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Epigenetic control of CD1D
expression as a mechanism of
resistance to immune
checkpoint therapy in poorly
immunogenic melanomas

Mona Meng Wang1,2, Saara A. Koskela1, Arfa Mehmood1,
Miriam Langguth1, Eleftheria Maranou1

and Carlos R. Figueiredo1,3*

1Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine,
University of Turku, Turku, Finland, 2Singapore National Eye Centre and Singapore Eye Research
Institute, Singapore, Singapore, 3InFLAMES Research Flagship Center, University of Turku,
Turku, Finland
Immune Checkpoint Therapies (ICT) have revolutionized the treatment of

metastatic melanoma. However, only a subset of patients reaches complete

responses. Deficient b2-microglobulin (b2M) expression impacts antigen

presentation to T cells, leading to ICT resistance. Here, we investigate

alternative b2M-correlated biomarkers that associate with ICT resistance. We

shortlisted immune biomarkers interacting with human b2M using the STRING

database. Next, we profiled the transcriptomic expression of these biomarkers in

association with clinical and survival outcomes in the melanoma GDC-TCGA-

SKCM dataset and a collection of publicly available metastatic melanoma cohorts

treated with ICT (anti-PD1). Epigenetic control of identified biomarkers was

interrogated using the Illumina Human Methylation 450 dataset from the

melanoma GDC-TCGA-SKCM study. We show that b2M associates with CD1d,

CD1b, and FCGRT at the protein level. Co-expression and correlation profile of

B2M with CD1D, CD1B, and FCGRT dissociates in melanoma patients following

B2M expression loss. Lower CD1D expression is typically found in patients with

poor survival outcomes from the GDC-TCGA-SKCM dataset, in patients not

responding to anti-PD1 immunotherapies, and in a resistant anti-PD1 pre-clinical

model. Immune cell abundance study reveals that B2M and CD1D are both

enriched in tumor cells and dendritic cells from patients responding to anti-PD1

immunotherapies. These patients also show increased levels of natural killer T

(NKT) cell signatures in the tumor microenvironment (TME). Methylation

reactions in the TME of melanoma impact the expression of B2M and SPI1,

which controls CD1D expression. These findings suggest that epigenetic

changes in the TME of melanoma may impact b2M and CD1d-mediated

functions, such as antigen presentation for T cells and NKT cells. Our

hypothesis is grounded in comprehensive bioinformatic analyses of a large

transcriptomic dataset from four clinical cohorts and mouse models. It will

benefit from further development using well-established functional immune

assays to support understanding the molecular processes leading to epigenetic
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control of b2M and CD1d. This research line may lead to the rational

development of new combinatorial treatments for metastatic melanoma

patients that poorly respond to ICT.
KEYWORDS

immune checkpoint therapy, DNA methylation, b2M, CD1d, melanoma, MHC-I, SPI1,
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1 Introduction
Immune checkpoint therapies (ICT) can improve cancer

patient survival by reinforcing the effector capabilities of

antitumor T cells. Unfortunately, many patients are resistant to

ICT. An important resistance mechanism to ICT is the lack of

infiltration of antitumor immune cells, such as T lymphocytes, and

higher frequency of immune-suppressive cells, such as myeloid-

derived suppressor cells (MDSCs) (1). For that reason, these tumors

are classified as immunologically “cold” tumors. Cold tumors are

poorly immunogenic and often don ’t respond to ICT.

Immunologically “hot” tumors, however, have higher infiltration

of antitumor T lymphocytes and are often more responsive to

ICT (1).

The absence of tumor-infiltrating lymphocytes (TILs) and the

presence of MDSCs in the tumor microenvironment (TME) can be

the consequence of low tumor mutational burden (TMB). However,

low TMB does not always translate into poor immunogenicity, and

tumor-dependent resistance mechanisms may repress the

generation of antitumor T cells leading to a lack of TILs (1).

Resistance mechanisms associated with a deficient antigen

presentation strongly impact the generation and expansion of

tumor-specific T-cells. These mechanisms may be innate to the

patients (refractory patients) or acquired (relapsed patients) after

initial treatment (2, 3).

Tumors with innate or acquired resistance to ICT often develop

features of cold tumors, such as lack of tumor-specific antigens,

immune suppression, and low immune cell infiltration (1, 4, 5),

governed by different cellular and molecular processes, including

those impacting antigen presentation. For instance, the major

histocompatibility molecules of class I and II (MHC-I and II),

including their subcomponents, such as b2-microglobulin (b2M),

encoded by the B2M gene in the human (6, 7). Evidence of ICT

resistance shows that deficient b2M expression impacts the cell

surface distribution of MHC-I, which impedes antigen presentation

to the infiltrating antitumor cytotoxic T lymphocytes (CTLs) (2, 8).

However, MHC-I/II are not the only molecules responsible for

presenting tumor antigens by antigen-presenting cells (APCs), and

b2M has been previously described to interact with other MHC

family molecules, such as CD1d, CD1b, and the neonatal Fc

receptor FcRn (FCGRT gene) (9–12). Notably, the MHC-I-like

protein CD1d is constitutively expressed by tumor and dendritic

cells (DCs), responsible for the presentation of non-peptide
02
antigens, such as lipids and small metabolites, to natural killer T

(NKT) cells (13, 14). In addition, glycosphingolipids, such as the

ganglioside GD3, have been demonstrated to contribute

substantially to the immunogenicity of metastatic melanoma and

are presented to NKT cells through CD1d by DCs, coordinating

antitumor responses (15–19). More importantly, NKT cells have

been recently described as a critical component of ICT-induced

antitumor mechanism since these cells can also express immune

checkpoint regulators, such as PD1 and others (20).

Taking into consideration recent findings on the epigenetic

impact on b2M and associated faults in MHC-dependent peptide

presentation leading to ICT resistance, we sought to investigate

whether b2M deficiencies could also indicate deficiencies in other

MHC family molecules, such as CD1d, and consequently, pointing

a potential deficiency in the presentation of tumor glycoproteins

and glycolipids as a contributing factor to ICT resistance. In this

study, we revisited the tumor transcriptomic dataset of the skin

cutaneous melanoma cohort (SKCM) of The Cancer Genome Atlas

(TCGA) study (21), which is a part of The Genomic Data

Commons (GDC). The GDC is a data-sharing platform

developed by the National Cancer Institute (NCI) to support

cancer research and hosts the TCGA project, which includes a

large-scale collaborative effort to characterize the genomic and

molecular features of multiple types of cancer, including

melanoma. The TCGA datasets have been normalized and are

ready to be used by integrated analysis platforms (such as Xena

(22)) and re-published. In parallel, we revisited the publicly

available transcriptomic datasets of different anti-PD1 metastatic

melanoma cohorts (23–26) and concatenated the data using a TPM

normalization protocol.

We evaluated whether the differential expression of B2M and its

correlated genes (CD1D, CD1B, and FCGRT) is associated with poor

responses to anti-PD1 in metastatic melanoma. We provide further

evidence that epigenetic changes in the TME of melanoma tumors

have a direct impact on B2M and an indirect impact on CD1D gene

expression (through SPI1) but not on CD1B and FCGRT expression

in melanoma patients from the TCGA dataset. This evidence

suggests that methylation of B2M and SPI1 might impact antigen

presentation to T and NKT cells, respectively, ultimately

suppressing local antitumor immune responses. These findings

introduce new resistance mechanisms to anti-PD1 ICT and

promote the rational development of new combinations targeting

the epigenetic control of DCs/NKT activation to overcome

resistance to anti-PD1 ICT in metastatic melanoma.
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2 Justification of the hypothesis

2.1 b2M physically interacts with proteins
associated with the presentation of self
and non-self-glycolipids and predicts their
differential clustering in metastatic
melanoma

b2M is an essential molecular partner of the MHC-I complex

(HLA class I in human and MHC-I in mouse). Such physical

interaction is critical for the HLA/peptide complex formation for

further priming (presentation) to antitumor T cells. Therefore, we

sought to analyze what other clusters of molecules could also

physically interact with b2M and potentially have a functional

impact on cancer immunity and ICT outcomes. First, we

performed a protein-protein interaction network functional

enrichment analysis of b2M with neighboring proteins using

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) (27). STRING is a bioinformatics database and web

resource that provides information about protein-protein

interactions, functional associations, and networks to evaluate the

interaction of new potential biomarkers and systems immunology.

STRING collects and integrates data from various sources,

including experimental studies, computational predictions, and

public databases. In this study, STRING is used to predict

protein-protein interactions, including direct (physical) and

indirect (functional) associations.

The functional enrichment analysis reveals that b2M has more

interactions among HLA-related proteins than expected for a

random set of proteins of the same size and degree distribution

drawn from the human genome, suggesting that initially obtained

clusters of proteins are at least partially biologically connected as a

group. Expected connectivity enrichment was added to a network of

20 proteins. The k-means clustering method was applied to the

network revealing three main clusters of proteins (red, green, and

blue clusters) (Figure 1A).

As expected, the main b2M interacting cluster comprises

proteins associated with antigen presentation via HLA class I to T

cell receptors. Different HLA class I types are found in the cluster, as

well as LCK (lymphocyte-specific protein tyrosine kinase), a protein

kinase with essential roles in the function of mature T-cells once

activated via antigen presentation by HLA class I molecules, LILRB

(leukocyte immunoglobulin-like receptor B), which recognizes a

broad spectrum of HLA-A, HLA-B, HLA-C, and HLA-G alleles,

and natural killer (NK) cell antigens (KLRD1 or CD94) and KLRC1

(killer cell lectin-like receptor C1), which recognizes HLA class 1 in

NK cells (29–31).

Notably, three other proteins showed high interaction scores

with b2M, and despite having similar biological functions (HLA-

associated antigen presentation), they cluster in an opposing edge of

the network (Figure 1A). These proteins include CD1d, CD1b, and

FCGRT, which characterize an edge in the network responsible for

binding self and non-self-glycolipids and presenting them to NKT

cells. Other edges include clusters 1 and 3, which roles are

associated with iron recycling metabolism in non-canonical T cell

activation and conjugation with APCs (32, 33), and calcium-
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dependent interaction of MHC class I with transporter associated

with antigen processing (TAP) (34), respectively. These findings

highlight b2M antigen-presenting functions other than those

strictly associated with HLA genes to be further investigated for

their potential antitumor immune responses in ICT outcomes.

Therefore, we focused our further analyses solely on the proteins

of the opposing edge of cluster 2, which is functionally associated

with the antigen presentation of glycolipids (CD1d, CD1b, and

FCGRT) (12, 19, 35).

To evaluate whether the expression of CD1D, CD1B, and

FCGRT is affected in a b2M-dependent manner in malignant

melanoma, we first obtained the expression levels of all b2M-

STRING-predicted interacting genes (n = 20) from the GDC-

TCGA-SKCM study. Next, melanoma patients were sorted

accordingly to B2M differential expression (high to low B2M

expression). The median of B2M expression was used as a

stratification cut-off. Then, we evaluated the correlation pattern of

the expression levels of these genes across patients with high and

low B2M expression and performed an unsupervised hierarchical

clustering (HC) of the correlation scores, which indicates the

clustering pattern of patients with high and low B2M levels

(clusters C1, C2, C3, etc.). As observed in the correlation matrix

of Figure 2B, different B2M-associated markers show a range of

correlation scores from -1 to +1, including HLA and NK genes with

high correlation scores with different markers. These scores are

useful to provide sufficient complexity to the matrix for further

unsupervised clustering analysis, of which purpose is not to evaluate

markers with higher or lower correlation but ultimately to observe

how the cluster identity of CD1D, CD1B, and FCGRT fluctuates in

the context of patients expressing high and low B2M, providing

further insight on whether antigen-presentation of glycolipids

governed by these genes (12, 19, 35) could be impacted by B2M

differential expression in melanoma.

Patients with high B2M expression have a correlation diversity

represented by clusters C1, C2, and C3 (Figure 1B, right correlation

heatmap), and patients with B2M loss have higher correlation

diversity, represented by clusters C1, C2, C3, C4, and C5

(Figure 1B, left correlation heatmap). We observed that gene B2M

correlation scores with CD1D, CD1B, and FCGRT is located in

different clusters between patients with high and low B2M

expression. B2M and CD1B correlation score ranks in cluster C2

from patients with high B2M expression, as opposed to cluster C3,

from patients with low B2M expression.

Similarly, B2M and FCGRT correlation scores shift from

cluster C3 (patients with high B2M expression) to cluster C5

(patients with low B2M expression). CD1D, however, remains in

the correlation cluster C2 in both groups. We also performed an

HC analysis of the expression scores of these genes across patients

with high and low B2M expression. Although CD1D, CD1B, and

FCGRT are distributed in the same expression clusters (E1, E2,

and E3), there is an evident dispersion of their expression score in

the heredogram cluster, which can be explained by the

downregulation of these genes in patients with B2M expression

loss (Figure 1C). Since CD1D, CD1B, and FCGRT distribution

across correlation (C) and expression (E) clusters are dispersed

following B2M differential expression, these findings indicate that
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1152228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1152228
the expression levels of these genes and their association may be

impacted in the same biological context governing B2M

differential expression in melanoma.

Further representation of the molecular interaction of b2M with

CD1d, CD1b, and FCGRT was obtained from the Protein Data

Bank (PDB), in which the crystal structure of b2M with CD1d,

CD1b, and FCGRT was previously determined (Figure 1D).
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Altogether, findings suggest that loss of b2M expression may not

only play an important role in MHC-I deficiency as a mechanism of

immunosuppression and ICT resistance (2, 8), but also impact

other important b2M-dependent biological processes, such as the

ones related to non-classical MHC proteins (CD1d, CD1b, and

FCGRT) are potentially impacted by b2M loss and may contribute

to ICT resistance.
A B

C

D

FIGURE 1

b2M expression associates with proteins responsible for antigen presentation of non-self-glycolipids in metastatic melanoma. (A) STRING network
representation of human b2M-associated proteins. Edges indicate that the proteins are part of a physical complex distributed in the subnetwork. Line
thickness indicates the strength of data support. The minimum required interaction score was set at 0.400. The k-means clustering method was
used for network distribution to three clusters. Dotted lines represent edges between clusters. (B) Unsupervised hierarchical clustering (HC) of
Spearman’s correlation scores between b2M expression levels and STRING-predicted b2M physical partners expression levels from metastatic
melanoma samples from GDC-TCGA-SKCM study. Heatmaps represent positive correlation (up to 1, red), low correlation (close to 0, white), and
negative correlation (up to -1, blue) scores in patients with low (left) and high (right) b2M expression. Expression cutoff: median of b2M expression in
the cohort. (C) Unsupervised hierarchical clustering (HC) of STRING-predicted b2M physical partners. Columns are clustered using Euclidian/Ward
metric/method. Paired color maps indicate raw expression values. (D) Crystal structure of b2M conjugated with CD1d (PDB: 2PO6), CD1b (PDB:
1GZP), and FCGRT (PDB: 5WHK) (28).
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2.2 CD1d downregulation is associated
with poor metastatic melanoma outcome
and resistance to ICT

Since b2M is an essential component of MHC-I antigen

presentation to CD8+ T cells in the context of tumor immunity

(36), and downregulation of HLA-I has been associated with

deficient expression of b2M in ICT-resistant metastatic

melanoma patients (8), we sought to evaluate whether CD1d,

CD1b, and FCGRT, could also be associated with b2M-dependent

ICT resistance. An expanded analysis of the GDC-TCGA-SKCM

study confirmed that loss of B2M is significantly associated with

poor survival outcomes (Figure 2A, upper panel). Then, we

normalized and combined four transcriptomic publicly available
Frontiers in Immunology 05
cohorts of metastatic melanoma patients receiving anti-PD1

therapies and evaluated the survival responses regarding B2M

differential expression. We confirmed that B2M loss is also

strongly associated with reduced survival in patients treated with

anti-PD1 therapies (Figure 2A, lower panel). Notably, a similar

pattern of survival outcome was also observed for CD1D and CD1B

expression profiles but not for FCGRT (Figure 2A). These findings

suggest that loss of B2M may not only impact the biological

processes related to the priming of CD8+T cells but also impact

other b2M-dependent biological processes, such as CD1-associated

antigen presentation, contributing to ICT resistance.

We performed an alternative analysis of the differential

expression of CD1D, CD1B, and FCGRT between responders (CR

and PR) and non-responders (SD and PD) to ICT outcome as
A B

D E F

G

C

FIGURE 2

CD1d loss is associated with poor response to ICT. (A) Kaplan–Meier plots of overall survival for GDC-TCGA-SKCM metastatic melanoma cohort
(upper panel) and anti-PD1 treated metastatic melanoma patients (bottom panel). The B2M low expression (blue lines) and high expression (red lines)
groups were compared by the two-sided log-rank (Mantel-Cox) test. Cutoff curves were defined by their best fit in the Mantel-Cox test. (B)
Expression levels of assigned genes (B2M, CD1D, CD1B, and FCGRT) in patients with metastatic melanoma treated with anti-PD1 ICT, responding or
not responding to anti-PD1 treatment (pretreatment biopsies, n = 271). Two-tailed, unpaired t-test (* p < 0.05; n.s.: not significant). (C) Normalized
mRNA expression and methylation beta levels obtained from Illumina Human Methylation 450 from GDC-TCGA-SKCM study. Methylation heatmaps
were obtained from the promoter region of the corresponding gene. The lower left heatmap shows the euclidean distribution of Spearman’s rank
correlation between normalized gene HTseq-FPKM-UQ scores and Illumina Human Methylation 450 beta values from the GDC-TCGA-SKCM study.
Red arrows indicate significant negative correlation scores between B2M and cg cg18696027 methylation scores from B2M, and between CD1D and
cg06147863 methylation scores from SPI1. The lower right plot shows the sigmoidal Pearson correlation curve between SPI1 and the methylation in
the SPI1 promoter region. (D) Kaplan–Meier plots of overall survival for the GDC-TCGA-SKCM metastatic melanoma cohort for methylation levels of
B2M and SPI1 genes in their promoter regions. The low methylation (blue lines) and high methylation (red lines) groups were compared by the two-
sided log-rank (Mantel-Cox) test. Cutoff curves were defined by their best fit in the Mantel-Cox test. (E) Comparison of gene expression (B2M,
CD1D, and CD1B) and cell signature (DCs and melanoma cells) rations between metastatic melanoma responders and non-responders to ICT. Two-
tailed, unpaired t-test (*p < 0.05; n.s.: not significant). Response defined by clinical criteria. (F) Immunohistochemistry representation of positive
stainings for b2M, CD1d, and CD1b in malignant melanoma tissues were obtained from the Human Protein Atlas. b2M antibody code: CAB002572
and patient ID: 744. CD1d antibody code: CAB016107 and patient ID: 1369. CD1b antibody code: HPA021824 and patient ID: 1369. (G)
Representative images of quantified tissue areas and automated quantification of b2M, CD1d, and CD1b expression in the cell membrane (in red) and
cytosol (in blue) of malignant melanoma tissues from the Human Protein Atlas.
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previously described (37). Notably, only CD1D and B2M differential

expression significantly predict response to anti-PD1 following the

clinical response criteria (Figure 2B). These findings reinforce a

potential CD1D-dependent role associated with B2M loss in ICT-

driven resistance rather than solely regulating the priming of CD8+

T cells through MHC class-I. Indeed, previous evidence suggests

that B2M is important to provide physical stability to CD1d protein

and that downregulation of B2M would drive the CD1d

degradation (38).

Similar survival outcome predictions by B2M and CD1D

suggest that differential expression of these genes might be

governed by a shared mechanism of gene expression control

rather than solely a protein-protein relationship. Epigenetic

changes have been suggested as a general mechanism of gene

expression control in the context of the ICT resistance (2), such

as DNA methylation, which recruits proteins to repress gene

expression or inhibits the binding of a transcription factor to the

DNA (39).

Studies from the past decade have shown that epigenetic

mechanisms largely influence the fate of immune cell

differentiation in the cancer (40). Moreover, previous evidence

shows that DNA methylation predicts response to ICT in

metastatic melanomas (41). Therefore, we sought to evaluate

whether B2M and CD1D gene expression is governed by

epigenetic changes associated with DNA methylation in the

tumor microenvironment of melanoma. We revisited the

methylome profile of metastatic cutaneous melanoma patients

from the GDC-TCGA study. We observed that the expression of

B2M is negatively correlated with increased methylation of the

promoter region cg18696027 (Figure 2C, upper panel), which is also

significantly associated with a poor survival response to ICT

(Figure 2D, left).

Interestingly, CD1D differential expression control is not

correlated to differential methylation in the promoter region of

CD1D (Figure 2C, upper panel). However, we found that the

differential expression of the transcription regulator of CD1D, the

transcription factor SPI1, is negatively correlated with methylation

levels at the promoter region (Figure 2C, upper panel), which is also

significantly associated with a poor survival response to ICT

(Figure 2D, right). These findings suggest that epigenetic changes

in the TME might directly impact the expression of B2M and

indirectly impact the expression of CD1D through SPI1 regulation.

Next, we evaluated whether B2M, CD1D, and CD1B differential

expression are impacted at the tumor cells or DCs levels in the

TME. Using previously validated immune gene signatures from

bulk RNA datasets to estimate immune cell abundances (42), we

found that B2M and CD1D but not CD1B were significantly

enriched on both tumor and DCs cells from patients responding

to ICT (Figure 2E). Evidence of the expression profile of b2M,

CD1d, and CD1b in melanoma tissues can be found in the Human

Protein Atlas collection. Representative regions of positively stained

melanoma tissues are shown, where the cell nuclei are labeled in

blue color, and the protein is stained with brown color (Figure 2F).

According to the atlas annotation, b2M, CD1d, and CD1b proteins

are predominantly expressed in the cell cytoplasm and membrane.

The expression levels of these markers were then quantified as
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described previously (43). As opposed to the cell membrane region,

b2M, CD1d, and CD1b were mostly expressed in the cytosol of

malignant melanoma tissues (Figure 2G). The frequencies of

positively stained areas of the cell membrane and cytosol within

the tumor tissue are as follows: b2M 8.2% (cell membrane) and

39.84% (cytosol); CD1d 6.72% (cell membrane) and 53.83%

(cytosol); and CD1b 12.39% (cell membrane) and 55.18%

(cytosol) (Figure 2G). These findings suggest that the expression

profile of these genes in cellular components of the TME may be a

critical step to engage innate cellular mechanisms of response to

ICT, with potential further consequences, such as NKT

cell activation.

The differential expression of CD1D and SPI1 genes and their

impact on ICT outcome was further confirmed in the microarray

dataset of tumors, and TME obtained from mice with resistance or

response to anti-PD1 ICT, as previously described (44). From this

dataset, we observed no differences in the expression profile of these

genes within the tumors of mice with and without resistance to anti-

PD1 ICT (Figure 3A, left). However, CD1D and SPI1, but not B2M,

are significantly downregulated in the TME of anti-PD1 resistant

mice (Figure 3A, right). Moreover, in the TME level, B2M shows a

slight increase in the anti-PD1 resistant group, which does not

support the results obtained from the human dataset, potentially

given to natural differences existing cross-species (mouse and

human), at least in the level of B2M.

CD1d expression is crucial for presenting glycoprotein and

glycolipid antigens to NKT cells (19). As a result, NKT cells

become activated and exhibit enhanced survival and proliferative

capacity in response to a-GalCer-mediated activation (49).

Therefore, we interrogated the transcriptome of tumor biopsies

from the integrated cohort of human melanoma patients before

receiving anti-PD1 immunotherapies (23–26) to evaluate potential

differences in intratumor NKT cell levels. We used the metagene

expression values of the NKT cell signature to perform this analysis

as previously described (45). First, we used an NKT cell signature

validated in bulk and single-cell RNA datasets from healthy mouse

tissues, including skin, lymph nodes, and lungs (45), the preferential

sites for metastatic melanoma development. When interrogating

the expression levels of this multigene signature in our combined

cohort of anti-PD1 treated melanoma patients, we found that anti-

PD1 responsive patients show significantly higher intratumor levels

of NKT cell signature instead of non-responsive patients (Figure 3B,

left). Since recent evidence has shown that innate immune cells have

shared developmental programs in mice and humans (50), we also

performed a similar analysis using human multigene signatures

from stimulated and unstimulated human NKT cells described

elsewhere (46), and with shared gene composition found in the

mouse signature. Interestingly, we observed that only the multigene

signature from human NKT cells previously stimulated and with an

active phenotype are upregulated in patients responding to anti-

PD1 therapy (Figure 3B, center), as opposed to the signature from

unstimulated-inactive NKT cells (Figure 3B, right). These findings

suggest that NKT cells with an active phenotype may display an

important role following anti-PD1 therapies in patients with

malignant melanomas, given their known antitumor properties,

in which activation and frequency levels might be controlled by
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epigenetic changes regulating B2M, SPI1, and CD1D expression in

anti-PD1 resistant tumors.
3 Discussion

In this article, we revisited the molecular interaction of b2M with

CD1d, CD1b, and FCGRT and its implication for ICT response.

Evidence for a new mechanism of ICT resistance is provided by

differential expression of b2M/CD1d axis dependent on epigenetic

alterations in the TME of metastatic melanoma, which is significantly

associated with poor outcomes of metastatic melanoma patients

receiving anti-PD1 immunotherapies (Figure 4).

Existing evidence of physical interactions between b2M with

CD1d, CD1b, and FCGRT suggests that these interactions may play

an important functional role in the context of APCs, supported by

the fact that b2M deficiencies significantly reduce the tumor antigen

presentation viaMHC-I, resulting in poor ICT outcome (2). Indeed,

In the absence of b2M protein, CD1d can be transported to the cell

surface independently, and glycosylation patterns of CD1d drive its

rapid degradation to an immature glycoprotein state (38).

Antigen presentation is a critical stage in eliciting anti-tumor

responses by ICT (51), which is not restricted to tumor peptides

presented via MHC molecules to T cells, but includes antigen

presentation via MHC-associated molecules, such as b2M and

CD1d, which presents non-peptide (glycolipid) antigens, such as

a-galactosylceramide (aGalCer), to antitumor NKT cells (52, 53).

b2M deficiency causes downregulation of MHC-I expression and

deficient CD1d-dependent NKT cells leading to complex

immunodeficiency clinically (54). We hypothesize that the

presentation of antigens to NKT cells, which depends on b2M/

CD1d, is critically important for ICT clinical benefit.

Supporting this hypothesis, studies have shown that activation

of NKT cells can lead to improved outcomes in mice and patients

receiving ICT, mainly manifested by the increase of IL-2

(Interleukin 2) and IL-12 (Interleukin 12) by NKT cells upon

CD1d stimulation by aGC in APCs, reinvigorating exhausted
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CD8 T cells in synergism with anti-PD1 therapies in tumor-

bearing mice and patients with cancer (55). Indeed, NKT effector

functions comprise abundant cytokine released upon activation

(56), which in turn, reinvigorates other cytotoxic immune cells

and effector responses of CD8+ T cell (57, 58). PMA/ionomycin

stimulated NKT cells (as the ones profiled using human signatures

in the anti-PD1 cohort of this study) previously presented to a-
GalCer antigen through DCs-expressing CD1d, have been described

to enhance the expression of IFN-g, which ultimately impacts

cancer immune microenvironment by increasing iNOS+CD206-

M1 macrophage levels for melanoma control growth (59).

As a direct target of anti-PD1 therapy, little information is

ava i l ab le about exhaus ted NKT ce l l s in the tumor

microenvironment. However, recent studies using the E0771

breast cancer and B16 melanoma models have found that in the

later cancer stages, NKT cells have impaired cytotoxic capacities

manifesting an exhausted phenotype (60). In addition, increased

levels of total NKT cells have been observed in biopsies from anti-

PD1 responding patients (61, 62). Therefore, molecular

mechanisms driving NKT generation and proliferation, such as

the antigen presentation of glycolipids and glycoproteins, should be

characterized in melanoma biopsies to orient the development of

new combinatory therapies.

CD1D differential expression is associated with metastatic

melanoma patient survival outcomes from our analysis.

Consistent with our finding, downregulation of CD1D has been

documented in many cancer types, such as breast (63) and cervical

carcinoma (64), and was associated with poor survival outcomes

(65). Using non-small cell lung cancer (NSCLC) cells as a model,

the downregulation of CD1D expression demonstrated limited NKT

activities achieved by epigenetic modifications in those tumors

(66, 67).

Indeed, cancer-specific changes in DNA methylation and

histone acetylation result in pro-tumorigenic functions and

repression of tumor suppressor genes (68) and have been

associated with ICT resistance (2). Methylation levels of the gene

SPI1 promoter region indirectly controlled CD1D gene expression.
A B

FIGURE 3

Poor response to ICT given is associated with reduced levels of intratumor NKT cells. (A) Comparison of gene expression of CD1D (CD1d1 in mouse)
and SPI1 in the TME of anti-PD1 responsive and non-responsive mouse models (44). Two-tailed, unpaired t-test (***p < 0.0001; **p < 0.001;
*p < 0.05; n.s., not significant). (B) Comparison of NKT cell levels using multigene NKT signature validated pairwise by the mouse model in bulk and
single-cell datasets (45) and human active (stimulated) and inactive (unstimulated) NKT cell signature (46). Differential signature expression is shown
between metastatic melanoma patients responding and not responding to anti-PD1 therapy. Patient samples were included from the integrated
cohort of human melanoma patients receiving mainly anti-PD1 immunotherapies (23–26). Responders and non-responders to ICT were stratified
using RECIST V1.1 (47) and iRECIST (48) criteria. Two-tailed, unpaired t-test (***p < 0.0001; **p< 0.001; n.s., not significant).
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There are currently no reported studies investigating the

relationship between SPI1 gene expression and resistance to ICT

in melanoma., but this gene is downregulated and methylated in

more than 70% of lymphoma patients (69).

Therefore, epigenetic therapeutic strategies that have been

observed to improve ICT and modulate NKT cell responses, such

as HDAC inhibitors, might mechanistically promote the increase in

B2M and CD1D expression to support antigen presentation and

generation of T cells and NKT cells (70–72).

The strength of our study is that it includes a robust

combination of four transcriptomic datasets of anti-PD1

immunotherapies, compared with the TCGA dataset and a model

of metastatic melanoma resistant to anti-PD1 therapy. However, a

limitation of our study is the absence of in vitro and ex vivo

validation using well-established functional immune assays, which

are now considered to validate these findings and develop new

therapeutic opportunities by our group.

In conclusion, this study conceptualizes the importance of

further investigating therapeutic strategies to restore CD1D

expression in metastatic melanoma by targeting epigenetic

modulators in the TME. Restored expression of CD1D can be

further compared with the effector functions of NKT cells and
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survival outcomes in preclinical and clinical research. Moreover,

our findings point to new horizons for the rational development of

combinatory approaches that block epigenetic mechanisms of

suppression in the TME to restore DCs-dependent antigen

presentation to NKT cells, which can lead to better responses to

anti-PD1 immunotherapies in metastatic melanomas.
4 Materials and methods

4.1 Human cohort RNA-seq data sets
and analysis

The mRNA expression and survival data of The Cancer

Genome Atlas SKCM GDC dataset were downloaded from the

Xena Functional Genomics Explorer of the University of California,

Santa Cruz (https://xenabrowser.net/datapages/and https://

xenabrowser.net/heatmap/) (73). The Genomic Data Commons

(GDC) legacy archive obtained samples with methylation. The

methylation sites tested are listed as follows: B2M (cg18696027),

SPI1 (cg06147863), and CD1D (cg13844591). Generated data were

extracted in tab‐separated values (TSV) format. RNA-seq datasets
FIGURE 4

Schematic representation of B2M and CD1D expression profile in ICT responsive and resistant melanoma tumors. Left panel: Successful priming of T
cells and NKT cells by dendritic cells with the physiological engagement of b2M with MHC and CD1d, respectively. Right panel: Deficient priming of
T cells and NKT cells by dendritic cells given to methylation of promoter regions of B2M and SPI1, respectively, in patients not responding to ICT.
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from all patients receiving immune checkpoint therapies were

collected from anti-PD1 Riaz cohort (23) (access numbers:

GSE91061 and SRP094781), anti-PD1 and anti-PD1/anti-CTLA4

Gide cohort (25) (access number: PRJEB23709), anti-PD1 Hugo

cohort (26) (access number: GSE78220) and anti-PD1 Liu cohort

(24) (access number: phs000452.v3.p1), available at Gene

Expression Omnibus (GEO), Sequence Read Archive (SRA),

European Nucleotide Archive (ENA) and database of Genotypes

and Phenotypes (dbGaP). The downloaded SRA files were

converted into FASTQ files using SRA-Toolkit (2.11.0). The

quality of the sequenced reads was observed using FastQC

(v0.11.9) tool (74). Transcript per Million (TPM) values were

quantified using the human reference genome (GRCh38) and

Kallisto (v0.48.0) (75). The transcript per million (TPM) values

from the Liu dataset are also available in the Supplementary Data of

the original publication (24). The TPM values of all the ICT cohorts

were adjusted for batch correction using the R package ComBat-seq

(76). Since it is our goal to measure the efficacy of responses based

on the tumoricidal potential of effector immune cells, such as NKT

cells, as described elsewhere (37), in our study, we consider Overall

Response Rates (ORR) and not disease control (DC), to define the

group of patients responding to the tumoricidal effects of ICT, and

not cytostatic effects, accordingly to pre-established measurement

guidelines (77). For this purpose, the response criteria include

partial (PR) or complete response (CR) to patients responding to

ICT, and stable disease (SD) and progressive disease (PD) to

patients not responding to ICT. Riaz (23), Gide (25) and Liu (24)

cohorts define response patterns using Response Evaluation Criteria

for Solid Tumors version 1.1 (RECIST V1.1) (47), and Hugo cohort

(26) uses the Immune-Related Response Evaluation Criteria for

Solid Tumors (iRECIST) (48). SD patients from irRECIST cohorts

(Hugo et al) were not included in this study due to the absence of

transcriptomic data from these patients.

NKT cell expression was compared in responder and non-

responder groups from the integrated ICT cohorts (23–26). Mouse

NKT multigene signature was identified in a preclinical mouse

model by screening the top 30 upregulated genes highly expressed

in NKT cells enriched from the skin, lymph nodes, and lungs, which

was validated in bulk and single-cell datasets (45). Human active

and inactive NKT signatures were identified by analyzing matched

signature components presented in a single-cell signature from

stimulated and unstimulated human NKT cells (46), also present in

the mouse signature. Overall survival was evaluated with survival

and survminer package using a quartile range from 0.25 to 0.75 that

obtained the minimum p-value. Survival was visualized as Kaplan-

Meier (Log-rank) plots.
4.2 RNA Microarray analysis from
preclinical ICT resistance melanoma model

Microarray data of tumor cells and TME from responding and

non-responding mice to ICT were retrieved from the GEO database

(number GSE122222 (44). The raw mRNA expression data were

firstly normalized using a list of housekeeping genes (CHMP2A,

PSMB2, PSMB4, REEP5, SNRPD3, VCP, VPS29) as previously
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described (78). The transcriptomic expression of tumor cells and

TME were then calculated by averaging the normalized value by

each housekeeping gene. Fold change analysis was performed as

previously described (79).
4.3 Immunohistochemistry analysis

The Human Prote in At las database prov ides the

immunohistochemistry (IHC) protein staining for 15287 genes in

20 cancer types (80). For cutaneous melanoma tissues, the fraction

of samples with protein expression levels is provided with 3, 3’-

diaminobenzidine (DAB) staining in amelanotic areas. Scale bars

indicate 50 and 20 mm in length. The protein expression level of

b2M, CD1d, and CD1b in the cell membrane and cytosol were

quantified using an automated machine learning quantification

method based on marker intensity, color, density, and object size

and circularity, as described previously (43). The frequency (%) of

positive expression relative to the total area is represented by bar

plots indicating Means ± Standard Error of Mean (SEM) from five

independent quantified tissue areas from melanoma tissues.
4.4 Quantifications and statistical analysis

Graphpad prism 9.0 software was used for statistical analysis.

The Shapiro-Wilk normality test was performed for all data sets to

guide statistical tests. Unpaired two-tailed Mann-Whitney U test

(non-parametric) was used with non-normally distributed samples

group analysis. Non-parametric two-tailed Spearman’s correlation

test was applied to non-normally distributed samples, and Pearson’s

correlation test was applied to normally distributed samples.

Graphpad prism 9.0 was used to generate all Kaplan Meier

survival plots. The survival log-rank test was used to evaluate the

significance of survival curves providing X2 (chi-squared) and p

values. Differences were considered significant when p < 0.05. The

two-tailed, unpaired t-test is used to determine whether there is a

significant gene expression difference between independent groups.

Z score transformation of transcriptomic data and heat cluster data

analysis was performed using InstantClue (81).
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