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The brain has long been considered an immune-privileged organ due to the

presence of the blood-brain barrier (BBB). However, recent discoveries have

revealed the underestimated role of T cells in the brain through the meningeal

lymphatic system. Age is the primary risk factor for Alzheimer’s disease (AD),

resulting in marked age-dependent changes in T cells. Manipulating peripheral T

cell immune response has been shown to impact AD, but the relationship

between T cell aging and AD remains poorly understood. Given the limited

success of targeting amyloid beta (Ab) and the growing evidence of T cells’

involvement in non-lymphoid organ aging, a deeper understanding of the

relationship between T cells and AD in the context of aging is crucial for

advancing therapeutic progress. In this review, we comprehensively examine

existing studies on T cells and AD and offer an integrated perspective on their

interconnections in the context of aging. This understanding can inform the

development of new interventions to prevent or treat AD.
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Introduction

T cell aging begins with thymic involution, one of the most well-studied hallmarks of

immune aging, and occurs during childhood and puberty (1). As a result, the thymus

significantly reduces its production of new naïve T cells, and the maintenance of peripheral

naïve T cells heavily relies on homeostatic proliferation. Although the homeostatic

proliferation of T cells can replenish the T cell compartment, the number of naïve T

cells still declines significantly with age, especially for CD8 T cells (2, 3). The inability to

maintain naivety leads to failure of self-renewal of naïve T cells via hemostatic proliferation

in old individuals, which occurs more often within CD8 T cells than within CD4 T cells. In

line with this difference, terminally differentiated T effector memory CD45RA+ (TEMRA)

cells, which display senescent characteristics, accumulate more among CD8 T cells than

among CD4 T cells in old individuals (4). Interestingly, virtual memory cells in humans

that develop features of cellular senescence accumulate with age and are found among

TEMRA cells (5, 6), suggesting generation of TEMRA cells partially comes from cytokines
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stimulation. Although fewer TEMRA cells exist among CD4 T cells,

aged CD4 T cells also display powerful pro-inflammatory or anti-

inflammatory features, which closely link to disorders in old

individuals (7, 8). Besides, the long-term memory and T follicular

helper (Tfh) cell development potential of aged naïve T cells is

impaired due to upregulated CD39, miR-21 expression, and

impaired proteostasis (9–12), suggesting that age-related changes

already exist at the naïve stage. Indeed, single-cell RNA sequencing

of naïve CD4 T cells revealed a distinct profile of aged naïve T cells

(13). Furthermore, the functionality of aged memory T cells is still

inferior due to decreased CD73+ memory cells (14). Thus, age-

related alterations in naïve cells, memory cells, homeostatic

proliferation, and activation shape significantly affect the function

of T cells in old individuals (Figure 1).

Alzheimer’s disease (AD) is an age-related neurodegenerative brain

disorder and is the most prevalent neurodegenerative disease in the

aged population (15). Its cardinal characteristics are the extracellular

deposit of amyloid fibrillary amyloid beta (Ab) and neurofibrillary

tangles mediated by aggregated hyperphosphorylated tau protein (16,

17). Several therapeutic drugs have been developed, and many clinical

trials have been conducted based on the amyloid cascade hypothesis.

However, most AD-related clinic trials have failed, necessitating that

promote researchers revisit the mechanisms underlying AD (18).

An increasing body of evidence demonstrates that dysfunctional

neuroinflammation and systemic inflammation are found in AD and

associated with clinical indications (19). Indeed, Yousefzadeh et al.

found that an aged immune system can drive the senescence of solid

organs, including the brain (20). Accumulation of senescent cells in

the brain has been reported to worsen pathologic impairments in AD

mice models (21, 22). Hence, the aged immune system is supposed to

exacerbate the pathologic process of AD. It raises a question: as a

critical part of the immune system, what is the role of aged T cells in
Frontiers in Immunology 02
the senescence of non-immune organs? A recent study revealed that

Tfam deficiency in T cells induced inflammaging, which led to

multimorbidity and premature senescence, including neurologic

impairments (23). Although the authors did not evaluate the AD-

specific alterations, neurodegenerative changes were observed (23).

Tfam-deficient T cells exhibit some identical features as aged T cells;

arguably, T cell aging plays an essential role in AD. A recent report

supports it: the frequency of TEMRACD8 T cell—its accumulation is

one of the hallmarks of T cell aging–in peripheral and cerebrospinal

fluid (CSF) increases in AD patients. It is negatively correlated with

cognition (24). This review summarizes the findings of such age-

related changes and the potential role of T cell aging in AD.
Thymic involution and AD

One of the primary characteristics of T cell aging is thymic

involution, which results in reduced generation of naïve T cells (25).

In humans, the thymus is a primary source of T cells before puberty.

However, its contribution decreases to less than 20% by early

adulthood and further declines with age due to thymic involution.

Thymic involution in mice is more gradual than in humans, and

thymic output still plays a role in maintaining naïve T cells even in

aged mice (26–28). Thymic involution directs the senescence of

cells through three aspects: 1) impaired negative selection, 2)

imbalanced Treg generation, and 3) reduced thymopoiesis (29).

Impaired negative selection in the aged thymus leads to an

increased generation of self-reactive T cells (29). Ab-specific T cells

increase in AD patients and old individuals (30), which can infiltrate

the brain parenchyma and promote AD in mice (31). Whether the

increased Ab-specific T cells in AD patients and old individuals is a

consequence of thymic involution remains elusive. Thymic
FIGURE 1

Age-related changes in the T cell. Self-renewal of naïve T cell cells via homeostatic proliferation often fails in old individuals: 1) memory
differentiation driven by homeostatic cytokines; 2) death due to lack of survival signal. Age also leads to significant changes in naïve T cell
compartment: more differentiated states, increased heterogeneity, and reduced quiescence. Those changes in naïve T cells combined with changes
in activation stages result in dysfunctions in aged effector or memory T cells. Furthermore, age impairs the function of existing memory.
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involution also dramatically changes Treg generation. Due to reduced

TCR signaling strength in the atrophied thymus, the generation of

tTreg (thymic Treg) cells increased (32), which has been shown to

play an important role in AD. Depending on their location, Treg cells’

role in AD is protective or pathogenic (33). Treg cells residing in the

choroid plexus (CP) inhibit CP leukocyte trafficking via IL-10, which

is detrimental to AD (34, 35). However, Treg cells in the brain inhibit

neuroinflammation and could ameliorate the pathology of AD (36).

Based on these facts, increased Ab-specific T cells and generation of

Treg cells in aged thymus probably promote AD. The following two

sections will discuss reduced thymopoiesis-mediated decreased naïve

T cells and increased senescent T cells.

Age-related thymic involution is mainly driven by increased sex

steroids, mediated by steroid signaling in thymic epithelial cells (TEC)

(37). Surgical or chemical sex steroid ablation improves thymic

rejuvenation. In addition to age, specific infection and physiological

changes, such as schistosomiasis and pregnancy, induce acute thymic

involution (38, 39), which affect the process of infection and pregnancy

through T cell response. Whether changes in AD influence thymic

involution remains an interesting question. As we know, AD is also

associated with age-related sex hormone fluctuations, but the effect of

sex steroids on AD is controversial. Numerous epidemiologic studies

suggest a protective role for estrogen in Alzheimer’s disease (40, 41).

However, a recent study indicates that long-term hormone

replacement therapy (HRT) is associated with an increased risk of

AD in postmenopausal women (42, 43). Long-term treatment with

hormones, especially at an earlier age, accelerates thymic involution,

which is probably detrimental to AD. Consistently, Leuprorelin, a

luteinizing hormone-releasing hormone (LHRH) agonist, inhibits sex

steroids generation, rejuvenates T cell immunity via increased thymic

activity (44), and also has been found to ameliorate neuropathologic

processes in APP/PS1mice and delay loss of cognition in a subgroup of

AD patients (45, 46). Another piece of evidence comes from the study

of congenital heart disease (CHD); the thymus is removed during

cardiac surgery in newborns with CHD, leading to T cell aging (47).

Adults with CHD have an increased risk of developing AD (48), which

is probably associated with thymectomy. Further investigations are

warranted to explore the potential relationship between AD and

thymic activity.
Naïve/memory T cells imbalance
and AD

As described in the previous section, due to reduced thymic

output, naïve/memory T cell imbalance is the most significant

hallmark of T cell aging. Although homeostatic proliferation can

considerably compensate naïve T cells in young individuals, self-

renewal via homeostatic proliferation often fails in old individuals

(49). Homeostatic proliferation depends on signaling from IL7 and

MHC/self-antigen (50). Decreased IL-7 receptor expression on aged

T cells and less accessibility to secondary lymph organs contribute to

the loss of naïve T cells with age (51, 52). Besides, due to declined

TRIB2, aged naïve T cells are prone to differentiation towards

memory response to homeostatic cytokines that further contribute

to the loss of naïve T cells (53).
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Recent studies have shown that naïve T cells are more

heterogeneous than previously thought (54)—aging shapes

dramatically naïve T cells’ epigenetic landscape (55–57). Age-

related changes in naïve T cell chromatin accessibility are similar

to those in activated and differentiated T cells, and this

phenomenon is more pronounced in naïve CD8 T cells (58–60).

At the single-cell level, aging increases heterogeneity in gene

expression during early activation, indicating diversity in

differentiation states (13, 61). Age-associated transcriptional

factors and microRNA network changes account for those

differentiation states (9, 13, 60, 62–64). A phenotypically unique

subset of “young naïve T cells” –CD45RAhighCD27highCD38+

CD25neg–is lost with age (65). More differentiated states in aged

naïve T cells imply less effector plasticity. Increased transforming

growth factor-b receptor 3 and CD39 in aged naïve CD4 T cells

favor Th9 and inhibit Tfh differentiation, respectively (11, 66).

Moreover, due to increased miR-21, naïve CD4 T cells from old

individuals are prone to differentiate into inflammatory effector

cells rather than Tfh and memory precursor cells (9). In addition to

the frequency of naïve T cells, aging changes dramatically the states

of naïve T cells.

Peripheral T cells in AD patients and mouse models have been

studied widely (67), and a decreased ratio of naïve to memory T

cells is a consistent phenotype. Tau and Ab have been reported to

trigger T cell-specific response (30, 68), suggesting that peripheral

tau and Ab protein mimic “infection” and drive naïve T cell

differentiation toward memory cells. However, the explanation is

likely more complex. Substantial clonally expanded CD8 T cells in

AD patients specifically recognize antigens from Epstein-Barr Virus

(EBV), not AD-related proteins (24). Hence, other factors

contribute to the loss or differentiation of naïve T cells in AD.

Studies from atherosclerosis, another age-related disease, show that

accumulation of cholesterol in T cells induces T cell aging

phenotype, including less frequent naïve T cells (69).

Interestingly, CD8 virtual memory T cells accumulate with age

and upregulate lipid rafts (6, 70). Dysfunction of lipid metabolism

in AD is associated with lipid raft changes and activation of innate

immune cells (71), suggesting that lipid metabolism dysfunction in

AD possibly accelerates differentiation of naïve T cells via elevated

cholesterol or lipid rafts.

Poor naivety maintenance of T cells in AD may contribute to

impaired cognition, and age-related downregulation of the naïve

marker CCR7 on T cells is associated with worsened cognition (72).

Furthermore, CCR7-deficiency exacerbates brain Ab deposition

and cognitive decline in 5xFAD mice, and anti-CD25 treatment

improves cognition (72). Although the authors attributed it to the

depletion of Treg cells and did not evaluate the states of naïve T cells

with anti-CD25 injection, recently Zhang et al. showed that Helios

downregulated CD25 and prevented an effector cell response, anti-

CD25 treatment shifted the chromatin accessibility states toward

those of younger individuals and away from an effector memory

pattern (13). Hence, in addition to the depletion of Treg, CD25

inhibition probably also influences pathologies of AD via

maintaining the naïve pattern of T cells. More specific inventions

are required to investigate the impact of naïve cells on AD. TRIB2 is

a vital regulator of naivety, and its stabilizing drugs have been
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applied to clinical treatment (53). It is thus of great interest to

evaluate the effect of TRIB2-mediated maintenance of naïve T cells

to AD.
Senescent T cells and AD

Aging leads to the accumulation of senescent cells, including

senescent T cells, which share many standard features of senescence

with other senescent cells, including short telomeres and reduced

telomerase activity, DNA damage, mitochondrial dysfunction, and

b-galactosidase activity (73). Functionally, senescent T cells are

defective in their TCR-induced proliferation and secrete abundant

inflammatory factors—as part of the SASP (senescence-associated

secretory phenotype). They lack the costimulatory receptors CD27

and CD28 and upregulate natural killer cell (NK)-related markers

(74). Human TEMRA cells, which display this characteristic of

cellular senescence and are associated with increased p38 signaling

(4), are a primary subset of senescent T cells. Senescent T cell

accumulation is likely a result of lifelong antigen stimulation,

especially chronic virus infection (75). However, virtual memory

T cells, driven by cytokines, also accumulate with age and exhibit

similar features of senescence (6). CD4 T cells also acquire NK

receptors and become cytotoxic with age, possibly associated with

downregulated ThPOK (7, 76, 77). ThPOK expression declines in

aged CD4 T cells (53). Thus, ThPOK may play a crucial role in

accumulating senescent T cells.

CD8 TEMRA cells are found to increase in peripheral blood, and

cerebrospinal fluid of AD patients and are correlated with impaired

cognition (24). CD8 T cells from human brains (including AD

patients) lack CD27 and CD28 expression, which are characteristics

of TEMRA cells (78). Surprisingly, TCR-sequencing reveals that a high

proportion of clonally expanded CD8 T cells among these TEMRA

cells recognize EBV antigen (24), suggesting that these TEMRA cells

probably play a role in AD via a bystander function. Why these

TEMRA cells increase in AD patients is unclear. It is speculated that

these TEMRA cells generate in the periphery via antigen or cytokine

stimulation and migrate into the brain. Further investigation is needed

to understand the mechanisms underlying peripheral alterations of AD

associated with TEMRA cell accumulation.

CD8 TEMRA cells upregulate NK markers, which mediate the

killing of senescent cells independent of TCR recognition (79).

Increased frequency of CD8 TEMRA cells is supposed to enhance

the clearance of senescent cells in the brain. However, intracerebral

senescent cells accumulate in AD mice, which negatively affects the

process of AD (21, 22), suggesting that the cytotoxicity of CD8

TEMRA cells in AD is impaired. Similarly, the ability of aged CD8 T

cells to clear senescent cells is diminished due to elevated NKG2A

and PD-1 and reduced binding of perforin (79–82). Furthermore,

the low cytotoxicity of CD8 T cells is likely brain-specific.

Compared to circulating CD8 T cells, CD8 T cells from human

brains express less GZMB and perforin (78). Hence, reduced

immune surveillance of senescent cells in the brain by CD8 T

cells may contribute to AD development.

On the other hand, GZMK and TNFa secreted from senescent

CD8 T cells promote the senescence of other cells, including brain
Frontiers in Immunology 04
cells, which probably exacerbate the accumulation of senescent cells

in the brain (8, 23). Hence, the role of CD8 T cells in AD is complex

(83, 84). Clearance of senescent cells in the brain requires

functionally cytotoxic CD8 T cells. However, aged CD8 T cells

are unable to kill senescent cells and induce more cellular

senescence in the brain via SASP signals. In addition to the

contribution of cellular senescence in the brain, the accumulation

of aged CD8 T cells in the brain directly promotes axon and myelin

degeneration via GzmB and IFNg-mediated microglia activation

(85, 86). These emphasize the importance of correcting the

dysfunction of aged CD8 T cells, not simply via depletion

or supplementation.

Senescent CD4 T cells acquire extreme pro-inflammatory and

anti-inflammatory phenotypes with reduced effector plasticity.

Peripheral CD4 T cells from AD patients exhibit a bias

differentiation as seen in old individuals with increased activity of

Th17, Th9, and Th1 (87–89). These T cell subsets can infiltrate the

brain and be involved in the pathology of AD (31, 90, 91). IL-17 has

been reported to trigger the onset of cognitive and synaptic deficits

and the breakdown of the brain blood barrier, and blockade of IL-17

decreased cognitive impairments (92–94). The role of Th1 in AD is

controversial (95). Intraventricular injection of Th1 cells favored

microglia activation and clearance of Ab (96, 97). However, when

transferred peripherally, Th1 cells increased Ab plaque burden (31).

Although senescent T cells contribute to inflammaging and are

detrimental in age-related disorders by producing pro-

inflammatory cytokines, activating T cell responses by blocking

PD-1 or transient depletion of peripheral Treg cells ameliorates

disease pathology in mouse models of AD (34, 98). PD-1+ T cells

and Treg cells accumulate in the periphery with aging in both mice

and humans (99, 100), and PD-1 blockade and depletion of Treg

cells appear to correct some age-related dysfunctions. These suggest

that restoring the function of senescent T cells in the periphery

could ameliorate AD pathology.
Concluding remarks

Numerous poor outcomes from clinical trials on AD have

stimulated the revisiting of AD etiology. Treatments targeting Ab
have shown discouraged outcomes in AD patients, suggesting that

clearing Ab alone is insufficient to delay the AD process. The role of

Ab in AD needs to be revisited in the context of new emerging

hypotheses, such as senescence cascade and neuroinflammation,

which are closely linked to T cells. Aging is the most significant risk

factor for AD, dramatically shaping T cells’ function. Recent

evidence shows that the immune system, especially T cells, plays

a central role in whole-body senescence, highlighting the relevance

of T cells in AD.

Current studies about T cell aging and AD are limited and

indirect. We summarize the potential relationship between T cell

aging and AD (Figure 2) and critical questions to warrant further

investigation: 1) What is the role of intracerebral CD8 TEMRA cells

in AD? Why cannot they kill accumulated senescent cells? 2)

Whether induction of T cell aging, for example, thymectomy,
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exacerbates the pathology of AD, and what are the mechanisms? 3)

How do changes in AD influence T cell aging? Answering these

questions will deepen our understanding of the etiology of AD and

the mechanism of T cell aging and open new possibilities by

developing drugs to treat AD via targeting aged T cells.
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FIGURE 2

T cell aging and AD. With age, the number of naïve T cells decreases, and relative memory T cells (Th1 and Th17 for CD4 T cells, TEMRA, or virtual
memory for CD8 T cells) accumulate. Cytokines secreted by aged T cells increase the permeability of BBB, which increases other immune cells or
their entry into the brain. On the one hand, aged T cells in the brain directly contribute to neuroinflammation and damage to the nervous system by
releasing cytokines. Aged T cells in the brain worsen the pathology of AD via the accumulation of senescent cells. TNFa, IL-17, and GZMK from aged
T cells probably induce senescence in brain cells. Furthermore, increased PD-1 or decreased perforin in aged CD8 T cells in the brain inhibits the
clearance of senescent cells. Ab: amyloid b, TEMRA: T effector memory CD45RA+. SASP: senescence-associated secretory phenotype.
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