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Background: Patients with Prader-Willi syndrome (PWS) have a reduced life

expectancy due to inflammation-related disease including cardiovascular

disease and diabetes. Abnormal activation of peripheral immune system is

postulated as a contributor. However, detailed features of the peripheral

immune cells in PWS have not been fully elucidated.

Methods: Serum inflammatory cytokines were measured in healthy controls (n=13)

and PWS patients (n=10) using a 65- multiplex cytokine assays. Changes of the

peripheral immune cells in PWSwas assessed by single-cell RNA sequencing (scRNA-

seq) and high-dimensional mass cytometry (CyTOF) using peripheral blood

mononuclear cells (PBMCs) from PWS patients (n=6) and healthy controls (n=12).

Results: PWS patients exhibited hyper-inflammatory signatures in PBMCs and

monocytes were the most pronounced. Most inflammatory serum cytokines

were increased in PWS, including IL-1b, IL-2R, IL-12p70, and TNF-a. The

characteristics of monocytes evaluated by scRNA-seq and CyTOF showed that

CD16+ monocytes were significantly increased in PWS patients. Functional

pathway analysis revealed that CD16+ monocytes upregulated pathways in

PWS were closely associated with TNF/IL-1b- driven inflammation signaling.

The CellChat analysis identified CD16+ monocytes transmitted chemokine and

cytokine signaling to drive inflammatory process in other cell types. Finally, we

explored the PWS deletion region 15q11–q13 might be responsible for elevated

levels of inflammation in the peripheral immune system.
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Conclusion: The study highlights that CD16+ monocytes contributor to the

hyper-inflammatory state of PWS which provides potential targets for

immunotherapy in the future and expands our knowledge of peripheral

immune cells in PWS at the single cell level for the first time.
KEYWORDS

Prader-Willi Syndrome, inflammation, CD16+monocytes, single-cell RNA sequencing,
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Introduction

Prader-Willi syndrome (PWS) is a rare, complex, multisystem

syndrome with an estimated prevalence of 1 in 10,000–30,000 live

births (1), and it was first reported by Prader in 1956. Genetically,

PWS is an imprinted disease caused by the lack of active genes

located in the paternal chromosome 15q11–q13 region (2). The

absence of gene expression in this region mainly occurs through

three mechanisms: paternal deletion of the 15q11–q13 region (65–

75%), maternal uniparental disomy 15 (20–30%), or imprinting

defects (1–3%) (3, 4). The syndrome exhibits a wide clinical

presentation spectrum, including hypotonia, developmental

delays, cognitive disability, psychiatric phenotypes, sleep

disordered breathing and obesity.

PWS patients are at a greater risk for cardiovascular disease and

diabetes compared with weight-matched obese controls, which

contributes to the most common causes of mortality in PWS (5–

9). Furthermore, it was revealed that these comorbidities usually

occur at relatively young ages in PWS (10, 11).

These comorbidities were related to chronic inflammation and

few studies demonstrated that PWS was associated with increased

concentrations of circulating markers of inflammation, such as tumor

necrosis factor (TNF) (12), interleukin-6 (IL-6) (13), interleukin-1b
(IL-1b) (14), and C-reactive protein (CRP) (13, 15) compared to

those with non-syndromic obesity. And these circulating

inflammation markers were linked with certain immune cell

activation markers (16). It is proposed that the peripheral immune

system is activated in PWS, which leads to systemic inflammation

manifested by increased cytokine levels and seems to play a critical

pathogenic role in the development of these inflammation-related

comorbidities. However, detailed characteristics of the peripheral

immune cells in PWS have not been fully clarified.

Single-cell RNA sequencing (scRNA-seq) offers an unbiased,

comprehensive approach to define cell types and states based on

their individual transcriptome and is widely used to reveal immune

cell heterogeneity and diversity (17). In this study, we studied the

cellular landscape of PWS peripheral immune cells at single-cell

resolution via scRNA-seq.

Materials and methods

Subjects

PWS patients and healthy individuals were included in this

study. All study subjects were recruited in Shandong Provincial
02
Hospital affiliated to Shandong First Medical University. Written

informed consent was obtained from parent or legal guardian. The

diagnosis of PWS had been confirmed by genetic testing and none

of the subjects were taking any medications. None of the subjects

had a history of cancer, autoimmune disease, diabetes, infections or

steroid usage. Serum samples were collected and stored at −80 °C

until use.
Cytokine assay

Serum cytokines were measured for each subject using a 65-

multiplex cytokine assays (Cat. No. EPX650-16500-901) on the

Luminex 200 system performed at the Laizee Biotech, Shanghai,

China. IL-1b levels were measured using high-sensitivity ELISA kits

by R&D Systems (Catalog Number HSLB00D) following the

instructions exactly.
PBMCs collection and single-cell RNA-seq

The PBMCs were isolated within 2 hours from fresh EDTA

anticoagulated whole blood by density gradient centrifugation using

Histopaque-1077 (Sigma, A6929). The single-cell library

preparation in our research relied on an available droplet method,

the 10x Genomics Chromium Controller. All samples in our study

were not pooled. Single-cell RNA-seq libraries were constructed

using the Chromium Single Cell 3′ Library & Gel Bead Kit v3·1 (10x

Genomics, Pleasanton, CA) according to the manufacturer’s

instructions. Cells were divided into gel beads-in-emulsions

(GEMs) at nanoliter scales. Then, reverse transcription was used

to produce the cDNA. Consequently, each cDNA molecule

contained a cell barcode and unique molecular identifier (UMI).

We constructed and sequenced libraries at a depth of approximately

100,000 reads per cell by using the Novaseq 6000 platform

(Illumina, San Diego, CA).
Single-cell RNA-seq mapping
and pre-processing

The raw sequencing data were converted into fastq format using

mkfastq (cellranger 10X genomics, v4.0.0). As soon as the reads

were de-multiplexed, they were aligned with the human reference
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genome (GRCh38; 10x cellranger reference GRCh38 v3.0.0) to

obtain the feature-barcode matrices. Then, Cellranger aggr was

used to aggregate multiple libraries by default parameters. Seurat R

package v4.1.0 was used for subsequent analysis (18). For further

analysis, only cells expressing > 800 genes and < 10% mitochondrial

genes were included. Doublets and red blood cells were both

excluded in downstream analysis. We normalized gene expression

for each cell based on the total number of transcripts and log

transformation. In order to integrate different datasets, top 2000

highly variable genes for each dataset were recognized via using the

function FindVariableFeatures with vst method in Seurat (19).

Next, samples were integrated with canonical correlation analysis

based on the top 20 canonical correlation vectors. The integrated

data were scaled and principal component analysis (PCA) was

executed. At last, with Seurat’s FindClusters function (0.6

resolution), unsupervised clustering was performed and the cells

were visualized by uniform manifold approximation and projection

(UMAP). For the rest settings, we used default values for the

scRNAseq clustering analysis and the UMAP visualization.
Differentially expressed genes analysis and
functional enrichment analysis

Based on the Wilcoxon-test method implemented in the

FindAllMarkers function of Seurat package, we analyzed

differential expression genes between two groups. Upregulated

DEGs were identified according to the following criteria: (1) a

logfold change > 0.25, and (2) p-value < 0.05. To find the function of

upregulated genes, we used the function clusterProfiler (version

4.0.5) of the R package. We also used Enrichr, the software for gene

set enrichment analysis (GSEA) was used for LINCS L1000 dataset

to examine potential biological functions for lists of genes (20).
Cell-cell communication

Cell-cell interactions analysis was conducted using CellChat

(version 1.1.2). On the basis of data from scRNA-seq, the CellChat

analysis was performed to infer intercellular and intracellular

crosstalk between assigned types of cells. For this analysis, we

analyzed each group separately and then used the mergeCellChat

function to compare differences between two groups. More details

about the package can be found in the previous publication (21).
Weighted gene co-expression
network analysis

The WGCNA package (version 1.70) was utilized to generate

modules for co-expression. We applied a soft threshold power of six

to calculate the adjacency matrix. Then, the adjacency matrix was

transformed into a topological overlap matrix (TOM) to construct a

gene tree by hierarchical clustering. We merged modules at a cut

height of 0.25 and set the minimum module size to ten. To identify

modules correlated with clinical traits, Spearman’s rank correlation
Frontiers in Immunology 03
coefficients were measured between the different clinical parameters

and module eigengenes.
Gene set score calculation

The AUCell package (1.14.0) was used to calculate gene set

scores. For the parameters default settings were used. Inflammation

scores were calculated based on the gene set obtained from the

Molecular Signatures Database (MSigDB) (GO:0002864). 15q11–

q13 gene scores were calculated based on the gene set which

contained all genes in 15q11–q13 region. PWS signature score in

each cell type was calculated based on the gene set which consist of

upregulated genes in PWS of cell types.
Hierarchical clustering of different gene
expression among disease groups at cell
type resolution

We calculated the differential gene expression among obese

PWS and obese controls relative to normal weight control. We

found distinct transcriptional signatures between obese PWS and

obese controls in major cell types and calculated the Pearson

correlation coefficient using the above transcriptome

characteristics. Hierarchical clustering analysis was performed

based on the PCC (22).
Metal-labeled antibodies

All the antibodies were purchased from BioLegend. A series of

antibodies used are listed below: antibodies against CD3 (Cat#

300402, RRID: AB_314056), CD4 (Cat# 300502, RRID:

AB_314070), CD8 (Cat# 301002, RRID: AB_314120), CD45 (Cat#

304002, RRID: AB_314390), CD14 (Cat# 301802, RRID:

AB_314184), CD16 (Cat# 302002, RRID: AB_314202), CD56

(Cat# 318302, RRID : AB_604092), Tumour necrosis factor a
(TNF-a) (Cat# 502902, RRID : AB_315254), IL-1b (Cat# 511605,

RRID : AB_2861040). According to Fluidigm’s recommendations,

antibody conjugations were prepared using the Maxpar Antibody

Labeling Kit (Fluidigm, South San Francisco, CA). Metal-labelled

antibodies were stored at 4°C at 0.5 mg/mL in PBS-based Antibody

Stabilizer (Candor Bioscience).
CyTOF data acquisition and analysis

PBMCs (∼3x106 cells) were spun (300 g, 5 min) and

resuspended in calcium magnesium-free phosphate buffered

saline (PBS). Mix well and incubated in 1 mL of 5 mM cisplatin

(Fluidigm) at room temperature for 5 min. PBMCs incubated with

metal-labeled antibodies followed by Ir-intercalator staining. The

PBMCs were washed three times by staining buffer. In the next step,

EQ beads were mixed 1:10 with MilliQ water solution to adjust cell

concentration to 106 cells/ml. The QE beads are used in order to test
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if the nebulizer is lined up correctly, by determining the number of

events/beads that pass through in a certain amount of time. Before

to get normalized data, we calibrated the Helios CyTOF (Fluidigm,

South San Francisco,CA). We used Cytobank software to gate the

output FCS files to ruled out fragments, dead cells and doublets.

Finally, data was clustered and represented in t-SNE maps using the

R package Cytofkit (version 1.4.8). Cells were merged by “ceil” in

mergeMethod fuction in Cytofkit and the “fixedNum” is 2000. As

the mass cytometry data were nonlinear, cytofAsinh was used for

data normalization. Data were clustered using the PhenoGraph.
Statistical analyses

The data were analyzed using SPSS 22.0 or R 4.1.0. The

distribution normality was tested using the Shapiro–Wilk test

normality test. The Mann - Whitney rank-sum test was used for

data with non-normal distribution and the t - test was used for data

with normal distribution. Categorical variables were compared by

c2 or Fisher’s exact tests. Multiple linear regression analyses

between variables were done using SPSS software (SPSS, Chicago,

IL). Regression analyses with the inflammation scores as the

outcome predicted by variables BMI, age and PWS scores. Default

settings were used for the analysis. We have performed mediation

analysis using the bootstrapping method (23) in the ‘mediation’

package in R (version 4.5.0) to test whether the relationship between

PWS score and inflammation scores, is mediated by the level of

CD16+ monocyte. Two thousand bootstraps were run to estimate

the confidence intervals. The remaining settings were set default.
Result

Serum proinflammatory cytokine levels
were elevated in PWS

In several studies, it has been reported that patients with PWS

have elevated levels of serum inflammatory markers (14, 24),

however, the data are limited and conflicting. We applied a multi-

omics approach in the study (Figure 1A) and to determine typical

proinflammatory cytokines levels in PWS patients, cytokines of 10

PWS patients and 13 controls were measured using a 65- multiplex

cytokine assays. There was no significant difference in gender and

body mass index (BMI) between the two groups (Supplementary

Table 1). Of the 65 indicators, 35 were detectable with 60% of values

in the detectable concentration range for the kit in one of the

groups. Interestingly, 19 of the 35 indicators (54%) in the PWS group

were 1.2-fold higher relative to the control group (Figure 1B;

Supplementary Table 2). Most of the increased indicators in PWS

were proinflammatory cytokines and chemokines, including TNF-

RII, IL-12p70, MIF, MIP-1a and TNF-a (Figure 1B). Due to the

limited number of the study participants, only 5 indicators were

statistically higher in PWS (Figure 1C; Supplementary Table 2).

Previous literature showed that the representative inflammatory

cytokine IL-1b was elevated in PWS, but it was not detected by the

multi-factor kit. We re-detected IL-1b with Elisa and found in line
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with previous reports, higher levels of IL-1b were observed in PWS

patients compared to the controls (Figure 1D). The difference in

serum cytokine levels was still significant when the PWS and control

groups had comparable BMIs (21.59 ± 6.17 vs 21.43 ± 10.93)

indicating that obesity is not a central driver for the difference in

serum. In addition, we found that IL-1b and most of the other

indicators had no correlation with BMI in the PWS patients

(Figure 1E, Supplementary Figure 1, Supplementary Table 3).

Based on preliminary results, we speculated thar the deletion of the

genes within the 15q11-q13 region, rather than obesity, may be

responsible for the increased levels of inflammatory serum markers.
Unbiased clustering analysis of PBMCs and
cell types identification

Increased pro-inflammatory cytokines in blood are important

markers to reflect the state of activation in immune cells. To better

understand the PWS peripheral immune cells, we used the scRNA-

seq to examine transcriptome of immune cells in the PWS and

control groups. Droplet-based scRNA-seq technology was used to

profile PBMCs derived from 6 patients with PWS and 12 healthy

controls. The PWS and control group were well matched in terms of

age, gender, and BMI (Supplementary Table 4). We analyzed a total

of 96,067 (control: 74,457; PWS: 21,610) cells in all participants

after stringent filtering of the scRNA-seq data (Figure 2A), with an

average 6,754 UMIs per cell and 2,037 genes per cell. The total

number of cells, median genes per cell, and median UMIs per cell

were provided in Supplementary Table 5. After unbiased clustering

analysis, data were then visualized by UMAP and the cellular

populations in PBMCs were identified using well-known marker

genes (Figure 2B; Supplementary Table 6). We identified six major

immune cell lineages including CD8+ T cells, CD4+ T cells, gamma

delta T cells (gd T), natural killer cells (NK), B cells (BC), and

monocytes (Mon) (Figure 2C). In downstream analysis, we focused

on the six major cell types. No significant differences were found in

the number of cells in the six major immune cell lineages between

the two groups and only the number of CD4+ T cells was marginally

elevated (Supplementary Figure 2).
PWS peripheral immune cells were in a
hyper-inflammatory state

Consistent with above results, transcription levels of IL-1b,
TNF, and OSM were globally elevated in the PWS group

(Figure 3A), yet the source of the cytokines in peripheral immune

cells remains unclear. We labeled cells with high expressed pro-

inflammatory cytokine genes including IL-1b, TNF and OSM, and

named these cells as inflammatory cells. The UMAP plot confirmed

an expansion of inflammatory cells in PWS (Figure 3B). Globally,

we found inflammatory cells increased by approximately 100% in

all PBMCs using scRNA-seq analysis (Supplementary Table 7).

When examining inter-individual variation in the six major

populations, we noted that monocytes were the predominant

source of inflammatory cells in PWS (Figure 3C).
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An integrated comparative analysis of DEGs in PBMCs from

the PWS and control groups was conducted to identify cell-type-

specific gene signatures associated with PWS (Supplementary

Table 8). A set of 12 genes related to inflammation (e.g., IER5,

JUNB, JUND, NFKBIA, ZFP36, and CXCR4) were found to be

upregulated across all major cell types in PWS (Figure 3D). Next, we

explored the biological implications of upregulated DEGs using the

Gene Ontology (GO) pathway analysis for each major cell type. The

generally upregulated genes across major cell types were enriched in

inflammatory-related pathways, such as the inflammatory response

pathway, NFkB signaling pathway, production of inflammatory

cytokines, and stress-related pathways (Figure 3E; Supplementary

Table 9). In addition, we have also found PWS-disease-specific

inflammatory-related pathways such as aging, cell cycle arrest, and
Frontiers in Immunology 05
mitotic cell cycle arrest (see Supplementary Table 9). The above

result revealed that, in PWS, peripheral blood immune cells may be

influenced by common inflammatory mediators regardless of cell

type. We also observed cell type-specific enriched pathways in PWS

such as regulation of neuron death pathway was enriched in natural

killer cells, response to starvation in B cells, positive regulation of

cell-cell adhesion in monocytes, and toll-like receptor signaling

pathway in CD8+ T cells (Supplementary Table 10).

Differential gene expression analysis revealed that monocytes

exhibited the largest number of gene expression changes among the

major cell types. Furthermore, the PWS group had significantly

higher expression of genes including inflammatory response genes

(e.g., PTGS2, PTGER3 and ICAM1), and chemokine (e.g., CCL2 and

CXCL9) or cytokine genes (e.g., IL-1b, OSM and TNF) compared to
D

A

B

E

C

FIGURE 1

Analyses of serum cytokine levels. (A) Study overview. (B) Heatmap of all cytokines measured in the PWS (n=10) and control groups (n=13). On the x
axis, samples are arranged by the study group and on the y axis, cytokines are displayed according to hierarchical clustering. Cytokines are
expressed as log (pg/ml), with black to red colors representing lower to higher expression, respectively. (C) Dot plots of cytokines in the PWS group
(n=10) compared with the control group (n=13). p-value is calculated by the Mann-Whitney U test for comparisons. ***p < 0.05. (D) Dot plots of
serum IL-1b in the PWS group (n=20) compared with the control group (n=17). p-value is calculated by the Mann-Whitney U test for comparisons.
***p < 0.05. (E) Spearman correlation between IL-1b serum levels and BMI in the two groups.
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the control group. Most of these genes had the highest expression

value in monocytes (Figure 3F). Moreover, in the PWS group, a

positive correlation was observed between the IL-1b transcription

levels in monocytes and serum IL-1b levels (Supplementary

Figure 3A). A similar result was also observed for the TNF

transcription levels in monocytes and serum TNF-a levels

(Supplementary Figure 3B). These results suggested that

monocytes were closely related to the development of

inflammation in PWS and that the elevation of serum

inflammatory cytokines previously reported in the literature may

be largely due to activation of the monocytes.

Traditionally, PWS has been considered as an obesity-related

disease, we assessed whether observed transcriptional differences

could be attributed to obesity. In contrast to conventional views, we

found distinct transcriptional signatures between obese PWS and

obese controls in major cell types. To visualize overall

transcriptome changes, we performed hierarchical clustering.

Surprisingly, all major cell types were clustered together

according to the study groups instead of cell types (Figure 3G). In

addition, we performed weighted gene co-expression network

analysis to identify modules associated with PWS and BMI

(Figure 3H). We noted that modules correlated with PWS was

not identical to BMI-associated modules which further supporting
Frontiers in Immunology 06
our hypothesis the observed changes in peripheral immune cells

were not mainly due to obesity.
CD16+ monocytes and their role in
promoting PWS inflammation in global
single-cell profiling

The findings presented heretofore indicate that, among the six

major cell types, the monocytes were most closely related to the

development of inflammation in PWS. In order to further uncover

PWS-specific transcriptional signatures in monocytes, we

performed sub-clustering analysis of monocytes using Seurat and

identified ten clusters according to specific markers (Figures 4A, B;

Supplementary Figure 4-5). To describe how cell- type composition

changed in PWS of monocytes, we separately compared the

percentage of each cluster between the PWS and control groups.

CD16+ monocytes exhibited the greatest changes and increased by

approximately 100% based on the scRNA-seq analysis (Figures 4C,

D). CD16+ monocytes, characterized by high expression of CD16

(FCGR3A) and low levels of CD14, are most closely resembled the

well-defined nonclassical monocytes (Supplementary Figure 4). To

validate the expansion of CD16+ monocytes, we performed CyTOF
A B

C

FIGURE 2

Unbiased clustering analysis of PBMCs and cell types identification. (A) Bar plot showing the log10 transformed cell number for each participant.
(B) UMAP plot of all cells derived from scRNA-seq data. (C) Heatmaps showing the expression level of cell type-specific genes for each cluster.
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analysis of 6 PWS patients and 12 controls using PBMCs. We

identified major cell types in PBMC and three types of monocytes

including CD14+ monocytes, intermediate monocytes (IM) and

CD16+monocytes according to cell markers (Supplementary
Frontiers in Immunology 07
Figure 6). Remarkably, CD16+ monocytes increased by

approximately 80% (Figures 4E, F). The increase in CD16+

monocytes in PWS may be due to the conversion of other types

of monocytes to CD16+ monocytes. Previous work has
D

A B

E F

G H

C

FIGURE 3

Changes in transcriptional landscape of PBMCs in PWS. (A) Differential expression levels of inflammatory-related genes between controls and PWS
patients in all cells (Mann-Whitney U test was applied. ***p < 0.05). (B) UMAP plots showing inflammatory cells in controls and PWS patients.
(C) Percentage of inflammatory cells in major cell types of the two groups(Mann-Whitney U test was applied. *p < 0.05, **p < 0.01, ***p < 0.001)
(D) Comprehensive comparative analysis of upregulated DEGs in major cell types between the PWS and control groups. (E) Representative GO terms
for upregulated genes in PWS patients compared to controls in each major cell type. (F) A heatmap showing the scaled expression of inflammatory-
related genes in major cell types. (G) Hierarchical clustering was based on by Pearson correlation coefficient (PCC). The intensity of the color
represents the PCC values. Color bars above the heatmaps indicate the cell type and the study group. (H) Heatmap of the correlation between
module eigenvalues and clinical traits. Color of the heatmap indicates correlation coefficient. Numerical values in the brackets indicate correlation
coefficient and the p-value of the correlation coefficient.
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demonstrated that the transcription factor NR4A1 which regulated

by KLF2 or CEBPB is the master regulator of the CD16+ monocytes

(25–27). Similarly, we also found that the number of CD16+

monocytes were positively correlated with Nr4a1 and CEBPB

(Figure 4G). In PWS patients the expression of the genes NR4A1

and CEBPB were elevated while KLF2 was not affected, which could

partially account for the increase of CD16+ monocytes in

PWS (Figure 4H).
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We wondered whether CD16+ monocytes not only manifested

by increased cellular number but also altered cellular states to

elevate levels of inflammation in PWS. Indeed, we identified lots

of disease-specific genes expressed genes in CD16+ monocytes

(Figure 5A). A large number of upregulated genes with

inflammation-related functions were observed in the CD16+

monocytes in PWS, including inflammatory activation-associated

genes (e.g., IRF1, HES1, NFKBIA, ZFP36 and ATF3), and
D

A

B

E F

G H

C

FIGURE 4

CD16+ monocytes increased in PWS patients. (A) UMAP visualization of the transcriptional heterogeneity of circulating monocytes. The monocytes
are further divided into ten clusters, and their names are annotated on the right. Different colors are used to distinguish each cluster. (B) Violin plot
showing the signature expression genes of each cell cluster. (C) Proportion of cell types in each group. The colors indicate cell types information.
(D) Percentage of CD16+ monocytes (identified by scRNA-seq) in the monocytes of the control and PWS group. p-values were defined by the
Mann-Whitney U test. ***p<0.05. In the boxplot, each dot represents a sample. Boxes range from the 25th to the 75th percentiles. The upper and
lower whiskers extend from the box to the largest and smallest values respectively. (E) tSNE representative map of PBMCs clusters derived from PWS
patients (n=6) and controls(n=12) by CyTOF and highlighting three monocytes subclusters (dark yellow). (F) Percentage of three monocytes
subclusters (identified by CyTOF) in PBMCs of the control group and PWS. p-values were defined by the Mann-Whitney U test. ***p<0.05, n.s., no
significance. (G) Spearman correlations between the percent of CD16+ monocytes (identified by scRNA-seq) and NR41A and CEBPB gene expression
levels. (H) Expression of NR4A1, CEBPB and KLFF2 in PWS (n=6) and controls (n=12) of monocytes. p-values were defined by the Mann-Whitney U
test. ***p<0.05.
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inflammation-related chemokine genes (e.g., CXCR4, CCL3, and

CCL3L1). We also found that genes related to aging (e.g., BHLHE40,

CDKN1A and BCL2A1), and stress response (e.g., GOS2 and SOD2)

were upregulated in PWS (Supplementary Table 11). An extended
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GO analysis of these genes revealed enrichment in pathways mainly

involved in the regulation of the inflammatory response and

cytokine production (Figure 5B; Supplementary Table 12). To

further understand the biological functions of these genes, we
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FIGURE 5

Transcriptome of CD16+monocytes in PWS patients. (A) Heatmap of differentially expressed genes between PWS patients and healthy controls in the
CD16+ monocytes. (B) Bar plots of GO terms enriched in CD16+ monocyte from the PWS patients. (C) Bar plots showing the average –log10
(p-value) values in enrichment analysis using the perturbed genes of different cell lines listed in L1000 LINCS for up-regulated genes in PWS. Error
bars indicate standard deviation. (D) TNF-a and IL-1b proteomic levels in three monocyte clusters were measured by CyTOF in PWS (n=6) controls
(n=12). p-values were defined by the Mann-Whitney U test. ***p<0.05, n.s., no significance. (E) Circle plot of differential interaction strength in PWS
compared to the control group. In the circle plot, red (or blue) indicates increased (or decreased) signaling in PWS compared to the control group.
Line thickness represents the interaction strength on a continuous scale (thicker = stronger interaction). (F) Scatter plot of incoming and outgoing
interaction strength of cell types in the control and PWS groups. (G) The bubble plot of the communication probability of some significant ligand-
receptor pairs from CD16+monocytes to other cell types in PWS. The bubble color gradient and size indicate the communication probability and p-
values (permutation test), respectively. C, control; P, PWS. (H, I) Circle plots of TNF and RESISTIN signaling network in the PWS and control groups.
The edge width represents the communication probability. Thicker edge line indicates a stronger signal.
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examined the upregulated DEGs by gene set enrichment analysis

using cytokine-responsive gene sets from cytokine-treated cells

(LINCS L1000). PWS-upregulated DEGs were enriched by TNF/

IL-1b- responsive genes (Figure 5C) and the result was confirmed

by CyTOF. We found that the protein expression of TNF-a in

CD16+ monocytes was significantly higher in the PWS group than

the control group. IL-1b was significantly increased in PWS patients

compared to the controls in intermediate monocytes. However, we

did not detect increased IL-1b or TNF-a in CD14+

monocyte (Figure 5D).

Interestingly, in CD16+ monocytes pathway analysis showed

significant enrichment in the communication between immune

cells in PWS (Figure 5B). Given that CD16+ monocytes might

regulate the inflammatory process of other cells though cell–cell

interactions, we applied CellChat to infer and analyze the

intercellular communication networks to identify the alterations

of interactions between CD16+ monocytes among other cell types.

By comparing the outgoing and incoming signals of cell types in

the PWS and control group, we noticed that CD16+ monocytes in

the PWS group showed greater changes in transmitted and

received signaling compared to those in the control group

(Figures 5E, F) which implied that CD16+monocytes may have

an increased tendency for interaction with other immune cells in

blood vessels. It was notable that the expression of multiple

inflammation -related cytokines/receptors were significantly

increased in PWS patients such as TNF, RETN, and its

receptors, through that CD16+ monocytes may interact with the

other monocytes (Figure 5G). Similarly, increased levels of

LGALS9 and its receptor were observed in CD16+monocytes of

PWS, which suggesting the potential functional interaction of the

CD16+monocytes with CD8+ T cells, CD4+ T cells. Chemokines

such as MIF, and CCL5 and their respective receptors were also

f o und t o b e e n r i c h e d i n PWS CD16 +mono c y t e s .

Correspondingly, we also found that CD16+ monocytes of the

PWS group showed more output related to TNF-a signaling and

VISFATIN signaling (Figures 5H, I). Overall, these results help
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illustrate the possible molecular basis for communication

between peripheral immune cells of PWS patient leading to a

better understanding of the mechanisms about elevated levels of

inflammation in PWS.
The 15q11–q13 region plays a critical role
in regulating the peripheral immune cells
inflammation

In monocytes , there was no corre la t ion between

proinflammatory cytokines and BMI, so we hypothesized that the

15q11–q13 region might be responsible for elevated levels of

inflammation. Due to the limited number of healthy controls in

this study, we created a new healthy control group which comprised

by two groups, one from the control group in this study consisting

of 12 healthy individuals and another from our unpublished study

consisting of 11 healthy individuals. Additional demographic data

are provided in Supplementary Table 13. To assess the impact of the

15q11–q13 region on circulating immune cells, we selected the

genes of the 15q11–q13 region and calculated 15q11–q13 gene

scores in each cell using AUCell to evaluate gene expression in the

15q11–q13 region in the healthy group. We also calculated the score

of the PWS- related transcriptome in the healthy group using the up

DEGs in PWS called PWS signature scores (Supplementary

Table 14). Surprisingly, there was a negative correlation between

the PWS signature scores and 15q11–q13 gene scores in the healthy

group (Figure 6A). This result implies that the healthy individuals

with lower 15q11–q13 scores tend to display PWS-related

transcriptional changes. Furthermore, in the healthy group,

negative associations were observed for IL-1b, TNF, OSM, and

15q11–q13 gene scores (Figure 6B) indicating that healthy

individuals with low expression of 15q11–q13 gene prone to

express more pro-inflammatory cytokines. There was also a

negative correlation 15q11–q13 gene scores and percentage of

CD16+ monocytes in the healthy group (Figure 6C).
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FIGURE 6

The 15q11–q13 region plays a critical role in regulating the peripheral immune cells inflammation. (A) Pearson correlation between PWS signature scores
and 15q11–q13 gene scores in the healthy group. (B) Spearman correlation between 15q11–q13 gene scores and proinflammatory genes expression level
in the healthy group. (C) Spearman correlation between 15q11–q13 gene scores and the percent of CD16+monocytes in the healthy group.
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In order to quantified the individual levels of inflammation, we

used inflammation-related gene set which was obtained from

Molecular Signatures Database Hallmark to calculate individual

inflammation scores. Additionally, 15q11–q13 gene scores were

associated with inflammation scores in the healthy individuals after

adjusting for the relevant confounders such as BMI and age

(Table 1). The regression analysis revealed that 32.6% of the

variance in inflammation scores was explained by15q11–q13 gene

scores. The results, showed that the 15q11–q13 region affected the

overall level of inflammation in healthy person. Next, we made a

further analysis to determine if the relationship between 15q11–q13

region gene and inflammation was mediated by CD16+ monocytes

by the R process mediation test. Mediation analysis revealed that

both the total and indirect effects (ACME p <0.05) of the 15q11–q13

region scores on the inflammation scores were significant; however,

the direct effect of the 15q11–q13 region on the inflammation scores

was insignificant (ADE p > 0.05) (Table 2). The findings indicated

that the lower 15q11–q13 gene expression observed in healthy

individuals with a tendency toward higher inflammation score

may be explained at least in part by high CD16+ monocytes

levels. Collectively, the findings revealed a previously under-

appreciated link between 15q11–q13 region peripheral and

immune cells inflammation which might provide a theoretical

basis for the gene therapy or immunotherapy in PWS patients.
Discussion

In the present study, we first provide insights into the PBMCs of

PWS patients at single-cell resolution. We identified the major cell

types in PBMCs and elucidated their contributions to

inflammation. We found that monocytes, especially the CD16+

monocytes, had a key role in promoting proinflammatory activities

and network in PWS. Moreover, we showed that loss of gene

expression from the chromosome 15q11–q13 locus was closely

related to inflammation in healthy people.

Multiple studies have shown that PWS confers a relative risk for

inflammatory-related diseases including Type 2 diabetes mellitus

(T2DM), cardiovascular diseases and mental diseases compared

with non-syndromic obesity. It has been reported that T2DM is

common in PWS (8) and more than 50% of the PWS patients have

developed diabetes before the age of 18 (28, 29). Furthermore, subtle

atherosclerosis starts in young patients with PWS has also been

demonstrated (10). A number of mental disorders have been widely
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reported in patients with PWS (30). Importantly, although rare,

there were several studies reported that serum levels of circulating

inflammatory markers were increased in PWS. Similar to previous

reports, pro-inflammatory cytokines such as IL-1b, IL-16, IL-18 and
TNF-a which were predominantly derived from activated immune

cell were increased in PWS patients according to the study. Notably,

the transcriptional levels of IL-1b and the serum concentrations of

IL-1b were both significantly increased in PWS. There have been

many reports that IL-1b plays a central role in mediating DM,

cardiovascular diseases, and progression of mental disorders. In

atherosclerotic coronary arteries, IL-1b levels were correlated with

disease severity and knocking out IL-1b in atherosclerosis-prone

ApoE−/− mice led to attenuation of disease development (31). IL-

1b is believed to impair islet function and viability by activation of

the inflammasomes in islet inflammatory cells (32). A separate

study implied that subclinical inflammation, observed as elevated

IL-1b and IL-13 levels, was correlated to several psychopathological

symptoms in PWS (14). Thus, we speculated that PWS

comorbidities that may be mediated, in part, by immune

activation to induce the production of various proinflammatory

cytokines. To yield convincing results, clinical trials about the

relationship between PWS pro-inflammatory phenotype and

clinical presentation need to be done in the future.

We found that there was no significant correlation between

most of cytokines and BMIs in PWS patients which suggested that

the pro-inflammatory state in PWS patients cannot be attributed

totally to overweight or obesity. Nevertheless, in healthy population,

negative associations were observed between IL-1b, TNF, OSM, and

15q11–q13 gene scores. In the conventional view, PWS disease is

one of the obesity-related diseases. However, according to our

results, obesity is unlikely to be the only factors that influence

PWS inflammatory status, a more plausible scenario is that PWS

hyper-inflammatory state results from the interplay among deletion

of genes, obesity and other factors. However, it remains to be

determined which of genes in 15q11–q13 region that involved in

progression and development of inflammation in PWS.

Increased circulating inflammatory cytokines potentially

reflected the alteration of the inflammation profile of peripheral

immune cells in PWS. Therefore, we applied scRNA-seq and

CyTOF to explore the changes in peripheral immune cells. we

found that CD16+ monocytes were significantly increased in PWS.

Traditionally, according to the CD14 and CD16 expression

patterns, peripheral blood monocytes are divided into three types:

classical, intermediate, and nonclassical monocytes. We showed
TABLE 1 Multiple linear regression analysis to assess influence of variables on inflammation scores.

inflammation score

Model B P 95% CI R2 P

PWS score -0.460 0.017 -2.179 -0.239

0.326 0.015BMI (kg/m2) -0.337 0.110 -0.001 0.000

Age(years) -0.110 0.590 -0.003 0.002
frontier
ß, linear regression coefficient; CI, Confidence interval.
sin.org

https://doi.org/10.3389/fimmu.2023.1153730
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1153730
that CD14+ Mon1-4 appeared most analogous to classical

monocytes. Based on numerous studies using scRNA-seq,

monocytes that express high levels of CD16 and low levels of

CD14 are commonly grouped into a single cluster, which is

consistent with our findings (Supplementary Figure 4). This

cluster is typically referred to as CD16+ monocytes (33–35).

Researchers assumed that CD16+ monocytes most closely

resembled the well-defined nonclassical monocytes (35–38). Mon

5 did not form a distinct population but was mainly distributed at

the junction between CD14+ monocytes and CD16+ monocytes

were more like intermediate monocytes. Few monocytes shared

discriminative genes with megakaryocytes, such as PPBP and PF4

and several monocytes expressed the gene signature of NK cells

(e.g., high expression levels of FGFBP2, GNLY, GZMA, and IL32),

were also identified (Supplementary Figure 5). This illustrates the

advantage of the scRNA-seq which could characterize human

monocyte clusters in unprecedented detail.

Nr4a1 is necessary for nonclassical monocytes generation and

development as Nr4a1-/- mice lack nonclassical monocytes.

Graham D et al. identified Klf2 can regulate nonclassical

monocyte conversion via cell-specific super-enhancer domain

E2.The E2 is a single sub-domain (E2) 4 kb upstream of the

Nr4a1 transcription start site and was essential for nonclassical

monocytes development (26). In Lyz2-cre Klf2flox/flox mice Ly6Chi

monocytes were unaffected however Ly6Clow nonclassical

monocytes were partially reduced. Expression of the monocyte

survival factor Nr4a1 is also regulated by C/EBPb which could

regulate monocyte differentiation into nonclassical monocyte. In

PWS patients the expression of the genes NR4A1 and CEBPB were

elevated while KLF2 was not affected which could partially account

for the increase of CD16+ monocytes in PWS.

CD16+ monocytes most closely resembled the well-defined

nonclassical monocytes, are usually referred to as anti-

inflammatory cells. Nevertheless, it was recently shown that

CD16+ monocytes are also capable of exerting proinflammatory

responses depending on the disease context. Ratnadeep Mukherjee

demonstrated that CD16+ monocytes were the primary producers

of TNF-a and IL-1b upon ex-vivo activation of whole blood with

lipopolysaccharides (39). The observed phenomena are explained

by high basal levels of phosphorylated NF-kB in CD16+ monocytes

which is a transcription factor for pro-inflammatory cytokines

(40). Moreover, CD16+ monocytes enter the peripheral tissues and

differentiate into inflammatory macrophages (M1), and are

involved in regulating inflammation in peripheral tissue (41).

Clinical data showed that CD16+ monocytes were increased in
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various inflammatory conditions, such as coronary artery disease

(42), liver fibrosis (43), NAFLD (44), aging (40), and systemic

sclerosis (45). CD16+ monocytes are thought to contribute to the

chronic inflammation associated with these diseases, and they may

also be involved in the destruction of healthy tissues. Thus, we

hypothesized that CD16+ monocytes may have proinflammatory

and anti-inflammatory functions, with a greater inclination

towards anti-inflammatory functions under normal conditions.

However, in certain disease contexts, the balance of pro-

inflammatory and anti-inflammatory functions in CD16+

monocytes may become disrupted, leading to an increased

expression of pro-inflammatory properties. We also found that

PWS CD16+ monocytes upregulated DEGs were enriched by TNF/

IL-1b- responsive genes. We further clarified their role in

promoting PWS inflammation at global single-cell profiling. In

addition, we made a further analysis to determine the relationship

between 15q11–q13 region gene and inflammation was mediated

by CD16+ monocytes by the R process mediation test (Table 2).

Given lots of changes displayed by CD16+monocytes in PWS, and

the previously reported etiological link between CD16+monocytes

activity and inflammation-related diseases, we put forward a

plausible view that the changes in CD16+ monocytes state

participated in hyper-inflammatory phenotype and comorbidities

of PWS.

Despite some important findings made in this study, article had

several limitations. First, as a result of the limited number of PWS

patients enrolled in our study, the differences we identified between

PWS patients and controls need to be future validated by larger

clinical trials. Second, since it was a single time point study, drawing

causal conclusions was not possible. The study did not provide

evidence as to whether CD16+ monocytes are associated with the

severity of inflammatory diseases in PWS.

In conclusion, based on an unbiased scRNA-seq approach, we

established an atlas of PWS circulating immune cells and offered

insights into the function of CD16+ monocytes which partially

contributed to a hyper-inflammatory state in PWS. Further study is

needed to e luc ida te the mechanism under ly ing the

CD16+monocytes and its broader implications, and thus help

identify novel therapeutic target for PWS patients.
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