.

More but smaller mitochondria were observed in cells of the

medial layer of the ascending aorta in patients with AAD compared

with healthy controls, which may illustrate mitochondrial

dysfunction (170). In a fluoroquinolone-induced AAD model,

mitochondrial dysfunction produced more ROS and STING to

promote cell apoptosis. As previously mentioned, proBDNF/
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p75NTR signaling regulates mitochondrial function to induce cell

apoptosis. Therefore, proBDNF/p75NTR signaling may engage in

apoptosis in the aortic wall in AAD (171).
9 ProBDNF and its receptors in IBD

IBD is characterized by chronic immune-mediated intestinal

inflammation that is driven by genetic susceptibility as well as

environmental and microbial factors, encompassing ulcerative

colitis (UC) and Crohn’s disease (CD). Such diseases manifest as

a relapsing–remitting course. IBD has become a global disease with

increasing incidence rate worldwide in the 21st century (172, 173).

Some studies have shown that neurotrophins and receptors play an

essential role in intestinal inflammation. Receptors for proBDNF

and BDNF are common in neurons of the myenteric and

submucosal plexus and mucosal endocrine cells in the

gastrointestinal tract (174–176). In CD, the loss of enteric glial

cells results in severe inflammation of the intestine. BDNF

attenuates apoptosis of glial cells, whereas anti-BDNF antibodies

significantly increase apoptosis (176). Johansson et al. (177)

reported a strong correlation between massive inflammation with

decreased neurotrophin immunoreaction. Furthermore, a high

expression level of p75NTR was observed in lamina propria cells of

patients with UC (177). However, the expression and role of

proBDNF in IBD remain unclear.
10 Conclusion

There has been a great breakthrough in therapies for IMIDs.

However, new and urgent problems and difficulties in restoring

immune dysregulation to normality, relieving pain more than

inflammation, and exploring potential interactions between the

immune and neurological system begin to exist. ProBDNF

signaling promotes cell apoptosis by inducing cyt C release from

mitochondria, whereas BDNF signaling exerts opposite effects by

controlling oxidative stress and mitochondrial dysfunction. BDNF

decreased glucose uptake in IMIDs, which is consistent with the role

of p75ICD but contrary to the role of sortilin in glucose uptake.

Traditional studies tend to focus on the role of proBDNF and its

receptors in the CNS. With the deepening of research, we have

comprehensively understood the role of proBDNF and its receptors

in mediating mitochondrial and metabolic pathways and in

regulating the peripheral immune system in IMIDs, a large class

of diseases. ProBDNF signaling usually exerts proinflammatory

effects in IMIDs, whereas it exerts anti-inflammatory effects in

AMI. Based on the proBDNF/p75NTR signal, a series of original

research was conducted, and an anti-proBDNF monoclonal mouse

antibody and humanized mAb-proB with independent intellectual

property rights and patents was produced. In addition, we focused

on the p75NTR target and prepared p75ECD from prokaryotic and

eukaryotic cells. In the future, we will explore the role of proBDNF

and its receptors from multiple dimensions and perspectives,

particularly in cellular metabolism and mitochondrial
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homeostasis of different immune cell subsets to further understand

its mechanism involved in patients with IMID. Finally, these new

insights may promote preclinical research by targeting proBDNF

and its receptors in the future.
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