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Pancreatic cancer and fibrosis:
Targeting metabolic
reprogramming and crosstalk of
cancer-associated fibroblasts in
the tumor microenvironment

Xin Li , Jianbo Zhou, Xue Wang, Chunxi Li , Zifan Ma,
Qiaoling Wan and Fu Peng*

Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the
Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research
Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,
Chengdu, China
Pancreatic cancer is one of the most dangerous types of cancer today, notable

for its low survival rate and fibrosis. Deciphering the cellular composition and

intercellular interactions in the tumor microenvironment (TME) is a necessary

prerequisite to combat pancreatic cancer with precision. Cancer-associated

fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key

role in tumor progression. CAFs display significant heterogeneity and perform

different roles in tumor progression. Tumor cells turn CAFs into their slaves by

inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug

resistance and immune evasion. This article reviews the impact of metabolic

reprogramming, effect of obesity and cellular crosstalk of CAFs and

tumor cells on fibrosis and describes relevant therapies targeting the

metabolic reprogramming.
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Abbreviations: TME, tumor microenvironment; ECM, extracellular matrix; CAF, cancer-associated

fibroblast; PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cell; myCAF, myofibroblastic

CAF; iCAF, inflammatory CAF; a-SMA, a-smooth muscle actin; IL, interleukin; apCAF, antigen-presenting

CAF; meCAF, CAF with a highly activated metabolic state; csCAF, complement-secreting CAF; LIF, leukemia

inhibitory factor; TGF-b, transforming growth factor-b; Tregs, regulatory T cells; PDGF, platelet derived

growth factor; JNK, c-Jun N-terminal kinase; ERK, extracellular signal-regulated kinase; TCA, tricarboxylic

acid; HIF, hypoxia-inducible factor; MCT, monocarboxylate transporter; NetG1, Netrin G1; BCAA,

branched-chain amino acid; BCAT, branched-chain amino acid transaminase; BCKA, branched-chain a-

keto acid; PAI-1, plasminogen activator inhibitor-1; VEGF, vascular endothelial growth factor; TIMP-1,

tissue inhibitor of metalloproteinase-1; MMP, matrix metallopeptidase; CECR4, C-X-C motif chemokine

receptor 4; SATB-1, special AT-rich sequence-binding protein 1; NF-kB, nuclear factor KB; ESE3,

epithelium-specific E-twenty six factor 3; IRAK4, IL-1 receptor-associated kinase 4; NUFIP1, nuclear

fragile X mental retardation-interacting protein 1; SHH, sonic hedgehog; LOXL2, lysyl oxidase-like protein

2; MSC, mesenchymal stem cell; YAP1, Yes-associated protein 1.
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Introduction

Pancreatic cancer is one of the most aggressive types of cancer,

being more common in developed countries and by low survival

rates (1). As the main form of pancreatic cancer, pancreatic ductal

adenocarcinoma (PDAC) has a discouraging prognosis, with a very

low five-year survival rate (2). There is a correlation between

lifestyle habits including smoking, alcohol consumption, and

genetic and environmental factors and the onset of pancreatic

cancer (1). Notably, the hormones, pro-angiogenic factors and

pro-inflammatory cytokines secreted by obese tissues make

obesity a risk factor for the occurrence of pancreatic cancer (3, 4).

Diabetes associated with obesity and chronic pancreatitis also show

a relevance to pancreatic cancer (5). Surgery is the treatment that

has the potential to cure pancreatic cancer now, whilst

chemotherapy, immunotherapy and targeted therapies have been

demonstrated to help enhance the overall survival rate of patients

(6–8).

Fibrosis driven by chronic inflammation occurs commonly in a

variety of cancers, such as liver, pancreatic, and lung cancers (9–11).

This formation of excessive intratumoral connective tissue is also

referred to as desmoplasia by pathologists (12). Desmoplasia is one

of the major pathological features and is intimately connected with

its occurrence, progression and prognosis of pancreatic cancer. The

desmoplastic reaction caused by inflammation gives pancreatic

cancer an extraordinarily rich ECM (13). The fibrotic response in

tumors is by the same mechanism as wound healing, being an

excessive accumulation of ECM components and involving multiple

cytokines and growth factors (14). ECM proteins are rich in

composition, including fiber-forming proteins, glycoproteins,

proteoglycans and matricellular proteins (15). The dense stroma

leads to hypoxia in the tumor microenvironment and makes it

difficult for chemotherapeutic agents to penetrate, thus imparting

chemoresistance to pancreatic cancer (16).

TME of pancreatic cancer contains abundant stroma, blood

vessels, and soluble proteins (17). Apart from cancer cells, three

types of normal cells are found in the TME, namely stromal cells,

fibroblasts, and immune cells (18). TME as a dynamic system has a

changing composition and influences the progression of fibrosis in

pancreatic cancer. Cancer-associated fibroblasts are extraordinarily

abundant and secrete a range of extracellular matrix proteins,

growth factors, and cytokines (19). CAFs crosstalk with tumor

cells and immune cells and perform metabolic reprogramming to

promote tumor development and fibrosis. In this review, we give a

summary of current information about the heterogeneity of CAFs

in pancreatic cancer cells, as well as updates on the metabolic

reprogramming, crosstalk and therapies in the TME.
Heterogeneity of CAFs

CAFs were initially thought to be homogeneous, but subsequent

studies proved that CAFs varied in origin, expression, and function

(20). Their typing remains incompletely elucidated, but existing

work demonstrates that functionally distinct or even completely
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opposite subtypes exist. Öhlund et al. found pancreatic stellate cells

(PSCs) were able to differentiate into two CAF subtypes,

myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs)

in mouse PDAC (21). They differed significantly in spatial

distribution and cytokine expression. myCAFs were distributed in

the periglandular region at a closer distance from tumor cells, with

high expression of a-smooth muscle actin (a-SMA) and low

expression of interleukin (IL)-6, whereas iCAFs were distributed

more distantly throughout the tumor, with low expression of a-
SMA but high expression of cytokines such as IL-6, IL-11, and

leukemia inhibitory factor (LIF) (21). This classification still has not

reached the end point, as three subgroups of iCAFs were identified

(22). Antigen-presenting CAFs (apCAFs) was identified in PDAC,

named for its ability to express MHC class II molecules (23). A new

CAF subtype with a highly activated metabolic state (meCAFs) was

found in loose-type PDAC (24). Complement-secreting CAFs

(csCAFs) were found in PDAC featuring a specific expression of

complement components such as C3, C7, C1R/S, CFD, CFH, CFI

(25). In the same study, Chen et al. defined PSCs as a subtype of

CAF and found that PSCs dominated in PDAC stages I, II and III

(25). The state of differentiation is reversible as iCAFs and myCAFs

are able to convert into each other and apCAFs can also differentiate

into myCAFs (21, 23). Modulation of transforming growth factor-b
(TGF-b), IL-1/JAK/STAT signaling and hedgehog signaling impact

on the differentiation of myCAFs and iCAFs (26, 27). Hypoxia

within the TME probably converted fibroblasts to iCAFs (28).

Neuzillet et al. proved the presence of at least four CAF subtypes

in PDAC, which were featured by distinct mRNA expression

profiles, with POSTN, MYH11, and PDPN as markers for three

of the subtypes (29). PDPN-positive CAFs are molecularly similar

to an iCAF subset, while POSTN-positive CAFs are not associated

with the classical myCAF/iCAF classification (30). And these two

subsets cooperate in the TME to induce the recruitment of

monocytes/macrophages (30). It is worth mentioning that the

identified subtypes of CAFs are not only present in pancreatic

cancer, but also can be found in breast, ovarian and lung cancer

models (31).

The major CAF subtypes show significant heterogeneity not

only in phenotypes but also in function (Figure 1). The pathways

enriched by myCAFs included ECM organization, and collagen

formation were significantly upregulated, and its high a-SMA

expression indicated its possible involvement in ECM formation

and fibrosis (23). iCAFs highly expressed inflammatory cytokines,

and up-regulated IFN-g response, TNF/NF-kB, IL-2/STAT5, IL-6/
JAK/STAT3, and the complement pathway (23). PDAC iCAFs were

classified into different subsets, and OGN was a unique marker for

one of those linked to a good prognosis (22). are correlated with a

poorer prognosis, whereas another study linked higher abundance

of iCAFs to a better prognosis (28, 30). This may result from the

presence of different subgroups in iCAFs, but it also demonstrates

that iCAFs simultaneously have tumor-promoting and inhibiting

properties. circCUL2 regulated miR-203a-5p/MyD88/NF-kB/IL-6
axis to induce the production of iCAFs, which increased the

secretion of IL-6, thereby promoting PDAC progression and

immunosuppression (32). Huang et al. found that mesothelial

cells were induced to differentiate into apCAFs by IL-1/NF-kB
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and TGF-b signaling (33). apCAFs promoted the transition of naive

CD4+ T cells into regulatory T cells (Tregs), which means that it

may be related to immunosuppression (33).

Although PSCs are generally considered to be the major

precursor cells for CAFs within pancreatic cancer, a recent study

indicated that PSCs produced only a small fraction of CAFs in

PDAC (34). However, the promotion offibrosis by PSCs remains an

important component of pancreatic cancer progression. While

activated PSCs are considered to be CAFs, for a clearer

representation of the source, PSCs are described separately from

CAFs in this review. PSCs were first identified in the intralobular

and interlobular connective tissues of normal pancreas with lipid

droplets containing vitamin A in 1982 (35). A study showed that

vitamin A deficiency contributed to the transition of PSCs from a

quiescent to the activated state (36). When injury or inflammation

activates the quiescent PSCs, this vitamin A droplet disappears

while the expression of collagen, fibronectin, laminin and a-SMA

increases, and EMT production rises. The activation of PSCs is

influenced by a variety of factors, including alcohol, diabetes,

oxidative stress, cytokines, growth factors, etc. TGF-b1 is

considered to be the main regulator, while platelet derived growth

factor (PDGF), IL-6, IL-11, c-Jun N-terminal kinase (JNK) and

extracellular signal-regulated kinase (ERK) are also implicated

(37–40).
Metabolic reprogramming in CAFs

Tumor cells still produce energy through less efficient aerobic

glycolysis even under adequate oxygen, enhancing glucose

transformation to pyruvate, termed the Warburg effect (41).

However, this is not due to mitochondrial damage as originally

envisioned by Warburg, but rather spontaneous metabolic

reprogramming of tumor cells, where activation of a series of
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signaling factors and pathways leads to a switch from

oxidative phosphorylation to glycolysis (42). Similar metabolic

reprogramming exists in CAFs, and the Warburg effect is more

obvious (43). Pancreatic cancer is one of the most severely hypoxic

tumors as known, and hypoxia-inducible factors (HIFs) are the

main regulators of hypoxia adaptation (44). Since the identification

of HIF-1a in 1995, a wide range of roles of HIF-1 is continuously

revealed in angiogenesis, cell metabolism, cell survival, and so forth

(45, 46). In breast cancer, ROS production by cancer cells induces

loss of Cav-1 in stromal cells, allowing CAFs to accumulate ROS

and activate HIF-1a, consequently reprogramming CAFs and

inducing autophagy (47, 48). The same alterations are shown in

the PDAC model, where Cav-1 is lost in response to PSCs

activation, correlating with stromal and cancer cells metabolic

coupling (49). To conclude, HIF-1a connects oxidative stress and

metabolic reprogramming of CAFs. Under such harsh conditions

with hypoxia and low nutrition, there is metabolic crosstalk

between CAFs with tumor cells and immune cells, all of which

interact with each other to make TME a more habitable

system (Figure 2).
Glucose metabolism

Pavlides et al. proposed the reverse Warburg effect, elucidating

that CAFs were able to perform glycolysis, producing pyruvate and
FIGURE 2

Cancer-associated fibroblasts (CAFs) promote fibrosis and tumor
growth through metabolic reprogramming. CAFs increase glycolysis
and glutamine secretion to supply lactate, branched-chain a-keto
acids (BCKAs), glutamine, and cytokines to tumor cells. Meanwhile,
tumor cells also secrete cytokines and microRNAs to regulate the
metabolic reprogramming of CAFs to enable themselves to survive
in a low-nutrient environment. Cav-1, Caveolin-1; ROS, reactive
oxygen species; GLUT-1, glucose transporter-1; MCT4,
monocarboxylate transporters 4; BCAT1, branched-chain amino
acid transaminase 1; BCAAs, branched-chain amino acids; NetG1,
Netrin G1; p-p38, phosphorylation of p38; FRA1, FOS-related
antigen 1; pAKT1/2, phospho-AKT1/2; p4E-BP1, p4E-BP1; Gln,
glutamine; Glu, glutamate; NGL1, Netrin-G ligand-1; TGF-b,
transforming growth factor-b; MCT1, monocarboxylate transporters
1; BCAT2, branched-chain amino acid transaminase 2; TCA cycle,
tricarboxylic acid cycle; GOT1, aspartate transaminase; Asp,
aspartate; OAA, oxaloacetate.
FIGURE 1

Characteristics of subtypes of cancer-associated fibroblasts (CAFs).
The different subtypes of CAFs show heterogeneity in distribution,
marker genes, and pathways in the tumor microenvironment. iCAF,
inflammatory CAF; a-SMA, a-smooth muscle actin; IL-6,
interleukin-6; myCAF, myofibroblastic CAF; TGF-b, transforming
growth factor-b; ECM, extracellular matrix; PDAC, pancreatic ductal
adenocarcinoma; apCAF, antigen-presenting CAF; meCAF, CAF with
a highly activated metabolic state; csCAF complement-
secreting CAF.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1152312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1152312
lactate and making them available to cancer cells for use in the

mitochondrial tricarboxylic acid (TCA) cycle (50). In other words,

CAFs are captured by engaging with cancer cells and

reprogrammed to a glycolytic phenotype. thereby supplying

metabol ic intermediates tha t enable cancer ce l l s to

compensatively generate energy via mitochondrial OXPHOS (51,

52). Glycolysis is the main metabolic mode of CAFs due to the

increased expression of HIF-1a and monocarboxylate transporter

(MCT) 4 (53). HIF-1a is a key cytokine that enables cells to adjust

to hypoxic environments and undergo metabolic changes by

promoting glycolysis through genes which encode glucose

transporter proteins and enzymes of the glycolytic pathway (54).

MCTs are passive transporter proteins that transport

monocarboxylic acid ions and are highly expressed in tumors

(55). MCT1 and MCT4 exhibit proton-coupled symport, with

MCT4 generally involved in the export of lactate and MCT1

generally involved in the import of lactate (56). The expression of

two glycolytic enzymes, lactate dehydrogenase A and pyruvate

kinase M2, was found to be increased in CAFs (57). Furthermore,

when pancreatic cancer cells were co-cultured with CAFs, MCT1

protein, succinate dehydrogenase and fumarate hydratase

expression increased, demonstrating the metabolic coupling

existing between CAFs and cancer cells (57). Positive feedback of

Caveolin-1-ROS signaling prompted activation of PSCs and

upregulated the expression of glycolytic enzymes, and the

transporter protein MCT4, and downregulated the expression of

OXPHOS enzymes and the transporter protein MCT1, while the

protein expression in cancer cells was completely opposite (49).

Moreover, MiR-21 promotes glucose uptake and lactate secretion

by CAFs, indirectly enhancing pancreatic cancer cell invasion (58).

Interestingly, CAFs also show heterogeneity in metabolic pathways,

for iCAF had the highest metabolic activity and was more biased to

glycolysis, whereas myCAF scored higher in OXPHOS than iCAF

and apCAF (28).
Amino acid metabolism

Glutamine, an amide of glutamate, is an essential origin of

carbon and nitrogen in pancreatic cancer (59). Son et al. found that

PDAC cells metabolized glutamine using a specific aspartate

transaminase (glutamic-oxoacetic transaminase 1)-mediated

pathway to produce biomass precursors and redox power (60).

Glutamine also serves as an important energy source for CAFs and

is metabolized and secreted into metabolites such as glutamate, a-
ketoglutarate, aspartate and malate (53). Both Netrin G1 (NetG1)

on NetG1+ CAFs and NetG1 ligand on tumor cells were highly

expressed, resulting in the provision of glutamate/glutamine to

tumor cells (61). NetG1 acts as a key regulator involved in ECM

deposition, survival under low nutrient conditions and

immunosuppression through the regulation of downstream

pathways p38/FRA1 and AKT/4E-BP1 (61). PSCs increase

glutamine synthetase expression by regulating the Wnt/b-catenin/
TCF7 axis, thus promoting glutamine synthesis (62).

In addition to glutamine, alanine also acts as an important

carbon source in the TCA of tumor cells. Tumor cells stimulate
Frontiers in Immunology 04
CAFs to catabolize metabolized proteins through autophagy to

produce alanine and transaminate it to pyruvate (63). When

glutamine is depleted, CAFs take up extracellular proteins

through CaMKK2-AMPK-RAC1 s igna l ing-dependent

macropinocytosis and supply the produced amino acids to tumor

cells (64). The macropinocytosis recovers CAFs to restore the

production of collagen VI and fibronectin which is inhibited

during glutamine depletion (64). In addition, the study also

showed that protein-derived alanine was a secreted amino acid

when serum albumin was cultured as a nutritional source for PSCs

(64). It was demonstrated that pancreatic cancer cells and PSCs

express SLC38A2 and SLC1A4 respectively to perform alanine

exchange so as to meet the high alanine requirement of

pancreatic cancer cells (65).

Furthermore, branched-chain amino acids (BCAAs), also

known as leucine, isoleucine and valine, participate in metabolic

reprogramming and crosstalk in CAFs and pancreatic cancer cells

(66). Branched-chain amino acid transaminases (BCATs) can

reversibly catalyze the transamination reaction of BCAAs to

branched-chain a-keto acids (BCKAs) (67). TGF-b secreted by

cancer cells upregulates BCAT1 activity by activating SMAD5 in

CAFs, thereby increasing the secretion of BCKAs, which are

supplied to cancer cells for BCAA synthesis (68).
Lipid metabolism

Lipids form an important part of cellular biological membranes

and building blocks, and are also involved in signaling and

supplying energy (69). Multiple studies have demonstrated the

existence of lipid metabolic reprogramming of CAFs in different

cancer types, but regrettably there are not enough research in

pancreatic cancer (70–72). PSCs undergo lipidomic remodeling

upon activation, releasing lysophosphatidylcholine in large

quantities to promote migration and proliferation of PDAC cells

via the lysophosphatidylcholine-autotaxin-lysophosphatidic acid

axis (73). Recently, a study found that activation of one PSC

subpopulation is associated with elevated expression of

lipoprotein-uptake very low-density lipoprotein receptor, which

drives the expression of IL-33 (74). ROS-induced, endoplasmic

reticulum stress-dependent increase in IL-33 expression mediates

innate lymphoid type-2 cells activation, which induces proliferation

and activation of PSCs, thereby stimulating pancreas fibrosis (74).
Crosstalk: Complex communication
between CAFs and tumor cells

CAFs take part in multiple stages of tumor progression,

enabling bidirectional communication with other cells in the

TME through intercellular contacts, secreted proteins and

extracellular vesicles (75). Tumor cells signal CAFs to activate or

secrete cytokines and matrix proteins, while CAFs promote drug

resistance, proliferation, and migration of tumor cells. Here, we
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mainly summarize the signals from tumor cells that are significant

for fibrosis.
Extracellular vesicles

Extracellular vesicles are a form of intercellular communication

that is currently of great interest. They are classified as prostasomes,

apoptotic bodies, microvesicles and exosomes due to their size and

origin (76). Exosomes contain a variety of nucleic acids(DNA,

microRNA, lncRNA, circRNA), proteins, lipids and cytokines (77).

We mention the ability of cancer cells to initiate metabolic

reprogramming of CAFs, allowing them to provide nutrients to

cancer cells. CD9, a specific exosome marker present on the surface

of extracellular vesicles rich in annexin A6, enhances p38 mitogen-

activated protein kinase signaling to induce PDAC cell migration (78,

79). Exosomes derived from PDAC cells expressing oncogenic KRAS

mutants contain Survivin, imparting cell survival benefits to nearby

CAFs (80). MiR-1246 and miR-1290 contained in pancreatic cancer

cell-derived exosomes promote the expression of profibrogenic genes

in PSCs (81).
Secreted proteins

Mutated KRAS induces upregulation of plasminogen activator

inhibitor-1 (PAI-1) in pancreatic cancer cells which induces PSCs

activation via LRP-1/ERK/c-JUN pathway to promote

immunosuppression and fibrosis (82). Meanwhile, PAI-1 expression

was regulated by acyl-CoA synthetase long-chain 3, which may be

associated with the regulation of TGF-b (83). High expression of PAI-1
not only promoted PSCs activation but also was associated with a high

tumor infiltration of M2 macrophages (83). TGF-b1 represents a

critical factor in the activation of PSCs. The secretion of TGF-b1 in

pancreatic cancer cells is modulated by proteasome activator subunit 3-

mediated activation protein-1, thus regulating the proliferation of PSCs

(84). The induction of CAFs by TGF-b1 can be indirect, mediated

through extracellular matrix proteins and growth factors such as

PDGF, vascular endothelial growth factor (VEGF) and IL-6 (85).

PDGF activates the hippo pathway and adds phosphorylation of yes-

associated protein 1 in PSCs, and yes-associated protein 1 regulates the

transcription of genes triggered by the TGF-b1/SMAD pathway, such

as connective tissue growth factor and IL-6 (86). It has been shown that

overexpression of galectin-1 stimulates the TGF-b1/Smad signaling

pathway, with tissue inhibitor of metalloproteinase-1 (TIMP-1)

expression increasing more than matrix metallopeptidase (MMP) 2,

resulting in inhibition of ECM degradation and increased expression of

fibronectin, collagen I and a-SMA (87). In addition, the paracrine of

galectin-1 enhances the tumorigenic capacity of pancreatic epithelial

cells (88). CXCL12/CXCR4 participates in the fibrotic process and the

conversion of fibroblasts to myofibroblasts in multiple organs (89).

Tumor-produced lactate causes epigenomic reprogramming when

mesenchymal stem cells differentiate into CAFs (90). The increase of

a-ketoglutarate causes C-X-C motif chemokine receptor 4 (CXCR4)
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promoter demethylation, leading to CXCR4 upregulation (90).

Increase of special AT-rich sequence-binding protein 1 (SATB-1)

expression in pancreatic cancer cells by CAFs through the SDF-1/

CXCR4 axis further promotes CAFs activation (91). Furthermore, it

has been established that tumor cells and CAFs crosstalk through

nuclear factor KB (NF-kB) activated by paracrine-IL-1b. NF-kB
activation by tumor-secreted IL-1b induces the expression of ESE3 in

PSCs, then epithelium-specific E-twenty six factor 3 (ESE3) binds to

the promoters of a-SMA, collagen-I and IL-1b, activating PSCs and

promoting PDAC fibrosis (92). PDAC cells secrete IL-1b to activate IL-
1 receptor-associated kinase 4 (IRAK4) in CAFs, forming an IL1b-
IRAK4 feedforward circuitry that initiates fibrotic function in

CAFs (93).
Autophagy

Autophagy refers to a catabolic process to maintain intracellular

homeostasis (94). But there is growing proof that autophagy takes part

in the process of cellular secretion (95). Meanwhile, tumor cells are

capable of secreting cytokines to induce autophagy in PSCs (63, 96).

TGF-b1/Smad signaling-mediated autophagy promotes the conversion

of fibroblasts to CAFs and facilitates their glycolysis (97). Activation of

PSCs depends on autophagy, which is associated with the production

of ECM and the secretion of IL-6 (96). CAFs conduct ribosomal RNA

autophagy in a nuclear fragile X mental retardation-interacting protein

1 (NUFIP1)-dependent way, producing nucleosides available for

PDAC cells under low nutrient conditions and initiating metabolic

reprogramming (98). Collagen secretion can be facilitated by the

mitophagy-regulated synthesis of proline in CAFs (99). In addition, a

recent study found that PDAC cells generate lnc-FSD2-31:1 to promote

the autophagy of CAFs viamiR-4736, thereby inhibiting the activation

of CAFs (100).
Impact of crosstalk between CAFs and
cancer cells on fibrosis

In TME, CAFs secrete large amounts of ECM proteins and

remodeling enzymes to reorganize and stiffen the matrix (101). The

main contribution of tumor cells to ECM deposition is the

recruitment and activation of stromal cells. Multiple pathways of

intercellular communication including protein secretion and

extracellular vesicles enable pancreatic cancer cells to regulate the

cellular activities of CAFs. Cancer cells are involved in the cross-

linked sclerosis and degradation of ECM, aiding their invasion and

migration from different aspects. Pancreatic cancer cells rely on

multiple cytokines such as TGF-b, IL-1, sonic hedgehog (SHH), and

microRNAs to activate CAFs and thus promote ECM stiffness

(102). Meanwhile, pancreatic cancer cells also produce enzymes

to promote matrix protein cross-linking in ECM such as lysyl

oxidase-like protein 2 (LOXL2) (103). We summarize the

cytokines and modes of action associated with fibrosis during the

crosstalk between pancreatic cancer cells and CAFs (Table 1).
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Obesity: An accomplice to pancreatic
cancer fibrosis

Obesity is a critical independent risk factor for pancreatic

cancer and is consistently associated with the development of

pancreatic cancer. Obesity leads to hypertrophy and hyperplasia

of adipocytes and causes chronic inflammation of the adipose tissue

around or within the pancreas, which promotes tumor progression

(112). And along with the advancement of pancreatic cancer stages,

patients with pancreatic cancer experience adipose tissue loss as one

of the manifestations of cachexia (113). Adipose tissue is divided

into white, brown, and beige adipose tissue, while white adipose

tissue is further classified into subcutaneous white adipose tissue

and visceral white adipose tissue, with the latter playing a more

pivotal role in the progression of pancreatic cancer (114). The

cellular composition of white adipose tissue includes adipocytes,

preadipocytes, immune cells, pericytes, endothelial cells, and

multipotent stem cells (115). Some researches demonstrated the

correlation of adipose tissue with fibroblast transformation and the

formation and remodeling of ECM.
Frontiers in Immunology 06
On the one hand, cells in adipose tissue have the ability to be

reprogrammed intoCAFsbypancreatic cancer cells.Adrenomedullin in

the exosomes of pancreatic cancer cells promotes lipolysis in adipocytes

(116). The lipolysis may explain the weight loss of the patients and

represents aphenomenonofadipocytesdedifferentiation.Consequently,

the dedifferentiation possibly connects the cachexia with fibroplasia in

pancreatic cancer. When co-cultured with pancreatic cancer cells, 3T3-

L1adipocytesdedifferentiated tofibroblast-like cells, losing lipiddroplets

and expressing S100A4,MMP11, collagen I anda-SMA (117, 118). The

reprogramming is closely correlated with WNT5a signaling (119).

Adipose tissue-derived stromal cells can also be recruited to

extrapancreatic invasive lesions and differentiate into CAFs, producing

amore rigid ECM (120).Mucin 5AC secreted by pancreatic cancer cells

recruitsmesenchymal stemcells (MSCs) to a-SMA+CAFs (121).Activin

A produced by PDAC cells was found to be associated with the loss of

adipose tissue and the promotion offibrosis, with an induction of trans-

differentiation of white adipocytes into fibrotic cells (122). On the other

hand, adipocytesmediate fibrosis by crosstalk with neighboring cells via

paracrine secretion. Adipocytes secrete IL-1b to recruit neutrophils,

thereby enhancing the activation of PSCs (123).
TABLE 1 Overview of the impact of crosstalk between CAFs and tumor cells on fibrosis.

Factor Source Mode of
Action

Recipient
cells

Functional Relevance Reference

PAI-1 Pancreatic
cancer cells

Paracrine PSCs Activates PSCs and promotes fibrosis (82)

TGF-b1 Pancreatic
cancer cells

Paracrine PSCs Promotes proliferation of PSCs (84)

IL-1a PDAC cells Paracrine PSCs Promote ECM remodeling (104)

IL-1b PDAC cells Paracrine PSCs promotes PSCs activation and expression of a-SMA, collagen I and IL-1b
and activates CAFs to promote fibrosis

(92, 93)

PDGF Pancreatic
cancer cells

Paracrine PSCs Induces PSCs activation and promotes desmoplasia formation (105)

SHH Pancreatic
cancer cells

Paracrine PSCs induces the expression of Gremlin 1 in PSCs (106)

SATB-1 Pancreatic
cancer cells

Paracrine CAFs Maintains CAFs identity and promotes the activation of CAFs (91)

CXCL8 Pancreatic
tumor cells

Paracrine CAFs maintains the survival of CAFs and further promotes FGF-2 production. (107)

Oncogenic Kras-
induced factors

PDAC cells Paracrine CAFs Up-regulates the expression of CXCR2 and CXCR2 ligands in CAFs and
induces the conversion of CAFs into iCAFs

(108)

miR-4736 PDAC cells Extracellular
vesicles

CAFs Activates autophagy in CAFs, inhibits CAF activation and reduces
fibrosis.

(100)

miR-155 Pancreatic
cancer cells

Microvesicles CAFs Reprograms neighboring normal fibroblasts into CAFs (109)

miR-1246, miR-1290
and miR-21-5p

Pancreatic
cancer cells

Exosomes PSCs Promote the activation of PSCs and the production of collagen (81)

Lin28B Pancreatic
cancer cells

Exosomes Pancreatic
cancer cells

Recruits PSCs (110)

CCN2 or miR-21 PSCs Exosomes PSCs Promotes collagen expression (111)
f

PAI-1, plasminogen activator inhibitor-1; PSC, pancreatic stellate cells; TGF-b1, transforming growth factor-b1; IL, interleukin; ECM, extracellular matrix; a-SMA, a-smooth muscle actin; CAF,
cancer-associated fibroblast; PDGF, platelet derived growth factor; SHH, sonic hedgehog; SATB-1, special AT-rich sequence-binding protein 1; FGF-2, fibroblast growth factor 2; PDAC,
pancreatic ductal adenocarcinoma; iCAF, inflammatory CAF; Lin28B, lin-28 homolog B; CCN2, connective tissue growth factor.
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The therapy progress
of reprogramming

Ideas for targeting CAFs as therapeutic targets in pancreatic

cancer for clinical benefit are diverse including depletion of CAFs,

reprogramming CAFs to make them normal, and blocking signals

from CAFs (Figure 3) (124). However, studies concerning the

depletion of CAFs demonstrated that this treatment could lead to

the exact opposite of what was expected, a facilitation of tumor

progression (125, 126). Reprogramming CAFs to the stationary case

is currently considered a feasible approach. It has been preliminarily

demonstrated to be viable to normalize CAFs through endogenous

substances, gene regulation, agents and intercellular interactions.

Lipoxin A4 reversed the activation of PSCs to CAFs for matrix

reprogramming, with decreased expression of a-SMA and collagen

I (127). The increase of retinoic acid was able to inhibit CAFs and

reduce the expression of a-SMA and FAP (128). Zhao et al.

constructed a targeted drug delivery system based on red blood cells

vesicles partial protection to deliver retinoic acid to CAFs to disrupt

the Golgi apparatus and thereby inhibit the secretion of proteins such

as MMP2, MMP9 and CCL2 (129). In addition, all-transretinoic acid

inactivated PSCs by inhibiting Yes-associated protein 1 (YAP1) (130).

Vitamin D and its receptor were involved in stromal reprogramming

as well by inactivating CAF/PSC (131, 132). The activation of p53

could directly induce the accumulation of cytoplasmic lipid droplets in

PSCs, thus effectively reprogramming PSCs to a quiescent state (133).

Integrin subtype a 11 was also considered as a viable target for

controlling the phenotype and activation of PSCs (134). Several

studies have shown that metformin can reprogram PSCs to improve

desmoplasia (135–137). Metformin inhibited TGF-b1 secretion by

activating AMPK in pancreatic cancer cells, leading to blocking the

activation of PSCs (136). In addition, eribulin also showed potential

for normalizing CAFs due to its simulation of TGF-b downregulation

(138). Mechanical regulation of intercellular interactions such as N-

cadherin and N-cadherin ligand linkages could reprogram PSCs to a

stationary state, however not in all cases, as this reprogramming was

associated with mechanical dosing (139). Unfortunately, studies on

the regulation of the metabolism of CAFs are scarce, because the

mechanism of metabolic reprogramming of CAFs is still not entirely

clarified. Chen et al. designed a liposome carrying hydroxychloroquine

and paclitaxel to target autophagy in CAFs, with advantages for

crosstalk and fibrosis inhibition (140). A biomimetic nanocarrier

was devised to disrupt metabolic crosstalk by blocking lactate

production in both CAFs and cancer cells (141).
Discussion

CAF synthesizes, remodels and crosslinks ECM to increase

stiffness leading to the generation of a dense fibrotic tumor stroma

(101). CAFs act in pancreatic cancer progression as an essential

component of the stroma. Five subtypes of CAFs have been identified
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so far, namely myCAFs, iCAFs, apCAFs, meCAFs and csCAFs,

showing differences in expression and function in pancreatic

cancer. This is still not the endpoint of the classification of CAFs,

and the subtypes may contain subpopulations. As we mentioned

before, different subpopulations of iCAFs may have opposite effects

on tumor development. It implies that therapies targeting CAFs need

more specific biomarkers. Different subtypes of CAFs relate to the

discrepant prognosis of pancreatic cancer patients (24, 28).

Cells in the TME interact with each other to co-construct a

microenvironment suitable for tumor survival. CAFs conduct

metabolic reprogramming to provide available metabolites to

tumor cells (Table 2). Oxidative stressed-driven metabolic changes

in CAFs are known as the reverse Warburg effect, manifested by

glycolysis as the main mode of metabolism and increased utilization

of glutamine. Multiple forms of crosstalk including direct contact,

extracellular vesicles, paracrine and autophagy-dependent secretion

between tumor cells and CAFs activate CAFs for fibrosis on the one

hand and enhance tumor cells proliferation and migration on the

other. Cellular communication also exists between adipocytes and

other cells in the TME. Lipolysis occurs when adipocytes

dedifferentiate into CAFs, which perhaps partially explains both the

cachexia and desmoplasia.

Experimentally, depletion of CAFs proved to be an infeasible

treatment. Reprogramming CAFs to a normal state or blocking

signaling may be promising ways to target pancreatic cancer
FIGURE 3

Feasible design ideas for targeting fibrosis. Targeting CAFs in
metabolic reprogramming and signaling communication with
cancer cells is considered as a promising therapeutic modality.
Targeting markers of CAFs can inhibit CAFs, but there is a problem
of non-specificity and further search and research is still needed.
Targeting ECM elimination requires limitations, as sustained
defibrosis implies enhanced invasion. In addition, ECM protein
interactions may become an emerging therapeutic target. CAF,
cancer-associated fibroblast; FAP, fibroblast activation protein; a-
SMA, a-smooth muscle actin; PDGFR, platelet-derived growth factor
receptor; FSP, fibroblast-specific protein; PDPN, podoplanin; NG2,
nerve/glial antigen 2; ECM, extracellular matrix; SPARC, secreted
protein acidic and rich in cysteine.
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fibrosis. In conclusion, CAFs are important targets to explain

fibrosis and drug resistance in pancreatic cancer, but further

studies on the heterogeneity of CAFs and the mechanisms of

crosstalk are still needed to provide more basis for targeting CAFs

for therapy.
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