
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mengyao Guo,
Northeast Agricultural University, China

REVIEWED BY

Chengye Li,
Huazhong Agricultural University, China
Ganzhen Deng,
Huazhong Agricultural University, China
Xuejiao Gao,
Northeast Agricultural University, China

*CORRESPONDENCE

Weiliang Zhao

zhaoweil@jlu.edu.cn

SPECIALTY SECTION

This article was submitted to
Nutritional Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 30 January 2023
ACCEPTED 01 March 2023

PUBLISHED 22 March 2023

CITATION

Li H, Liu L, Wang J and Zhao W (2023) The
emerging role of neutrophil extracellular
traps in endometritis.
Front. Immunol. 14:1153851.
doi: 10.3389/fimmu.2023.1153851

COPYRIGHT

© 2023 Li, Liu, Wang and Zhao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 22 March 2023

DOI 10.3389/fimmu.2023.1153851
The emerging role of
neutrophil extracellular
traps in endometritis

Hongyan Li1, Ling Liu2, Junrong Wang3 and Weiliang Zhao4*

1Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China,
2Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,
3Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University,
Changchun, Jilin, China, 4Department of Anesthesiology, China-Japan Union Hospital of Jilin
University, Changchun, Jilin, China
Endometritis is a kind of common obstetric disease in women, usually caused by

various pathogenic bacteria. Neutrophil infiltration is one of the most important

pathological features of endometritis. Neutrophils can reach the uterine cavity

through the endometrium, and make early response to the infection caused by

the pathogen. Neutrophil extracellular traps (NETs), a meshwork of chromatin

fibers extruded by neutrophils, have a role in entrapping microbial pathogens. It

has been confirmed that NETs have a strong antibacterial effect and play crucial

roles in the occurrence and development of various diseases. However, while

killing pathogenic bacteria, excessive NETs formation may cause immune

damage to the body. NETs are present in endometrium of female domestic

animals in different physiological periods, especially post-mating, postpartum

and in the presence of lesions, especially in endometritis. Meanwhile, NETs and

its products might contribute to a reduction in physical clearance and persistent

endometritis. In brief, NETs is a double-edged sword and it may play a different

role in the development of endometritis, whichmay be beneficial or harmful, and

its specific mechanism needs further study. Here we provide an overview of the

role of NETs in the development of endometritis and the regulatory role of

selenium on NETs formation and endometritis.
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Introduction

Endometritis is a kind of obstetric disease, which often occurs in women and animals. It

can cause infertility and reduce the reproductive performance (1). The pathogenic factors

of endometritis are complex, mainly caused by bacteria, such as Staphylococcus, Escherichia

coli, Streptococcus, etc. (2). According to clinical manifestations, endometritis can be

divided into chronic and acute types. As the outer surface of the uterine cavity, endometrial

epithelial cells first contact with the pathogenic bacteria, which are an important part of the

innate immunity of the uterus and play a sentinel role in the innate immune defense.
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Therefore, when the integrity of endometrial epithelial cells is

destroyed, it will be more conducive to the invasion and infection

of pathogenic microorganisms.

Once the endometrium is attacked by pathogenic

microorganisms, the innate immune system performs its initial

defense function. With the invasion of pathogenic bacteria into the

uterus to cause an inflammatory response, neutrophils can reach the

uterine cavity through the endometrium, and make early response

to the infection caused by the pathogens (3). Mounting evidences

suggest that the number of neutrophils increases in the late

pregnancy of healthy dairy cows, performing a strong phagocytic

ability. However, when endometritis and other uterine diseases

occur, the numbers and phagocytic ability of neutrophils are

reduced. The numbers and phagocytic ability of neutrophils are

lower in the postpartum compared with the prenatal (4). Because

the phagocytic capacity of neutrophils in uterine cavity is consistent

with that in peripheral blood, the function of neutrophils in uterine

cavity is often evaluated by peripheral blood neutrophils.

Neutrophils, as an integral part of innate defense system, play

an important role in the body’s defense against pathogen invasion.

Neutrophils mainly kill pathogens through phagocytosis and

degradation (5). In 2004, Brinkmann et al. first discovered that

neutrophils can kill pathogenic microorganisms by releasing a

network structure (6). This structure is named NETs, which are

different from phagocytosis and degradation, and are a new way of

immune response. NETs play crucial roles in the occurrence and

development of various diseases. However, there are few reports

about the role of NETs in endometrium, especially in the

pathogenesis of endometritis. In this review, we will focus on the

role of NETs primarily in endometritis. In addition, we provide

some latest information on NETs formation and mechanism of

action in the course of many disorders.
NETs formation

NETs were formatted by which activated neutrophils release

their DNA and intracellular components in a network structure.

Several proteins adhere to NETs, including histones and granular

content, among which are components with bactericidal activity.

NETs formation occurs as specific proteases are translocated into

the neutrophil nucleus, which causes chromatin decondensation

through citrullination (7). At present, it has been proved that NETs

can be induced by many substances. In addition to pathogenic

microorganisms, LPS, MPO, activated platelets, TNF-a and PMA

can stimulate neutrophils to produce NETs (8). However, due to the

differences in signal pathways of different stimuli and the different

stages of NETs formation, the mechanisms involved are not exactly

the same. Although the exact molecular mechanism of the NETs

formation is not clear, more and more studies show that the

formation and regulation of NETs depend on the production of

ROS mediated by NADPH oxidase. ROS has a prominent role in

NETs formation. Some scholars believe that the production of ROS

is a prerequisite for NETs formation, which can induce the

activation of protein kinase C (PKC) (9), the activation of Raf/

MEK/ERK signaling pathway and the increase of intracellular
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calcium ions concentration. There are a large number of NADPH

oxidase on the cell membrane and phagosome membrane of

neutrophils. When stimulated by signal, ROS produced is present

in the cell or released to the outside of the cell, playing a role in

killing pathogens (10, 11). In patients with chronic granuloma, ROS

production is inhibited by mutations of CYBB gene encoded by

NADPH oxidase 2(NOX2), and polymorphonuclear neutrophil

(PMNs) cannot form NETs (12). Inhibition of NADPH oxidase

activity by diphenyliodonium (DPI) can affect ROS production and

effectively block PMA induced NETs formation (13). In addition,

some enzymes play an important role in NETs formation, such as

neutrophil elastase (NE), MPO and peptidylarginine deiminase type

4 (PAD4). NE and MPO are released from neutrophils azurophilic

granule and transposed into the nucleus to participate in the

degradation of histones and the loosening of chromatin (14).

Ribozyme PAD4 promotes the degradation of histones by

neutrophils elastase, and changes its amino acid structure to

convert arginine to citrullinic acid, resulting in the loss of positive

charge necessary for histone to interact with DNA, leading to the

generation of chromatin depolymerization and inhibition of NETs

formation (15). It has been found that the use of PAD4 inhibitor in

SLE mice models can reduce the formation of NETs and prevent

lesions of skin, kidney and blood vessels (16).
Antimicrobial activity of NETs

NETs are based on DNA and are accompanied by a variety of

protein particles, including MPO, histones, elastin, and lysozyme

(17). NETs mainly rely on its unique three-dimensional network

structure to capture pathogens. After capturing the pathogens,

NETs can kill the pathogens through its own various antibacterial

proteins, and that help other immune cells to function (18). The

mechanism by which NETs capture pathogens is yet unclear. In the

proposed mechanism, the main idea is the charge attraction formed

between positively charged NETs components and negatively

charged pathogen components. Currently, in vivo and in vitro

experiments have confirmed that NETs can kill Gram-positive

bacteria, Gram-negative bacteria, T. berghei, fungi, parasites, and

even capture human immunodeficiency virus (HIV) (19).

Meanwhile, based on the dual roles of neutrophils in host

immune system, recent research has revealed the two roles played

by NETs: as a first line of defense against microorganisms and as a

contributor to the pathogenesis of various illnesses (20).
Immune injury of excessive
NETs formation

In the more than 10 years since NETs were discovered, it has

been confirmed by a large number of experiments that NETs have a

strong antibacterial effect and play crucial roles in the occurrence

and development of various diseases. However, while killing

pathogenic bacteria, the immune damage to the body itself should

also be taken seriously. For example, it was reported that there are

NETs in peripheral blood neutrophils of sepsis. NETs can catch and
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kill pathogens during local infection. However, acute lung injury

caused by toxicity to alveolar epithelial cells and disseminated

intravascular coagulation (DIC) induced by effects on endothelial

cells and coagulation system in systemic infection further increase

the mortality of sepsis (21). Saffarzadeh et al. demonstrated in vitro

studies that NETs can cause harm to alveolar epithelial cells and

endothelial cells. When they kill pathogens, neutrophils may release

too much NETs, which will affect the body as the degradation of

NETs is not timely. Fuchs et al. found that NETs provide scaffolds

for the formation of blood clots and stimulate their formation due

to their unique network structure (22). The formation of NETs in

blood vessels can make platelets adhere, aggregate and activate.

Meantime, Vonbrush et al. reported that NETs can promote deep

vein thrombosis by binding and activating coagulation factor XII

(23). It’s reported that large amounts of NETs will accumulate in the

hepatic sinusoids in the systemic inflammation of mice induced by

LPS injection, thereby causing blockage and damage to liver cells.

NETs are also closely related to autoimmune diseases. For example,

large amounts of NETs produce in patients with systemic lupus

erythematosus, and their degradation process is inhibited by the

combination of NETs and autoantibodies. The presence of large

amounts of DNA and histones will induce the body to produce

corresponding antibodies, causing immune damage to the host (24).

Studies have also been reported that NETs are closely related to the

pathological processes of preeclampsia, sepsis, coronary heart

disease, and Ferti syndrome.
NETs and infectious diseases

Bacterial and fungal pathogens can stimulate NETs formation.

Studies showed that Staphylococcus aureus, E.coli, and Salmonella

typhimurium can be effectively trapped within NETs and eliminated

by components of NETs in vitro (25, 26). According to their

research, NETs may use the DNA-associated elastase to degrade

their virulence factors (6). NETs are able to capture, immobilize,

and eliminate Escherichia coli. Nevertheless, it indicates that NETs

were observed in bacteria-induced intestinal diseases and

contributed to the injury of intestinal epithelium (27).

Virus induction of NETs formation is now well established.

Influenza A-stimulated NETs are dependent on PAD4 (28). NETs

may trap and eliminate HIV through myeloperoxidase and a-
defensins (29). NETs formation prevents respiratory syncytial

virus (RSV) dissemination (30). A recent study shows that NETs

effectively control acute Chikungunya virus infection (31).

NETs can be found in the circulation or infected site of patients

infected with fungi or parasites. Neutrophils has the ability to trap

and eliminate Candida albicans through releasing NETs (32).

Neutrophils can limit the dissemination of Toxoplasma gondii by

trapping and killing it via NETs release, subsequently showing that

NETs formation is MEK-ERK dependent (33). Pathogenic microbes

invasion promotes NETs formation to immobilize pathogens and

hinder their spread. Meanwhile, different kinds of pathogenic

microbes will form various immune escape mechanisms in the

process of evolution to evade the host immune system.

Staphylococcus aureus secretes several virulence factors including
Frontiers in Immunology 03
leukotoxin GH (LukGH) and Panton–Valentine leucocidin (PVL)

to promote NETs through an oxidative pathway-independent

mechanism (34, 35). Similar research showed that NETs in the

cerebrospinal fluid (CSF) of patients with pneumococcal meningitis

promote pneumococcal survival and reduce bacterial clearance (36).

Cryptococcus neoformans possesses a capsular polysaccharide

glucuronoxylomannan(GXM) that improves virulence by

mediating resistance to NETs (37).
NETs and endometritis

NETs formation in endometritis

The formation of NETs has been observed in the development

of endometritis (38). As we mentioned earlier, many kinds of

bacteria, fungi, viruses and parasites can induce NETs formation,

and many of them can cause endometritis in cows. After

endometritis in cows, neutrophils infiltrate through the

endometrium and enter the uterine cavity. Meanwhile, due to the

presence of pathogenic bacteria, endotoxins and increased oxygen

free radicals, these factors are sufficient conditions for the formation

of NETs (39).

In addition to the above, the immunometabolic requirements

for NET release are still ambiguous, including requirement for some

macro- and micronutrients. It has been reported that NETs

formation is affected by some trace elements such as zinc, iron

and copper (40). And calcium ion plays an important role in a series

of signaling cascade processes that NETs formation depends on

(41). In a study on some of the metabolic requirements for

NET formation, Rodriguez-Espinosa et al. suggested that NET

formation contained two phases. It is necessary to study the

relationship between postpartum energy metabolism disorder and

endometritis and NETs formation.
Positive effect of NETs on endometritis

NETs is closely related to human pregnancy diseases (42).

Similarly, NETs formation has been related to endometriosis of

domestic animals in the mare with endometritis, and in the post-

partum cow (39, 43). Some studies have shown that all bacteria

found to cause endometritis in mares may be trapped in NETs. But

it seems that different bacteria can induced NETs with the different

potency (39). The ability of horse neutrophils to damage different

bacteria may be the mechanism of antagonizing some microbes

that cause endometritis in mares. Thus, NETs formation might

be the mechanism against pathogens responsible for equine

endometritis (44).

According to the study of the mare endometritis, the

stimulation of semen deposition induced a mass of PMNs

invasion which eventually led to post-mating inflammatory

responses of the uterus. With the aid of the NETs formation

subsequently, sperm would be phagocytosed (45). In addition,

activated PMNs would tangle and kill microbes by extruding

nuclear DNA and histones to form NETs (46). These reactions
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can ensure the elimination of sperm and bacteria and then the

recovery of endometrium, prepared for conception.
Negative effect of NETs on endometritis

Interestingly, NETs may have dual actions on the mare

endometrium. While PMNs have favorable effect on infection

issues as first line in immune defence, they may also release

molecules that might damage surroundings inflame issues (47).

Previous studies have confirmed that NETs and its related histones

may cause damage to epithelial cells and endothelial cells, leading to

lung, liver and kidney damage (44). Other findings demonstrated

NETs and its component histone could cause injury to bovine

mammary epithelial cell (BMEC) in vitro (48). We have reason to

suspect that NETs and its components may also have some

inevitable connection with endometrial epithelial damage through

some ways. In recent study in vitro, although not tested in vivo,

elastase, cathepsin-G and myeloperoxidase which were released by

NETs may result in impaired prostaglandin E2 (PGE2) release in

the mare endometrium. This might contribute to a reduction in

physical clearance and persistent endometritis.

Despite many breakthroughs in the study of the mechanism and

key links of NETs formation, will there be a large number of NETs

formation in utero? What role do NETs play in endometrial infection?

Do NETs affect the expression of key junction proteins, such as

apoptosis, pyrolytic associated inflammatory bodies and caspase

signaling pathway? All these problems need to be clarified by research.
Effects of selenium on NETs formation
and endometritis

Selenium (Se) is a non-metallic trace element that has

important effects on human and animal bodies. It has been

reported to exhibit anti-tumor, anti-heavy metal, anti-virus, anti-

oxidation, and enhancing immunity effects (49, 50). Recent studies

demonstrated selenium could inhibit LPS-induced endometritis in

mice (51). Meanwhile, selenium had protective effects in S.aureus-

induced endometritis in rats (52). Also, selenium deficiency could

aggravate inflammatory response in the mice uterus (53). A large

number of studies demonstrated that selenium could inhibit the

formation of NETs. Selenium could suppress Fumonisin B1-

induced NETs formation in chicken neutrophils (54). In addition,

selenium could inhibit lead (Pb)-induced NETs formation (55). A

previous study demonstrated that selenium induced NETs

formation in the progression of arteritis and silencing-SelS
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worsened arteritis (56). These reports indicated selenium may

inhibit NETs formation through NETs formation. And NETs can

be used as a target for the treatment of endometritis.
Conclusions

It has been confirmed that NETs have a strong antibacterial

effect and play crucial roles in the occurrence and development of

various diseases. However, while killing pathogenic bacteria,

excessive NETs formation may cause immune damage to the

body. NETs are present in endometrium of female domestic

animals in different physiological periods, especially post-mating,

postpartum and in the presence of lesions, especially in

endometritis, playing a key role of immune clearance, protection

and regulation. Meanwhile, NETs and its products might contribute

to a reduction in physical clearance and persistent endometritis. In

conclusion, NETs may play different roles in endometritis, which

may be beneficial or harmful, and its specific mechanism needs

further study. It may be the key target of prevention and treatment

of endometritis and other infectious diseases in dairy cattle to

regulate the immune system and maintain the appropriate levels

of NETs in blood and local areas.
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