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Highly active antiretroviral therapy (ART) can effectively inhibit virus replication

and restore immune function in most people l iving with human

immunodeficiency virus (HIV). However, an important proportion of patients

fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called

incomplete immune reconstitution or immunological nonresponse (INR).

Patients with INR have an increased risk of clinical progression and higher

rates of mortality. Despite widespread attention to INR, the precise

mechanisms remain unclear. In this review, we will discuss the alterations in

the quantity and quality of CD4+ T as well as multiple immunocytes, changes in

soluble molecules and cytokines, and their relationship with INR, aimed to

provide cellular and molecular insights into incomplete immune reconstitution.
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1 Introduction

Highly active antiretroviral therapy (ART) significantly reduces human

immunodeficiency virus (HIV) or acquired immune deficiency syndrome (AIDS) related

morbidity and mortality (1). After ART initiation, the plasma viral load drops to an

undetectable level and the immune function gradually recovers to an approximately

normal level in most individuals (2). However, an important proportion of HIV/AIDS

patients, about 8-42%, persistently maintain low CD4+ T cell counts despite continuous

virological suppression after at least two years of ART (3). These patients are referred to as

immunological non-responders (INRs) (4), and this state is called incomplete immune

reconstitution, or immunological nonresponse (INR) (4, 5).

Currently, there is no consensus on the definition of INR. According to previous

reports, CD4+ T cell counts and ART time were the best features to describe INR, and the
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most frequent criterion was CD4+ T cell count <350 cells/µL after

≥24 months of virological suppression (5, 6). Some researchers also

defined INR with CD4+ T cell count less than 200, 250, 400, or 500

cells/µL (6). Persistent low CD4+ T cell levels in these patients lead

to an increased incidence of AIDS and non-AIDS events, such as

metabolic syndrome, cardiovascular disease, liver disease,

neurocognitive impairment, and malignant tumors, which in turn

increase the risk of mortality (7, 8).

The occurrence of INR in HIV/AIDS patients may be affected

by multiple factors, mainly including decreased bone marrow

hematopoiesis, insufficient thymus output, residual virus

replicat ion, co-infection during ART, intestinal flora

translocation, abnormal immune activation, type of antiretroviral

regimen, baseline CD4+ T cell levels, age, sex, and genetic

characteristics (4, 9). However, the precise mechanisms

underlying INR remain an extremely challenging issue. Several

characteristics of immunocytes may provide insights into these

mechanisms. Therefore, we conducted this review to outline the

cellular and molecular alterations associated with INR from an

immunological perspective.
2 Quantity and quality of T cells

2.1 Overview of T cells

T cells are the major components of the adaptive immune

system. They are released from the thymus as mature naive T (TN,
Frontiers in Immunology 02
CD45RA+CCR7+CD27+CD28+) cells with a given epitope

specificity after positive and negative selection (Figure 1) (10, 11).

During pathogen infection or vaccination, TN cells get activated and

differentiate into effector cells (TE), accompanied by the acquisition

of effector function, altered tissue homing, and robust proliferation

function to expand in number (12–14). Following antigen

clearance, TE cells undergo a contraction phase and only a small

portion develop into long-lived memory T cells (12). The gene

expression, phenotypic and functional properties of memory T cell

subsets suggest that these cells differentiation follows a linear

progression along a continuum of major clusters, including stem-

like memory (TSCM, CD45RA+CD45RO–CCR7+CD27+CD28+)

cells, central memory (TCM, CD45RO
+CCR7+CD27+CD28+) cells,

transitional memory (TTM, CD45RO
+CCR7–CD27+CD28+) cells,

effector memory (TEM, CD45RO
+CCR7–, CD27–CD28+ for CD4+ T

and CD27+CD28– for CD8+ T) cells, and terminal effector (TTE,

CD45RA+CCR7–CD27–CD28–) cells (10). Among them, the cells

with lower differentiation degrees give rise to more differentiated

progeny in response to antigen stimulation or potential homeostatic

signaling (10, 15, 16). For instance, TSCM cells are able to self-renew

and generate all memory subsets (15, 16), TCM cells have the

potential to home to secondary lymphoid tissue and are capable

of generating TEM cells in vitro (17), TTE cells are terminally

differentiated cells with low proliferative and functional capacity

(18, 19).

The life journey of a T cell includes quiescence, ignorance,

anergy, exhaustion, senescence, and death, which is regulated by

tolerance checkpoints to protect the body from hyperinflammation
FIGURE 1

Production and differentiation of T cells. Naive CD4+ and CD8+ T (TN), naive regulatory T (Tregs) cells, and double-negative (DN) T cells are released
from the thymus. Then CD4+ and CD8+ T cells get activated and differentiate into effector (TE) cells after encountering antigens. Only a small part of
TE develops into memory T cells, including stem-like memory (TSCM), central memory (TCM), transitional memory (TTM), effector memory (TEM), and
terminal effector (TTE) cells. In HIV immunological non-responders, the number of TN cells produced by the thymus is reduced, while the proportion
of activated T cells is increased. DP, double-positive; TCRab, T cell receptor alpha and beta; TCRgd, T cell receptor gamma and delta; Foxp3, factor
forkhead box P3.
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and autoimmunity (20). At the TN cells stage, quiescence and

ignorance act as checkpoints to actively maintain tolerance (21,

22). At the effector stage, exhaustion and senescence can limit

excessive inflammation and prevent immunopathology (20).

However, during chronic infection or cancer, persistent antigenic

stimulation or inflammation causes T cells to enter a progressive

exhaustion state (23). Exhausted T cells are characterized by

increasing loss in effector function coinciding with increased

expression of immune checkpoint inhibitors, decreased secretion

of cytokines, altered transcriptional as well as epigenetic programs,

and poor memory recall as well as homeostatic self-renew (20).
2.2 CD4+ T cells

2.2.1 Decreased production
In HIV-INRs, the number of CD4+ TN cells and mature CD4+ T

cell subsets were repeatedly observed to be significantly reduced

(24–27). In general, the number of T cells is regulated by a dynamic

balance between the production, destruction, and trafficking of

lymphocytes between peripheral circulation and lymphoid organs

(28). The thymus is crucial for the generation of T cells, and thymic

function is usually assessed by T cell receptor excision circles

(TRECs), recent thymus emigrants (RTEs), or TN cell counts.

Previous studies have shown that the RTEs CD4+ T cells and the

signal joint (sj)/b TREC ratios can predict disease progression in

HIV-infected patients (29, 30). Moreover, the increase of TN cells,

the proportion of RTEs in CD4+ T cells, the number of sj-TRECs,

and the sj/b TREC ratios were significantly lower in INRs than in

immunological responders (IRs) (31, 32). Our recent study also

found that the CD4+ TN cells, RTEs CD4+ T cells, and TRECs were

remarkably lower in INRs compared to complete responders and

healthy subjects (33). These findings suggest that the thymus output

of TN cells is significantly reduced in INRs, which play an important

role in incomplete immune reconstitution.

In addition, HIV-infected individuals often have impaired

mitochondrial function, resulting in diminished cellular metabolic

activity and asymmetric mitochondrial distribution during cell

division in which cells that received old mitochondria would be

short-lived compared to cells that had newly synthesized

mitochondria (34, 35). It is likely that INRs are incapable of

generating memory long lived CD4+ T cells due to the

asymmetric distribution of mitochondria in dividing cells (34).

Moreover, mitochondrial dysfunction may also affect the

regenerative potential of memory CD4+ T cells (36). And the

low-productive proliferation of memory CD4+ T cells is linked to

impaired immune restoration (36).

2.2.2 Increased destruction
In terms of T cells destruction, previous researchers found that a

low nadir CD4+ T cell count was associated with high CD4+ T cell

apoptosis (37), and the expression of apoptotic markers such as

caspase-3, annexin-V, and proapoptotic proteins in INRs was

significantly higher than that in IRs (38), indicating that

apoptosis plays a major role in CD4+ T cell depletion (38, 39). In
Frontiers in Immunology 03
recent years, INRs and IRs were reported to have no statistical

differences for RTEs CD4+ T cells in early and late apoptosis (40).

However, INRs had a higher dead RTEs CD4+ T cells percentage

driven by pyroptosis than IRs, and RTEs CD4+ T cells death by

pyroptosis was significantly higher than by apoptosis in INRs (40).

Pyroptosis is regulated by inflammasome-mediated caspase-1

activation and the release of interleukin-1b (IL-1b) and IL-18.

The nucleotide-binding oligomerization domain (NOD)-like

receptor (NLR) family (41), pyrin domain containing 3 (NLRP3)

inflammasome is one of the prevalently studied among

inflammasomes (41). According to a recent study, NLRP3 and IL-

18 genes were significantly upregulated in INRs compared to IRs

(42). Another study found that high-level expression of Caspase-1

and IL-18 were associated factors that affect the reconstruction of

immune function (43). However, these two studies only showed the

association of NLRP3, Caspase-1, and IL-18 with incomplete

immune reconstitution. Zhang et al. identified that the NLRP3

inflammasome drives caspase-1 activation and pyroptosis in CD4+

T cells through a mechanism dependent on ROS production,

suggesting that NLRP3-dependent pyroptosis plays an essential

role in CD4+ T cell loss in chronically HIV-infected patients (44).

Moreover, our recent study found that CD4+ T are prone to

ferroptosis, which may be a novel way of increasing CD4+ T cell

destruction (33). Collectively, these studies indicate the increase of

CD4+ T cell destruction mediated by apoptosis, pyroptosis and

ferroptosis may be an important cause of incomplete

immune reconstitution.

2.2.3 Increased CD4+ T cell activation
Although HIV-INRs are characterized by significant decreases in

the total number of CD4+ T cell counts (6, 45), the frequency of

cycling CD4+ T cells is increased, and CD4+ T cells are more activated

(Table 1) (25, 27, 56, 57). Using CD71 as a marker for cycling T cells,

the researchers found that the significantly increased cycling cells in

INRs included both CD4+CD45RA+ and CD4+CD45RA– subsets

compared to IRs and healthy subjects (27), whereas IRs showed an

increased frequency of CD4+CD71+CD45RA– subset with a

significant decrease in CD4+CD71+CD45RA+ subset compared to

healthy subjects (27). Lederman et al. found that proportions of

cycling CD4+ TN cells were comparable among INRs, IRs, and

healthy controls, proportions of cycling CD4+ TCM and TEM cells

were significantly greater in INRs than in IRs and in healthy controls

(25). In addition, cycling CD4+ T cells from healthy subjects and IRs

can complete cell division in vitro, while cycling CD4+ T cells from

INRs have mitochondrial dysfunction and are unable to complete cell

division (58), suggesting that the function of cycling CD4+ T cells is

impaired in INRs. Using CD38 and human leukocyte antigen (HLA)-

DR to reflect T cell activation, Massanella et al. found that INRs

exhibited a significantly increased frequency of HLA-DR expressing

cells compared to IRs (46). Notably, INRs showed a significantly

lower percentage of CD38+CD45RA+CD4+ T cells and a significantly

higher percentage of CD38+CD45RA–CD4+ T cells (46), indicating a

high level of activation in CD45RA–CD4+ T cells. In greater detail, the

frequency of each subset in the CD45RA–CD4+ T cell compartment

showed a significant increase in TTM, TEM, and TTE cells in INRs (47),
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while TCM cells showed similar levels in INRs, IRs, and healthy

subjects (47). Except for the alterations in memory CD4+ T cells

differentiation for INRs, their function may also be impaired. It’s

reported that the metabolic activity of activated memory CD4+ T cells

derived from INRs was reduced, which may lead to low regenerative

potential (36). And the transition from TCM to TTM cells was found to

be not completely normalized, and TCM cell death increased in vitro

in INRs (47).
2.2.4 Mechanisms of immune activation
The increased CD4+ T cell cycling and activation observed in

INRs reflects extensive immune activation. It is firmly established

that despite the effective suppression of HIV replication by ART,

people living with HIV still present persistent chronic immune

activation and systemic inflammation (59–61). This condition is

driven by various factors, including persistent HIV viral reservoir

(28), low residual viremia (62), co-infections (63, 64), microbial

translocation and dysbiosis (65–67). As expected, the HIV reservoir

was higher in INRs than IRs (68), and high levels of cell-associated

RNA and proviral DNA were associated with lower CD4 counts (68,

69). Similar results were found by Scherpenisse et al. that the cell-

associated HIV un-spliced RNA to multiply-spliced RNA ratio at 12

weeks of ART was negatively predicted CD4+ T cell counts at 48 and

96 weeks (70). However, the association between residual viremia

and immune reconstitution is controversial. Some researchers

found that very low-level viremia was not associated with INR

(49, 71), and attempts to target residual viral replication in INRs

have not yielded a decisive benefit in restoring CD4+ T cell counts

(72, 73). Another study found that viral blips had no significant

impact on immune reconstitution, whereas persistent detectable

viremia and virological rebound to ≥5000 copies/mL were

associated with arrested immune reconstitution (74). These

findings suggest that the impact of low-level viremia on CD4+ T

cell restoration may be related to the residual viral load levels. For

intestinal microecology, plasma levels of bacterial ribosomal 16S

RNA, an index of microbial translocation from the gastrointestinal

tract, are correlated with the magnitude of immune restoration in

HIV-infected patients on ART (75). Moreover, HIV infection alters
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the composition of intestinal flora and reduces its diversity, which is

not normalized after the introduction of ART (76), and is closely

associated with immune dysfunction (77). For example, a higher

abundance of Fusobacterium (78), a reduced abundance of

Ruminococcaceae (79), the relative abundances of unclassified

Subdoligranulum sp. and Coprococcus comes (80), were

demonstrated to be associated with poorer CD4+ T cell recovery

following ART. To sum up, these studies indicate that hard-to-

eliminate viral reservoirs, persistent detectable viremia, microbial

translocation, intestinal flora imbalance, and co-infections

contribute to excessive activation of T cells, which impair

immune reconstitution. It is worth noting that the above factors

are not the direct cause of incomplete immune reconstitution, and

there may be individual differences in the primary causes of T

cell overactivation.

2.2.5 Increased CD4+ T cell exhaustion
Persistent chronic immune activation and systemic

inflammation contribute to the development of T cell exhaustion

(81). In HIV infection, the expression of programmed death-1 (PD-

1) on virus-specific T cells is a major marker of exhaustion (82).

Other inhibitory receptors include T cell immunoglobulin and

ITIM domain (TIGIT), cytotoxic T lymphocyte antigen-4 (CTLA-

4), lymphocyte activation gene protein (LAG3), T cell

immunoglobulin domain and mucin domain-containing protein 3

(TIM3), 2B4 (CD244) and CD160 (81). Among them, PD-1, TIGIT,

LAG3, and TIM3 are common regulators of exhaustion on HIV-

specific CD4+ and CD8+ T cells (83–86), CTLA-4 is more selectively

upregulated on exhausted CD4+ T cells (87), and 2B4 as well as

CD160 are characteristically upregulated on exhausted CD8+ T cells

while low expression on exhausted CD4+ T cells (88). For CD4+ T

cell exhaustion-related markers, researchers found that they were

tightly correlated with the size of the T cell viral reservoir (89, 90),

the decrease of CD4+ T cell counts, and disease progression (82, 87,

91). For example, in HIV elite controllers who can spontaneously

control viral replication in the absence of ART and maintain a high

CD4+ T cell count, the co-expression pattern of PD-1, TIGIT, and

CTLA-4 was similar to healthy controls, and significantly lower

than those of subjects receiving ART (85). Furthermore, the
TABLE 1 Alterations in the quantity of immunocytes in HIV/AIDS patients with incomplete immune reconstitution.

Immunocyte Total TN TE TCM TEM TTE Reference

CD4+ T cells ↓ ↓ ↓ ↓ ↓ ↓ (24–27)

Cycling CD4+ T cells ↑ NS ↑ ↑ ↑ NM (25, 27)

Activated CD4+ T cells ↑ ↓ NM NS ↑ ↑ (46, 47)

CD8+ T cells ↑ ↓ NM ↑ ↑ ↑ (25, 26, 48)

Activated CD8+ T cells ↑ NM NM NM NM NM (25, 40)

Frequency of Tregs ↑ ↑ ↑ NA NA NA (49–53)

Absolute number of Tregs ↓ NM NM NA NA NA (51, 52)

DN T cells ↓ NA NA NA NA NA (54, 55)
f

NS, not significant; NM, not mentioned; NA, not applicable.
↓, decreased; ↑, increased.
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percentage of co-expression of inhibitory molecules on memory

CD4+ T cells significantly negatively correlates to CD4 count and

CD4/CD8 ratio (85). Cockerham LR et al. also found that PD-1

expression on CD4+ T cells was associated with CD4+ T cell

activation and inversely with CD4+ T cell counts in patients on

ART (69, 92). Similarly, patients with incomplete immune

reconstitution despite successful ART express significantly higher

levels of PD-1 than patients with normal recovery of CD4+ T cells

(27, 93, 94). These studies indicate that inhibitory receptors

mediated T cell suppression may be involved in the development

of impaired immune reconstitution in HIV patients. However, the

specific regulatory mechanism needs to be further studied.

Exhausted CD4+ T cells exhibit reduced proliferative capacity

and helper functions, and a decreased production of cytokines such

as IL-2 and interferon-gamma (IFN-g) (81, 95, 96). Moreover, cell

apoptosis is positively correlated with the level of PD-1 expression,

indicating that exhausted CD4+ T cells from INRs are prone to

apoptosis (27).

2.2.6 Increased CD4+ T cell senescence
Aside from T cell exhaustion, chronic viral infection and

inflammation further induce immune senescence (27, 97, 98). The

senescent T cell phenotype is marked by a lack of CD28 expression,

a decrease in homing receptors (such as CD62L and CCR7), and an

increase in the expression of the senescence marker, CD57 (99). In

HIV-infected patients on ART, there was a significant negative

correlation between the absolute count of the CD4+ TN cell subset

and the expression of CD57 (26). Also, HIV-INRs displayed an

increased frequency of CD57+ cells in total CD4+, CD4+CD45RA+,

and CD4+CD45RA– cell subsets, and cycling as well as non-cycling

CD4+ T cells compared to IRs (27). These results indicate that CD4+

T cells from INRs are generally more activated, exhausted, and

senescent despite successful control of viral replication (26, 27).

However, senescent cells exhibit telomere loss, mitochondrial

compromise, cell cycle arrest, activation of pro-inflammatory

secretory pathways, and limited proliferation in response to

antigen stimulation (27, 99, 100). And the higher the expression

of CD57 in CD4+ T cells, the lower their proliferative capacity (27).
2.3 Regulatory T cells

Regulatory T cells (Tregs) expressing the transcription factor

forkhead box P3 (Foxp3) are naturally produced in the thymus as a

functionally mature subpopulation of CD4+ T cells (nTregs) and can

also be induced from TN cells (iTregs) after encountering of antigens

in the periphery (101, 102). They can suppress the proliferation of TN

cells, the differentiation from TN to TE cells, the effector activities of

differentiated T cells, and can also suppress the functions of B cells,

natural killer (NK) cells, NKT cells, as well as antigen-presenting cells

(103–105). Thus, Tregs are indispensable for the maintenance of self-

tolerance and immune homeostasis (103).

The role of Tregs in the pathogenesis of HIV infection has been

extensively debated. They can play a beneficial role by inhibiting T

cell activation and HIV replication in CD4+ T cells (106, 107), or

play a harmful role by inhibiting HIV-specific CD4+ and CD8+ T
Frontiers in Immunology 05
cell responses (108, 109), aggravating lymphatic tissue fibrosis

(110), and contributing for intestinal flora translocation (111).

More importantly, dysregulation of homeostasis in Tregs may

hamper immune reconstitution. According to several studies,

HIV-INRs have a significantly higher percentage of Tregs within

the CD4+ T cells (49–53), including total, naïve, effector, and

terminal effector Tregs (49, 50), together with a drop in the

absolute number of Tregs and a decrease in HIV-specific

immunosuppressive functions (51, 52). A higher percentage of

Tregs is associated with a reduced thymic output of CD4+ TN

cells (52). Méndez-Lagares et al. also found a negative correlation

between Tregs and CD4+ TN cells (51). Moreover, a recent study

proposed that the failure of INRs to restore CD4+ T cells as a

consequence of defective Treg survival and function, resulting in a

phenotype of uncontrolled cycling, immune exhaustion, and

increased cell death (58). As for the effect of baseline Tregs, one

study found that Tregs percentage at baseline was a strong

independent prognostic factor of immune recovery, and a 1%

increase of initial Tregs percentage was associated with a 1.9%

lower CD4+ T cell counts at month 24 (112). In contrast, another

study found no effect of Tregs percentages at baseline was detected

on CD4+ T cells recovery (113). These studies suggest that although

the impact of baseline Tregs on immune reconstitution is

controversial, a high percentage and functional defects of Tregs

during antiretroviral therapy have a negative impact on immune

reconstitution. Furthermore, it is necessary to validate the potential

value of Tregs in HIV-INRs in larger sample cohorts because of the

limited number of current studies and sample sizes.
2.4 CD8+ T cells

CD8+ T cells are a critical component of the cellular immune

response to viral infections. In HIV-infected patients, CD8+ T cells

play an important role in the control of HIV replication and the

HIV reservoir (114–116). Additionally, for patients with CD4+ T

cells above 500 cells/mL after long-term ART, high CD8+ T cell

counts are associated with CD4 recovery (117). However, in

incomplete immune reconstitution, the quantity and quality of

CD8+ T cells are disordered. According to previous studies, the

absolute numbers of CD8+ TN cells were significantly lower in INRs

than that in IRs and healthy subjects, while circulating TCM, TEM,

and TTE cells were higher in INRs (25). Méndez-Lagares et al. also

found that the frequency of the CD8+ TN cell subset was

significantly lower in INRs, and the CD8+ TEM cells showed a

significant expansion in INRs when compared with the IRs (26). In

fact, the total number of CD8+ T cells is consistently elevated even

after long-term ART in HIV-infected patients (48). Additionally,

when the low CD4+ T cells patients were included, the high CD8+ T

counts were associated with a poor increase in CD4+ T cells during

ART (48). These results can be attributed to the absence of CD4+ T

cells help on the one hand (117), and the activation and exhaustion

of CD8+ T cells on the other hand (118). As the study reported,

CD8+ T cell counts were positively correlated with the viral

reservoir (119–121), and the elevation of CD8+ T cells is

associated with immune activation and increased immune anergy
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(48, 122). Elite controllers possessed a significantly lower level of

activated HIV-specific CD8+ T cells than non-controllers (123),

while INRs possessed a higher level of activated CD8+ T cells

(CD38+, HLA-DR+) than IRs (25, 40). Hunt et al. found that for

every 5% increase in the proportion of activated CD8+ T cells mean

35 fewer CD4+ T cells were gained (124). These studies indicate that

the extensive expansion, activation, and exhaustion of CD8+ T cells

further contribute to CD8 accumulation over disease progression,

which plays a role in incomplete immune reconstitution.

The exhaustion of CD8+ T cells is a progressive condition that

starts with an initial loss of proliferation, cytotoxic potential as well

as decreased IL-2 production, and eventually loss of the ability to

produce IFN-g in more pronounced stages (83). Therefore,

exhausted CD8+ T cells in HIV-infected patients lose their

capacity to kill efficiently infected cells (83). Previous studies

showed that PD-1 expression on virus-specific T cells is the

primary marker of exhaustion (82). The expression of PD-1 on

CD8+ T cells is significantly higher in HIV-INRs than IRs (93, 94),

suggesting that INRs have more exhausted CD8+ T cells. Similarly,

Li et al. found that the frequencies of PD-1+CD39+ CD8+ T cells are

negatively correlated with CD4+ T cell counts and the CD4/CD8

ratio in ART naïve patients (125).

However, in contrast to T cell exhaustion, the concept of CD8+

T cell senescence induced by HIV remains controversial (118).

Especially in INRs, the study found that CD8+ memory, TEM, and

TTE cells showed lower markers of senescence than those of the IRs

(26). One possible reason is that HIV inhibited the process of

terminal differentiation and proliferation of CD8+ TEM cells,

expanded the less-differentiated transitional memory and CD28–

CD57–CD8+ T cells, therefore decreasing the proportion of CD28–

CD8+ T cells that express CD57 (126).
2.5 Double-negative T cells

Double-negative (DN) T cells represent a small subpopulation

of approximately 3-5% of T lymphocytes in peripheral blood (127,

128). They are CD3 positive, CD4 and CD8 negative, express either

TCR alpha and beta (ab) or TCR gamma and delta (gd), but do not
express NK T cell markers (129). Although lacking certain

phenotypic classification, DN T cells can be divided into naïve

and active cells according to the transcriptome landscape (130). It

can also be classified according to different functions, such as DN

Tregs that can secrete anti-inflammatory cytokines and exhibit

remarkably potent immunosuppressive potential (129, 131), T

helper (Th)-like DN T Cells that can secrete cytokines to exert Th

function and exhibit either protective or pathologic functions in

different infections (129, 132, 133), cytotoxic DN T cells that

mediate the killing effect of malignant tumors (134, 135).

In SIV/HIV infection, studies have found that DN T cells are

associated with disease progression (54, 133, 136). Milush et al.

reported that DN T cells with Th-like helper functions may

compensate for the very low levels of CD4+ T cells in SIV-

infected sooty mangabeys that were free of clinical AIDS for a

long time (133). However, Liang et al. demonstrated that the

numbers of DN T cells in HIV-infected patients with CD4+ T
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cells <250 cells/mL were significantly lower than those with CD4+ T

cells between 250-500 as well as >500 cells/mL (54). Another study

found that HIV-INRs had a low level of DN T cells, and the number

of these cells was positively correlated with CD4+ T cell counts but

negatively correlated with immune activation (55). Moreover, the

production of transforming growth factor (TGF)-b1 by DN T cells

might participate in the downregulation of immune activation after

long-term ART (55), suggesting that DN T cells may play a role in

immune reconstitution by regulating the immune response. On the

contrary, Wang et al. found that the frequency of DN T cells was

comparable between INRs and IRs, and had no correlation with

immune activation, while only CD73+ DN T frequency was

positively correlated with CD4+ T cell counts (137). It is

suggested that there may be other mechanisms in the

participation of DN T cells in immune reconstitution.

To sum up, CD4+ T cells were decreased in quantity and altered

in quality in HIV- INRs receiving antiviral therapy (Figure 2).

Among them, the decrease in production and the increase in

destruction of CD4+ T cells are the direct reasons for incomplete

immune reconstitution. The abnormal quality is characterized by T

cells’ overactivation, exhaustion, senescence, and susceptibility to

death, resulting in weakened cell proliferation and differentiation,

increased secretion of inflammatory molecules, and decreased

secretion of anti-inflammatory cytokines. Furthermore,

suboptimal CD4+ T recovery is associated with impaired

homeostasis of other T cells such as CD8+ T cells, Tregs, and DN

T cells. Although the abnormal quality of CD4+ T cells and

impaired homeostasis of other T cells are not the direct cause of

incomplete immune reconstitution, they may be involved in its

pathological process. And the specific mechanism needs to be

further studied.
3 Other immune cells

3.1 Natural killer cells

Human NK cells are broadly distributed innate lymphocytes

(138, 139), including three common subpopulation groups:

CD56brightCD16dim/− subpopulation which is typically viewed as

immature precursors and primarily secretes cytokines, the larger

CD56dimCD16bright subpopulation which is considered as mature

subset with toxic effects, and the dysfunctional CD56–CD16bright

subpopulation with low cytotoxic activity and cytokine production

(138, 140). In HIV infection, NK cells play a negative regulation as

well as protective function (141), and may be associated with

immune reconstitution. Bayigga et al. found that INRs had a

higher proportion of pro-inflammatory CD56brightCD16dim/− NK

cells than IRs, while the largest CD56dim NK cell subset was

comparable among INRs and IRs (142). Similarly, another study

showed that INRs exhibit an accumulation of autoreactive

CD56bright NK cells, possibly linked to decreased homeostatic

control by Tregs, which contributes to incomplete immune

reconstitution (143). However, Luo et al. reported that the

absolute number, percentage, and subpopulation percentage of

NK cells were similar between INRs and IRs, while the increased
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CD56dimCD16+ NK cell activation was predominantly in INRs and

inversely correlated with the peripheral CD4+ T cell counts (144).

Recently, the existence of a population of CD56dimCD16dim/− NK

cells was detected and found to be significantly higher in INRs than

IRs (145). In addition to increased proportion, the killing ability of

CD56dim NK cells was also significantly increased in INRs, and

significantly correlated with apoptosis of T lymphocytes (146).

Although the above studies are not identical, they consistently

indicate that NK cells play a negative role in immune reconstitution.
3.2 B cells

B cells are generated from stem cells in the bone marrow, and

enter the periphery at an immature/transitional stage after forming

a fully functional B-cell receptor, then develop into naïve B cells

after further selection, accompanied by increased expression of

CD21 (147, 148). Once a naïve B cell migrates into peripheral

lymphoid tissues and encounters an antigen, its response can be

divided into two ways: one that occurs without T-cell help, and one

that occurs with T-cell help typically within the microenvironment

of the germinal center (147). Affinity-matured B cells that exit the

germinal center either serve as memory B cells or as long-lived

plasma cells (148). In HIV infection, B cell-mediated immune

response is sustained by HIV-specific memory B cells and plasma

cells (148). A recent study found that the proportions of naïve B,
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memory B, and plasma cells are not associated with immune

recovery, while the low frequency of CD21+ memory B cells is a

risk factor for incomplete immune reconstitution (149). This may

be related to the dysregulation of memory B cells and circulating T

follicular helper cells (149, 150). In addition, another study found

that the diversity of the B-cell receptor repertoire in HIV-INRs was

decreased, and naïve B cells with low differentiation improve the

immune reconstitution (151). These findings underscore the critical

role of B cells in immune reconstitution after HIV infection.
3.3 Monocytes/macrophages and
dendritic cells

Monocytes/macrophages act as first responders in innate

immunity and then as mediators for adaptive immunity to help

clear infections (152). In performing these functions, the

macrophage inflammatory responses may also contribute to the

pathogenesis. Stiksrud et al. found that HIV-infected individuals

with suboptimal immune recovery exhibited more activated

monocytes and dendritic cells (DCs) compared to individuals

with adequate immune recovery (153). The persistent

inflammation and activation of monocytes and other innate

immune cells are likely associated with the persistent T cell

activation and impaired effector functions in adults receiving

antiretroviral therapy (154). Thus, it is suggested that monocytes/
FIGURE 2

Quantity and quality alterations of T cells in HIV/AIDS patients with incomplete immune reconstitution. The naïve T (TN) cells produced by the
thymus can be activated by multiple factors, including persistent viral reservoir, low residual viremia, co-infections, microbial translocation and
dysbiosis. Difficult-to-remove risk factors may lead to persistent chronic immune activation, contributing to the development of T cell exhaustion
and immune senescence. Exhausted and senescent T cells are qualitatively altered and prone to death, possibly through apoptosis, pyroptosis, and
ferroptosis. LPS, lipopolysaccharide; HLA-DR, human leukocyte antigen DR; TNF-a, tumor necrosis factor-alpha; IFN-g, interferon-gamma; IL-2,
interleukin-2; PD-1, programmed death-1; TIGIT, T cell immunoglobulin and ITIM domain; TIM3, T cell immunoglobulin domain and mucin domain-
containing protein 3; CTLA-4, cytotoxic T lymphocyte antigen-4.
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macrophages and DCs may be involved in the pathological process

of changes in the quality of CD4+ T cells.
4 Soluble mediators and cytokines

4.1 Mechanisms of soluble
biomarkers production

The immune response to HIV infection begins with infected

CD4+ innate immunocytes and CD4+ T cells, where the pathogen-

associated molecular patterns (PAMPs) in viral products are sensed

by the pathogen-recognition receptors (PRRs) of the host cell to

trigger the innate immune response (155). The PRRs include the

Toll-like receptors (TLRs), NLRs, RIG-I-like receptors (RLRs), and

the novel DNA sensor cyclic GMP/AMP synthase (cGAS) as well as

IFN-inducible protein 16 (IFI16) (156–158). Among them, TLR is

located on the surface of various immunocytes and intracellular

organelle membranes. Its signal transduction pathways mainly

include myeloid differentiation primary response gene 88

(MyD88)-dependent pathways and MyD88-independent pathways

(Figure 3). TLR2/6 is dependent on MyD88, TLR3 is independent of

MyD8, and TLR4 employs both signaling pathways (159). InMyD88-
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dependent pathways, TLRs combine with intracellular junction

protein MyD88, then recruit the downstream TNF receptor-

associated factor (TRAF)-6, and activate nuclear factor (NF)-kB
and IFN regulatory factor (IRF)-7, induce the expression of pro-

inflammatory factors and type I interferons (IFN-I) (159, 160). In

MyD88- independent pathways, TLRs sense HIV products and

recruit downstream TRAF3 and TRAF6, then activate NF-kB and

IRF3 to trigger the production of inflammatory factors (161). NLRs

represent a diverse family of PRRs expressed in the cytosol of various

cell types, which can sense viral single-stranded RNA and signal to

the activation of NF-kB and IRF3, and can also interact with caspase-

1 upon activation to induce pyroptosis (162, 163). RLRs are another

important class of PRRs that can sense the double-stranded RNA,

then binds Cardif in the mitochondria to recruit I kB kinase (IKK),

and activate NF-kB and IRF-3 to trigger IFN-I production to exert

antiviral effect (159, 164). IFI16 and cGAS can sense and bind to

cytosolic double-stranded DNA, then activate the stimulator of

interferon genes (STING) signal pathways (157, 158).

Initiation of the innate immune response, in addition to

antiviral defense, produces a variety of soluble factors, including

IFN-I, inflammatory cytokines and chemokines. These soluble

factors recruit and activate innate immune cells, including DCs,

monocytes/macrophages and NK cells (155). In addition, IFN-I,
FIGURE 3

The cytokine signaling in HIV infection. After HIV infection, the pathogen-associated molecular patterns (PAMPs) are sensed by the pathogen-
recognition receptors (PRRs) to trigger the innate immune response. Among them, the Toll-like receptors (TLRs) signal transduction pathways mainly
include myeloid differentiation primary response gene 88 (MyD88) dependent and independent pathways. In the former, TLRs combine with MyD88
to recruit tumor necrosis factor (TNF) receptor-associated factor (TRAF)-6, and activate nuclear factor (NF)-kB and IFN regulatory factor (IRF)-7,
induce the expression of pro-inflammatory factors and type I interferons (IFN-I); in the latter, TLRs sense HIV products and recruit TRAF3 and TRAF6,
then activate NF-kB and IRF3. The nucleotide-binding oligomerization domain-like receptors (NLRs) can sense single-stranded RNA (ssRNA), and
can also interact with caspase-1 to induce pyroptosis. The RIG-I-like receptors (RLRs) can sense the double-stranded RNA (dsRNA) to recruit I kB
kinase (IKK) and activate NF-kB and IRF-3. The cyclic GMP/AMP synthase (cGAS) and IFN-inducible protein 16 (IFI16) can bind to double-stranded
DNA (dsDNA), then activate the stimulator of interferon genes (STING) signal pathways. Initiation of the innate immune response produces a variety
of soluble factors that recruit and activate innate immune cells. In addition, IFN-I, TNF, interleukin (ILs), and transforming growth factor (TGF)-b
respectively bind to cell surface receptors and activate downstream signaling pathways to participate in immune regulation. LPS, lipopolysaccharide;
MAD5, melanoma differentiation-associated protein 5; JAK-STAT, Janus kinase and signal transducer and activator of transcription proteins; ISGs,
interferon-stimulated genes; TRADD, TNF receptor 1 (TNFR1)-associated death domain protein; FADD, Fas-associated protein with death domain;
DC, dendritic cell; NK, natural killer cell; INRs, immunological non-responders.
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TNF, ILs, and TGF-b respectively bind to cell surface receptors,

activate downstream signaling pathways, and play several essential

roles, such as inducing and regulating the development,

differentiation, survival, and function of myeloid and lymphoid

cells, activating and regulating adaptive immune response, and

participating in inflammatory response (165).
4.2 T cell-related cytokines

Chronic infection and systemic inflammation lead to persistent

activation of the immune system, and activated lymphocytes are

consumed, which affects the secretion of cytokines. As reported in

previous studies, HIV-INRs had a low level of certain cytokines than

that in IRs, including IL-2, IL-4, IL-10, and IFN-g (143, 146, 166).

These cytokines have been proven to be closely correlated to the

activation and proliferation of T lymphocytes (167–169). Thus, the

decrease of cytokine production by lymphocytes in INRs eventually

leads to T cell depletion (146). In theory, improving the regulation of

T cell-related cytokines may be beneficial for INRs. For example,

treatment with IL-2 in HIV-infected patients can significantly

increase CD4+ T cell counts and enhance immune function (170).

IL-7 is also crucial in T cell homeostasis as it maintains T cell

survival, induces proliferation, and promotes de novo production

(171, 172). The IL-7 responsiveness is largely dependent on the

presence or absence of the IL-7 receptor (IL-7R). But unlike the

cytokines mentioned above, IL-7 is mainly produced by bone marrow

and thymic stromal cells (173). In HIV-infected patients, the level of

IL-7 is higher and the level of IL-7R is lower than that in healthy

controls (174, 175), and there is a negative correlation between

plasma IL-7 levels and CD4+ T cell counts (176). Consequently,

INRs exhibit a higher stromal production of IL-7, a diminished

expression of IL-7R and a reduced IL-7 mediated proliferation

responsiveness compared to normal responders (177–180).

Moreover, the reduction of naïve and thymic naïve CD4+ T cells in

INRs is associated with increased serum IL-7 levels and decreased IL-

7R expression (24). Down-regulation of IL-7R is related to T cell

activation and is a main factor influencing the restoration of CD4+ T

cells (181). Marziali et al. also found that the reduced expression of

IL-7Ra was associated with persistent immune activation and the

alteration of Treg frequencies, which in part explains the low level of

CD4+ T cells observed in INRs (24). Another study found that the

IL7RA polymorphisms seem to predict the CD4+ T cell recovery in

HIV-infected patients on ART (182). These studies indicate that

dysregulation of IL7/IL7R homeostasis plays an important role in

incomplete immune reconstitution. Thus, IL-7-based therapy,

combined with efficient ART, may be beneficial to HIV-INRs by

promoting thymic output, inducing a sustained increase of TN and

TCM cell counts, thereby enhancing T cell recovery (183–185).
4.3 Innate immunity activation markers

Soluble CD14 (sCD14) is part of innate immunity and plays an

important role in the inflammatory response induced by

lipopolysaccharide, an outer cell wall component of gram-negative
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bacteria. Plasma sCD14 forms a complex with lipopolysaccharide,

then binds to LPS receptors on monocytes/macrophages, and

activates the cells to produce pro-inflammatory cytokines (186). A

series of studies have shown that HIV-infected patients have higher

levels of sCD14 than healthy subjects (187–189), and plasma sCD14

are independently associated with disease progression (188, 190).

Dunham et al. found that plasma sCD14 levels from INRs were

significantly higher than that in HIV-negative subjects, while the

difference between INRs and IRs was not significant (191). Moreover,

the concentrations of sCD14 during ART were inversely associated

with subsequent CD4+ T cell counts (191, 192), and were also

correlated with blood inflammatory markers, shorter telomeres,

and increased Treg levels (98, 191).

Soluble CD163 (sCD163) is another hallmark of monocyte/

macrophage activation. It was higher in the plasma of chronic

HIV-infected patients than in healthy subjects, and decreased after

effective ART but did not return to HIV-seronegative levels (193).

The high level of plasma sCD163 was correlated with gut mucosal

disruption, positively correlated with the percentage of CD14+CD16+

monocytes and T cell activation markers (193, 194), and increased

sCD163 may serve as a marker of immunosenescence (195).

Moreover, Fischer-Smith et al. found a strong inverse correlation

between CD163+/CD16+ monocyte and the number of CD4+ T cells

below 450 cells/mL (196). Plasma sCD163 levels were also inversely

correlated with CD4+ T cell percentage and CD4/CD8 ratio (194).

Interferon-g-induced protein 10 (IP-10 or CXCL-10) is a

chemokine involved in trafficking immune cells to inflammatory

sites. It is produced by various cell types on stimulation, while

monocytes are responsible for the greatest proportion of IP-10

expression (197). Plasma IP-10 levels are significantly higher in

HIV-infected patients than that in healthy subjects (198–201), and

inversely related to CD4+ T cell counts, regardless of those pre- or

post-ART (200, 202). IP-10 levels are also associated with the time

for CD4+ T cell counts to fall below 200 cells/mL during Fiebig

stages III-V (203). In addition, elevated IP-10 levels are associated

with immune activation and can promote the progression of

inflammation (197, 204). Meanwhile, exposure to persistent IP-10

leads to a decrease in the number of CD4+ and CD8+ T cells capable

of producing cytokines, a decrease in T cell proliferation, and can

effectively impair NK cell function (198, 205).

Taken together, these studies suggest that monocyte/macrophage

activation, marked by increased expression of sCD14, sCD163, and

IP-10, is associated with T cell activation, immune senescence, and

impaired immune cell function in HIV-infected patients, which is

involved in the occurrence of incomplete immune reconstitution and

may be an intervention measure for INRs.
4.4 Key pro-inflammatory cytokines

Immune activation and systemic inflammation are usually

accompanied by the secretion of soluble inflammatory mediators,

such as pro-inflammatory cytokine TNF-a, IL-1b, IL-6, and IL-8.

Among them, plasma IL-6 levels were found to be elevated in HIV-

INRs before ART as well as after virological suppression (206, 207),

and were negatively correlated with CD4+ T cell counts (208). In
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addition, the intestinal microbiota of HIV/AIDS patients was

disordered, and the number of intestinal flora was correlated with

the number of CD4+ T cells and the levels of TNF-a and IL-6 (209).

Shive et al. found that IL-6 can induce low-level cycling of TN cells,

IL-1b can induce cell cycling and turnover of memory CD4+ T cells,

and both cytokines can decrease T cell surface expression and RNA

levels of IL-7 receptor (57). Moreover, the induction of CD4+ T cell

turnover and diminished T cell responsiveness to IL-7 by IL-1b and

IL-6 exposure may contribute to the lack of CD4+ T cell

reconstitution in HIV-infected subjects on ART (57). These

studies demonstrate that pro-inflammatory cytokines negatively

affect the quantity of CD4+ T cells.
4.5 Anti-inflammatory cytokines

In addition to IL-10, TGF-b is another major anti-inflammatory

cytokine that controls the development, differentiation, and

function of Tregs (210). Younes et al. showed that the expression

of genes for the TGF-b signaling pathway (TGIF1, SMAD1,

SMAD7, LEFTY) was lower in HIV-INRs (58), and the

production of TGF-b by Tregs was impaired in the setting of

incomplete immune reconstitution (58). Another study also

found that plasma TGF-b levels were significantly lower in the

INRs when compared to plasma levels in the IRs (211). In addition,

plasma levels of TGF-b were negatively correlated with T cell

exhaustion and senescence phenotypes, and positively correlated

with CD4+ T cell counts in INRs (211). These studies indicate that

low levels of anti-inflammatory cytokines are associated with

impaired function of Tregs and difficulty in controlling

inflammation, which may participate in the occurrence of

incomplete immune reconstitution in HIV-infected patients.
4.6 Other biomarkers associated with
immune reconstitution

HIV infection induces widespread expression of IFN-I and IFN-

stimulated genes (212, 213), and the abnormally elevated IFN-I

signaling persists in some patients even under extensive ART (191,

214). Chronic exposure to IFN-I hampers the reversion of

hyperimmune activation and immune recovery in INRs (191,

213). Therefore, targeting IFN-I mediated activation may provide

a potential strategy to enhance T cell recovery (215, 216).

C-reactive protein (CRP) is a prophylactic acute-phase plasma

protein and a non-specific marker of systemic inflammation that is

stimulated by cytokines such as IL-6, IL-1, and TNF to be produced

in the liver. The levels of CRP were significantly higher in INRs than

that in IRs (217), and were inversely associated with CD4+ T cell

counts (192). For hypersensitive CRP (hsCRP), there was no

difference between INRs and IRs (26). However, the INRs showed

significantly higher levels of hsCRP in comparison with healthy

subjects (218), and INRs showed a tendency to have more subjects

with hsCRP levels exceeding 2 mg/mL or 3 mg/dL when compared

with IRs (26, 218).
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Additionally, soluble TNF receptors, sTNF-RI, and sTNF-RII,

were measured in plasma as biomarkers of TNF activity. Dunham

et al. found that although the difference in sTNF-RI and sTNF-RII

levels between INRs and IRs did not reach statistical significance,

the levels of sTNF-RII in INRs were higher than those found in

healthy subjects and were more comparable to those observed in

viremic subjects (191).
5 Conclusions and perspectives

In summary, CD4+ T cell homeostasis alteration in HIV-

infected subjects with incomplete immune reconstitution despite

successful viral suppression during ART, including decreased

quantity and altered quality. Additionally, suboptimal CD4+ T

cell recovery is associated with impaired homeostasis of multiple

immunocytes such as CD8+ T cells, Tregs, DN T cells, NK cells, B

cells, monocytes/macrophages and DCs, as well as abnormal

secretion of various soluble mediators and cytokines. While these

data are impressive and informative, there is limited understanding

of the primary causes of incomplete immune reconstitution and the

causal relationship of immunocytes or soluble mediators to

incomplete immune reconstitution. This will be a meaningful

research direction that can help to identify INRs earlier and

provide physicians with optimal strategies to improve CD4+ T

cell recovery. When solving the above problems, it should be

noted that different individuals may have different primary causes

of incomplete immune reconstitution. Methodologically,

immunology, genomics, transcriptomics, and single-cell

sequencing methods are useful tools in this regard. Moreover,

future more in-depth mechanistic and clinical studies are needed

to develop immune-based interventions for incomplete

immune reconstitution.
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Pacheco YM. Severe immune dysregulation affects CD4+CD25(hi)foxp3+ regulatory T
cells in HIV-infected patients with low-level CD4 T-cell repopulation despite
suppressive highly active antiretroviral therapy. J Infect Dis (2012) 205(10):1501–9.
doi: 10.1093/infdis/jis230

52. Suy F, Botelho-Nevers E, Gagneux-Brunon A, Frésard A, Paul S, Lambert C,
et al. Immunologic nonresponders and T-regulatory cells in HIV-1 infection. AIDS
(2013) 27(18):2968–71. doi: 10.1097/qad.0000000000000022

53. Horta A, Nobrega C, Amorim-Machado P, Coutinho-Teixeira V, Barreira-Silva
P, Boavida S, et al. Poor immune reconstitution in HIV-infected patients associates
with high percentage of regulatory CD4+ T cells. PloS One (2013) 8(2):e57336.
doi: 10.1371/journal.pone.0057336

54. Liang Q, Jiao Y, Zhang T, Wang R, Li W , Zhang H, et al. Double negative
(DN) [CD3+CD4-CD8-] T cells correlate with disease progression during HIV
infection. Immunol Invest (2013) 42(5):431–7. doi: 10.3109/08820139.2013.805763

55. Lu X, Su B, Xia H, Zhang X, Liu Z, Ji Y, et al. Low double-negative CD3(+)CD4
(-)CD8(-) T cells are associated with incomplete restoration of CD4(+) T cells and
higher immune activation in HIV-1 immunological non-responders. Front Immunol
(2016) 7:579. doi: 10.3389/fimmu.2016.00579

56. Marchetti G, Gori A, Casabianca A, Magnani M, Franzetti F, Clerici M, et al.
Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected
patients with discordant immune-virological responses to HAART. AIDS (2006) 20
(13):1727–36. doi: 10.1097/01.aids.0000242819.72839.db

57. Shive CL, Mudd JC, Funderburg NT, Sieg SF, Kyi B, Bazdar DA, et al.
Inflammatory cytokines drive CD4+ T-cell cycling and impaired responsiveness to
interleukin 7: implications for immune failure in HIV disease. J Infect Dis (2014) 210
(4):619–29. doi: 10.1093/infdis/jiu125

58. Younes SA, Talla A, Pereira Ribeiro S, Saidakova EV, Korolevskaya LB, Shmagel
KV, et al. Cycling CD4+ T cells in HIV-infected immune nonresponders have
mitochondrial dysfunction. J Clin Invest (2018) 128(11):5083–94. doi: 10.1172/jci120245

59. Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham
P, et al. Virologically suppressed HIV patients show activation of NK cells and
persistent innate immune activation. J Immunol (2012) 189(3):1491–9. doi: 10.4049/
jimmunol.1200458
Frontiers in Immunology 12
60. Zicari S, Sessa L, Cotugno N, Ruggiero A, Morrocchi E, Concato C, et al.
Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected
patients under long-term ART. Viruses (2019) 11(3):200. doi: 10.3390/v11030200

61. Lv T, Cao W, Li T. HIV-Related immune activation and inflammation: current
understanding and strategies. J Immunol Res (2021) 2021:7316456. doi: 10.1155/2021/
7316456

62. Martinez-Picado J, Deeks SG. Persistent HIV-1 replication during antiretroviral
therapy . Curr Opin HIV AIDS (2016) 11(4) :417–23. doi : 10 .1097/
coh.0000000000000287

63. Margolick JB, Bream JH, Nilles TL, Li H, Langan SJ, Deng S, et al. Relationship
between T-cell responses to CMV, markers of inflammation, and frailty in HIV-
uninfected and HIV-infected men in the multicenter AIDS cohort study. J Infect Dis
(2018) 218(2):249–58. doi: 10.1093/infdis/jiy005

64. Gobran ST, Ancuta P, Shoukry NH. A tale of two viruses: immunological
insights into HCV/HIV coinfection. Front Immunol (2021) 12:726419. doi: 10.3389/
fimmu.2021.726419

65. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al.
Microbial translocation is a cause of systemic immune activation in chronic HIV
infection. Nat Med (2006) 12(12):1365–71. doi: 10.1038/nm1511

66. Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, et al.
Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS
(2015) 29(1):43–51. doi: 10.1097/qad.0000000000000511

67. Gootenberg DB, Paer JM, Luevano JM, Kwon DS. HIV-Associated changes in
the enteric microbial community: potential role in loss of homeostasis and
development of systemic inflammation. Curr Opin Infect Dis (2017) 30(1):31–43.
doi: 10.1097/qco.0000000000000341

68. Zhang LX, Song JW, Zhang C, Fan X, Huang HH, Xu RN, et al. Dynamics of
HIV reservoir decay and naïve CD4 T-cell recovery between immune non-responders
and complete responders on long-term antiretroviral treatment. Clin Immunol (2021)
229:108773. doi: 10.1016/j.clim.2021.108773

69. Hatano H, Jain V, Hunt PW, Lee TH, Sinclair E, Do TD, et al. Cell-based
measures of viral persistence are associated with immune activation and programmed
cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis (2013) 208(1):50–6.
doi: 10.1093/infdis/jis630

70. Scherpenisse M, Kootstra NA, Bakker M, Berkhout B, Pasternak AO. Cell-
associated HIV-1 unspliced-to-multiply-spliced RNA ratio at 12 weeks of ART predicts
immune reconstitution on therapy. mBio (2021) 12(2):e00099-21. doi: 10.1128/
mBio.00099-21

71. Norris PJ, Zhang J, Worlock A, Nair SV, Anastos K, Minkoff HL, et al. Systemic
cytokine levels do not predict CD4(+) T-cell recovery after suppressive combination
antiretroviral therapy in chronic human immunodeficiency virus infection. Open
Forum Infect Dis (2016) 3(1):ofw025. doi: 10.1093/ofid/ofw025

72. Massanella M, Negredo E, Puig J, Puertas MC, Buzón MJ, Pérez-Álvarez N, et al.
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