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Background: To explicate the pathogenic mechanisms of cuproptosis, a newly

observed copper induced cell death pattern, in Coronavirus disease 2019

(COVID-19).

Methods: Cuproptosis-related subtypes were distinguished in COVID-19

patients and associations between subtypes and immune microenvironment

were probed. Three machine algorithms, including LASSO, random forest,

and support vector machine, were employed to identify differentially expressed

genes between subtypes, which were subsequently used for constructing

cuproptosis-related risk score model in the GSE157103 cohort to predict the

occurrence of COVID-19. The predictive values of the cuproptosis-related risk

score were verified in the GSE163151 cohort, GSE152418 cohort and GSE171110

cohort. A nomogram was created to facilitate the clinical use of this risk score,

and its validity was validated through a calibration plot. Finally, the model

genes were validated using lung proteomics data from COVID-19 cases and

single-cell data.

Results: Patients with COVID-19 had higher significantly cuproptosis level in

blood leukocytes compared to patients without COVID-19. Two cuproptosis

clusters were identified by unsupervised clustering approach and cuproptosis

cluster A characterized by T cell receptor signaling pathway had a better

prognosis than cuproptosis cluster B. We constructed a cuproptosis-related

risk score, based on PDHA1, PDHB, MTF1 and CDKN2A, and a nomogram was

created, which both showed excellent predictive values for COVID-19. And the
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results of proteomics showed that the expression levels of PDHA1 and PDHB

were significantly increased in COVID-19 patient samples.

Conclusion:Our study constructed and validated an cuproptosis-associated risk

model and the risk score can be used as a powerful biomarker for predicting the

existence of SARS-CoV-2 infection.
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Introduction

Copper, a prevalent metallic element, functions as an

indispensable cofactor for bodily enzymes, exerting regulatory

influence over numerous physiological processes encompassing

energy metabolism, mitochondrial respiration, and antioxidation

(1). Cuproptosis, a recently recognized mode of cell death instigated

by copper ions, exhibits a distinctive pattern (2). Unlike well-

established forms of cell demise such as apoptosis, pyroptosis,

necroptosis, and ferroptosis, cuproptosis relies on mitochondrial

respiration. Apoptosis, a programmatic process of cellular demise,

assumes a significant role in COVID-19. The infection by SARS-

CoV-2 activates both intrinsic and extrinsic apoptotic pathways

through the viral protein ORF3a. ORF3a triggers the activation of

caspase-8 and the cleavage of Bid, thereby instigating the liberation

of mitochondrial cytochrome c and the activation of caspase-9 (3).

Anomalous expression of apoptosis-related genes and

mitochondrial malfunction have been detected in COVID-19

patients, suggesting the involvement of the intrinsic apoptotic

pathway (4). COVID-19 is associated with lymphopenia, which

manifests as a reduction in CD4+ and CD8+ T-cell subsets.

Lymphocyte apoptosis in COVID-19 is contributed to by

mitochondrial dysfunction, anomalous mitochondria, and

escalated expression of CD95 (5). Necroptosis, a variant of

programmatic cellular demise, is induced by SARS-CoV-2 in

human lung cells. The virus triggers the phosphorylation of

MLKL via RIPK3, consequently culminating in necroptosis.

Higher levels of phosphorylated MLKL are discerned on the

plasma membrane of infected cells (6). The ripoptosome,

comprising caspase-8, FADD, and RIPK1, governs the RIPK3-

MLKL-dependent signaling of necroptosis in the absence of

caspase-8 activation (7, 8). Pyroptosis, an immensely

inflammatory form of cellular demise, is activated in COVID-19

and contributes to the inflammatory response observed in the

disease. SARS-CoV can incite the activation of the NLRP3

inflammasome via viral proteins, thereby yielding an ionic

imbalance, mitochondrial impairment, production of reactive

oxygen species (ROS), and co-activation of NLRP3 (9, 10). The E

protein and ORF3a of SARS-CoV activate NLRP3 by triggering the

signaling of NF-kB and promoting the ubiquitination of ASC (11,

12). Nonetheless, while the mechanism of NLRP3 activation by

SARS-CoV-2 remains incompletely elucidated, the similarities with
02
SARS-CoV hint at a comparable process (13). Ferroptosis, a

controlled form of cellular demise characterized by lipid

peroxidation, may be implicated in COVID-19. The infection by

SARS-CoV-2 incites oxidative stress, inflammation, and

perturbation of iron metabolism, culminating in heightened levels

of intracellular iron, lipid peroxidation, and depletion of

antioxidant systems (14). The targeted modulation of the

ferroptosis signaling pathway through inhibitors holds the

potential to alleviate the multi-organ damage inflicted by

COVID-19. In cuproptosis process, copper directly binds to the

lipid-acylated region of the tricarboxylic acid cycle, inducing lipid-

acylated protein aggregation and iron-sulfur cluster protein

instability, leading to proteotoxic stress, which causes cell death

(15). Additionally, several studies have shown copper’s contribution

to immunomodulation. Tan et al. found that lysyl oxidase-like 4

(LOXL4) could promote immune evasion in hepatocellular

carcinoma cells, which can be eliminated by abolishing LOXL4-

mediated PD-L1 presentation by copper chelators (16).

Additionally, copper chelating agents greatly boosted the quantity

of CD8+ T and natural killer cells that infiltrated tumors (17).

Moreover, clioquinol, a copper chelator, effectively reduces the

infiltration of CD4 cells, CD8 cells, and CD20 cells, which are

immune cells associated with autoimmune encephalomyelitis (18).

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is the cause of the coronavirus disease 2019 (COVID-19),

which is currently sweeping the world, placing a significant burden

on global economic systems and health systems (19). 634 million

confirmed cases and 6.6 million fatalities were reported globally as

of November 20, 2022 (https://covid19.who.int/). Patients suffering

from COVID-19 exhibit immune system abnormalities, such as

immune cells and cytokines. It was found that total lymphocytes,

CD4+ lymphocytes, and CD8+ lymphocytes were significantly

reduced in COVID-19 patients and were more severely impaired

in severe cases (20). After treatment, CD4+ and especially CD8+ T

lymphocytes were elevated considerably. In addition, CD4+

lymphocytes were more responsive to viral surveillance than CD8

+ lymphocytes (21). As for cytokine, it was revealed that IL-2, IL-4,

IL-6, and IL-10 were abnormally activated in COVID-19 patients

and that IL-6 levels correlated with disease severity (22). Studies

have shown a strong link between COVID-19 and several cell death

modalities, including apoptosis, pyroptosis, necroptosis, and

ferroptosis. However, no relationship between cuproptosis and
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COVID-19 has been reported (23). Therefore, further research is

needed to investigate the function of cuproptosis in COVID-19 and

determine how cuproptosis affects the immunological function of

lymphocytes in COVID-19.

In this study, we methodically characterized the immunological

landscapes in patients with and without COVID-19 and presented

the connection between lymphocytes and cuproptosis in these two

groups. Then, we identified two distinct cuproptosis subtypes in

COVID-19 patients based on the expression levels of 20 cuproptosis-

related genes (CRGs). Interestingly, the two subtypes differed in the

immune pathway activities and immune cell compositions. We

developed a scoring system called the cuproptosis-related risk score

(CRRS) based on four CRGs to more accurately measure the

cuproptosis level in each patient group. This technique was

subsequently examined using two separate clinical manifestation

groups and cuproptosis subtypes. Finally, we developed a

nomogram based on CRRS and clinical parameters to accurately

identify patients with SARS-CoV-2 infection.
Materials and methods

Transcriptome data collection
and pre-processing

Twelve CRGs were obtained from previously published literature

(15). The GSE157103 dataset contains gene expression profiles of 100

patients with COVID-19 and 26 patients without COVID-19 (24).

Additionally, this dataset included clinical characteristics such as age,

gender, APACHE II and Charlson scores, hospital-free days during a

45-day follow-up (HFD45), ferritin, CRP, D-dimer, procalcitonin,

lactate, fibrinogen and, SOFA score. The HFD45 metric assigns a

score of zero (0-free days) to patients who have been hospitalized for

over 45 days or have passed away during their hospital stay.

Conversely, patients with shorter durations of hospitalization and

milder disease conditions are assigned higher HFD45 values (25). The

GSE163151 dataset, GSE152418 dataset, and GSE171110 dataset are

all COVID-19 datasets used to validate CRGs expression patterns and

assess the predictive efficiency of CRRS (26–28). The platform’s

annotation files were downloaded, the probes were converted into

gene symbols, and the expression level of the genes was calculated

using the maximum expression level of the duplicate gene symbols.
Identification of cuproptosis subtypes

The R package “ConsensusClusterPlus” was used to identify

cuproptosis subtypes according to the expression levels of CRGs

(29). To confirm variations in the distribution of cuproptosis

subtypes, principal component analysis (PCA) was applied. Next,

we investigated how cuproptosis subtypes related to prognosis and

other clinicopathological characteristics, including age, sex,

mechanical ventilation status, diabetic status, and whether

admitted to the ICU, in order to evaluate the clinical significance

of these two subtypes. We compared the HFD45 values of different

cuproptosis subtypes to assess prognostic differences. Box plots
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were used to compare the CRG expression levels in the two

cuproptosis subtypes. Sankey plots were then plotted based on the

ggalluvial R package to visualize the relationship between

cuproptosis subtypes and other clinical variables. Finally, we

mapped the heatmap of gene expression patterns of CRGs in

different subgroups.
Functional enrichment profiling
and immunological landscape of
cuproptosis subgroups

Gene set variation analysis (GSVA) is an analytical approach for

enrichment analysis of microarray and RNA-seq data under

parameter-free and unsupervised conditions, which probes the

differences in target gene sets across samples by calculating

normalized enrichment statistics (NES) (30). The biological

functions that differ between cuproptosis clusters were displayed

using a heatmap based on the NES of patients with COVID-19.

With the help of the limma package, we obtained differentially

expressed genes (DEGs) from the two cuproptosis subtypes and

carried out gene set enrichment analysis (GSEA). P<0.05 was

considered as a statistically significant difference (31, 32). IOBR is

an R software package that integrates eight published methods for

decoding the immune microenvironment: CIBERSORT, TIMER,

xCell, MCPcounter, ESTIMATE, EPIC, IPS, quanTIseq, thus being

used to explore the differential profile of immune cell types in

different samples (33). The CIBERSORT algorithm was applied to

quantify the level of infiltration of 22 immune cell signatures for

each COVID-19 sample and the immune score of COVID-19

patients was calculated using the ESTIMATE algorithm (34, 35).

To validate the immunological profiles of the cuproptosis subtypes,

the differences in gene expression of T cell stimulators and major

histocompatibility complexes were compared between different

clusters. Subsequently, variations in clinical characteristics were

compared between the two clusters. P< 0.05 was considered to be

statistically different.
Construction of the CRRS

In order to gain deeper insights into the underlying molecular

mechanisms of the cuproptosis pathway, we conducted a

comprehensive screening of potential biomarkers within the GEO

cohort. The screening process involved the utilization of LASSO,

random forest, and support vector machine algorithms. Initially,

these three machine learning algorithms were applied to identify the

differentially expressed genes between the two subtypes.

Subsequently, these identified genes were employed in the

construction of a predictive model. Genes were then included in

multivariate logistic regression analysis with p-values less than 0.05 to

establish the CRRS based on the regression coefficients. CRRS =

on
i Ci� Ei and n, C, E represent the number of signature CRGs, the

coefficients, and the gene expression level, correspondingly.

According to the median value of the CRRS, patients were grouped

into two groups, the high-risk group and the low-risk group, and the
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differences in the correlation of the CRRS with clinical indicators

between the two groups were compared. The reliability of the CRRS is

commonly evaluated using recipient operating characteristic curve

(ROC). The pROC package was utilized to perform ROC analysis

(36). To assess the effectiveness of the CRRS and compare it with

other CRGs, the AUC values of the ROC curves were generated.

Meanwhile, to further validate the accuracy of the scoring model,

ROC curve analysis was also performed on several external validation

sets (GSE152418 and GSE171110).
Building and assessment of a nomogram

In order to determine if CRRS could be considered as an

independent factor for COVID-19 and build the cuproptosis-

related model, univariate and multivariate logistic regression

analyses were used. Then, a nomogram was constructed by

combining age, sex, diabetic status, whether admitted to ICU,

mechanical ventilation status, HFD45, Charlson score, and CRRS.

The rms package created a calibration plot to demonstrate the

consistency between the expected endpoint events and the true

outcome. ROC curve was routinely applied to test the reliability of

the cuproptosis-related-model.
Validation of model genes based on
proteomics and single cell analysis

Based on the findings from our previously published

proteomics studies conducted by our research team, we

proceeded to validate the expression levels of the corresponding

proteins associated with the four model genes in both COVID-19

tissue samples and control samples (37). Subsequently, we extended

our validation efforts by analyzing the expression of these four

model genes in COVID-19 using single-cell analysis. This analysis

was performed using SPEED, an online single-cell multi-omics

analysis tool that incorporates diverse datasets from over 120

species, encompassing evolutionary, developmental, and disease-

related information (38). The single-cell sequencing data from five

COVID-19 patients can be accessed in the CNGB Nucleotide

Sequence Archive (CNSA: https://db.cngb.org/cnsa), with the

dataset ID CNP0001102 (39). Initially, we utilized the UMAP

algorithm to reduce the dimensionality and cluster the single-cell

expression data. Cell types were defined based on classical cell

markers. Subsequently, we generated heatmaps to compare the

expression levels of the four model genes across different cell types.
Results

CRGs are associated with immune
characteristics of COVID-19

Figure 1 presents the workflow. Twelve CRGs (CDKN2A,

FDX1, DLD, DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, PDHB,
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SLC31A1, and ATP7B) were analyzed in this work. Except for

LIPT1, COVID-19 patients had significantly higher expression

levels of the other eleven CRGs. (Figure 2A). We portrayed the

correlation pattern to investigate the relationships between CRGs

(Figure 2B). Overall, there was a strong correlation between the 12

CRGs. the highest correlation coefficient (coefficient=0.92) was

found between PDHB and DLAT (P<0.05), which means they

may function synergistically. Meanwhile, the correlation between

CDKN2A and the other CRGs was weak.

To further delineate the association between CRGs and

immunological characteristics, such as immune cells, T-cell

stimulators, and human leukocyte antigen (HLA)genes, we

analyzed their correlation. Through the CIBERSORT algorithm,

the proportion of 22 immune cells in COVID-19 was assessed (34).

Several infiltrating immune cells were associated with CRGs

(Figure 2C). The strong relations between neutrophils and CRGs

and their strongest positive and negative correlations with MTF1

and FDX1, respectively, imply that MTF1 and FDX1 may regulate

neutrophil infiltration in COVID-19. Correlation analysis revealed

that T-cell stimulators were closely correlated with CRGs

(Figure 2D), implying that the expression of T-cell stimulators in

COVID-19 may be influenced by CRGs. Similar to immune cells,

HLA genes showed strong correlations with CRGs (Figure 2E). The

strongest positive connection, 0.84, was found between HLA-DRA

and LIPT1. The most inverse relationship between HLA-DQB1 and

MTF1 was observed, having a correlation coefficient of -0.37. These

suggest that CRGs may affect HLA gene expression in COVID-19.
Cuproptosis subgroups in COVID-19

In COVID-19, two subtypes were characterized using

unsupervised clustering methods, including 51 cases of

cuproptosis-related cluster A and 49 cases of cuproptosis-related

cluster B (Figure 3A). Based on the results of PCA analysis, all

patients could be roughly divided into two parts, which further

supported that two subtypes are different (Figure 3B). Next, we

compared the HFD45 values of the two subtypes to evaluate the

prognostic disparities between the two clusters (Figure 3C). The

results showed that HFD45 values were higher for cuproptosis-

related cluster A, meaning that cuproptosis-related cluster A had a

better prognosis. Next, we investigated how the two groups related

to different clinical characteristics (Figure 3D). More patients in

cluster A were admitted to the ICU, were mechanically ventilated,

and suffered from diabetes compared to those in cluster B, which

also verified that cluster A had a better prognosis. Except for MTF1,

the remaining eleven CRGs were significantly upregulated in

cuproptosis-related cluster A (P<0.05) (Figure 3E). The

transcriptome map of CRGs differentially expressed in the two

cuproptosis subtypes was sketched in the heatmap (Figure 3F).

Based on the analysis of the heatmap, we observed that the CRGs

exhibited predominantly high expression levels among female

patients who were aged 60 years or younger. Furthermore, this

high expression pattern was observed in patients who were not

mechanically ventilated and were not admitted to the ICU.
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However, we did not identify a significant association between the

expression of CRGs and the diabetic status of the patients. Figure S1

shows that ventilator-free days differed between the two subgroups

(Figure S1A) (P<0.05). In addition, the number of patients admitted

to the ICU and undergoing mechanical ventilation also differed

between the two subgroups (Figures S1B, C) (P<0.05). These

suggest that CRGs may influence the development of COVID-19

through several potential mechanisms.
The immunoscape of cuproptosis subtypes

We performed GSVA analysis to ascertain discrepancy in

enrichment analysis between the two cuproptosis subtypes and

discovered that the two subtypes displayed different immune

infiltration patterns. The heatmap revealed that immunological

pathways, such as T-cell receptor signaling pathways and B-cell

receptor signaling pathways, were considerably abundant in cluster

A (Figure 4A). Meanwhile, GSEA analysis was carried out to verify

the variations in immunological pathways in the two cuproptosis

clusters. The findings revealed that the T cell receptor signaling

pathway, Th1 and Th2 cell differentiation, and Th17 cell

differentiation were considerably enriched in DEGs substantially

expressed in cluster A (Figure 4B). Given the strong correlation

between cuproptosis subtypes and immunoreactivity, we used the

CIBERSORT algorithm to determine the degree of immune
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infiltration in both clusters (Figure 4C). While the cluster B

subtype was distinguished by high infiltration of neutrophils, the

cluster A subtype was characterized by high abundance of naive B

cells, plasma cells, CD8 T cells, activated memory CD4 cells,

follicular helper T cells, resting NK cells, monocytes,

macrophages M2, and resting dendritic cells. Then, the

ESTIMATE method was used to determine the immune score. As

shown in Figure 4D, higher immune scores were also exhibited in

cluster A compared to cluster B. Finally, we investigated how both

subtypes related to HLA genes and T-cell stimulators. T-cell

stimulators were higher in cluster A, with the exception of

TNFRSF14 (Figure 4E). The expression levels of HLA genes

tended to be higher in cluster A except for HLA-A, HLA-B,

HLA-C, HLA-E, HLA-F, HLA-G, and HLA-DRB5 (Figure 4F).
CRRS for the prediction of COVID-19

All 126 patients in the GEO cohort were subjected to model

construction. First, ten genes were screened based on machine

learning algorithms (Figure 5A). After including these genes in

the multivariate logistic regression model, the expression values of 4

CRGs were used to construct the CRRS signature (Figure 5B). The

formula for calculating the CRRS was as follows: CRRS=

(-3.38548*CDKN2A)+ (-0.30651*MTF1)+ (-0.42584*PDHA1)+

(0.16582*PDHB). The expression values of the four model-related
FIGURE 1

Workflow diagram of this study.
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genes were validated using the GSE163151 dataset and they were

found to be differentially expressed between the two cuproptosis

clusters, which is also consistent with the results in Figure 3E

(Figure 5C). The combined model showed the most significant area

under the ROC curve (AUC) compared to other individual models

in three separate datasets (GSE157103, GSE152418, and

GSE171110), demonstrating the best prediction performance of

the combined model (Figures 5D-F). Furthermore, the optimal

cutoff value of the ROC curve for the risk score was calculated to

be -2.172, with a specificity and sensitivity of 1.000 and 0.640

respectively. Consequently, individuals with a risk score lower than

-2.172 can be identified as having a COVID-19 infection. In this

study, we found that COVID-19 patients have lower risk score
Frontiers in Immunology 06
values than non-COVID-19 patients, indicating that a lower risk

score value is more likely to be diagnosed with COVID-19

(Figure 6A). The above results further elucidate the fact that only

models containing the four CRGs mentioned above can produce

accurate prediction.

Patients were grouped into two groups, the high-risk group and

the low-risk group, based on the median value of the CRRS.

Between the two groups, there were differences in the number of

patients receiving mechanical ventilation and the age distribution of

the patients (Figures 6B, C) (P<0.05). In addition, CRP and ferritin

levels were negatively correlated (P<0.05) (Figures 6D, E), which

implies that CRGs may influence COVID-19 progression through

lactate metabolism and ferritin metabolism.
A B

D

E

C

FIGURE 2

Correlation between CRGs expression and immune characteristics in COVID-19. (A) The expression of 12 CRGs of blood leukocytes between
patients with or without COVID-19. (B) Correlation plot of 12 CRGs. The positive correlation was marked with red, and negative correlation was
marked with blue. (C) Heatmap of the correlations between 12 CRGs and 22 immunocytes. (D) Heatmap of the correlations between 12 CRGs and
12 T-cell stimulators. (E) Heatmap of the correlations between 12 CRGs and 19 human leukocyte antigen (HLA) genes. *p< 0.05, **p< 0.01, ***p<
0.001, ****p< 0.0001, ns, no significance.
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CRRS can be considered as an
independent factor in COVID-19

We used logistic regression analysis to examine if CRRS was a

independent factor in COVID-19. Age, sex, diabetic status, whether

admitted to ICU, mechanical ventilation status, HFD45, Charlson

score, and risk score were analyzed as covariates. The findings

demonstrated that the independent predictors of COVID-19

occurrence were HFD45, risk score, and Charlson score

(Figures 7A, B). Since age is a crucial determinant of COVID-19

severity and progression (40), by combining independent factors

and age, we created a nomogram, as a therapeutically useful

quantitative technique to estimate the likelihood of prevalence in

COVID-19 patients (Figure 7C). Additionally, the calibration plot

demonstrated that the nomogram’s performance was comparable to
Frontiers in Immunology 07
that of the ideal model (Figure 7D). The nomogram displayed

strong predictive power, as demonstrated by the ROC (Figure 7E).
Verification of the model genes in clinical
samples and single-cell analysis

Among the four model genes, we observed the detection of

corresponding proteins only for PDHA1 and PDHB. In COVID-19

samples, the expression of PDHA1 was significantly higher

compared to control samples, while the difference in PDHB

expression between COVID-19 and control samples was not

statistically significant (Figure 8A). Subsequently, we explored the

relationship between the expression of the four model genes and

different cell populations. Through clustering, we identified 16
A B

D

E F

C

FIGURE 3

Consensus clustering of CRGs in COVID-19. (A) Consensus matrix of patients in the GEO cohort for k = 2. (B) PCA analysis of cuproptosis subtypes.
(C) The HFD45 between the two cuproptosis clusters. (D) Alluvial map showing the changes of cuproptosis cluster, ICU status, mechanical
ventilation status and diabetes mellitus status. (E) The expression of 12 CRGs of blood leukocytes between the two cuproptosis clusters. (F) Heatmap
of 12 CRGs between the cuproptosis clusters and clinical feature annotation was used. **p < 0.01, ****p < 0.0001, ns, no significance.
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distinct cell clusters, which were further consolidated into 14 cell

populations based on marker gene expression. These populations

included MAIT cells, Activated CD4 T cells, Cytotoxic CD8 T cells,

Naive T cells, Naive B cells, NK cells, Memory B cells, Plasma XCL+

NK cells, Cycling T cells, Monocytes, Cycling Plasma cells,

Dendritic cells (DCs), and Megakaryocytes (Figure 8B). Our

findings revealed that PDHA1, PDHB, and CDKN2A exhibited

prominent expression in Cycling Plasma cells, while MTF1

demonstrated predominant expression in Monocytes (Figure 8C).
Discussion

Patients with COVID-19 may experience immune system

changes. Tian et al. discovered that the number of helper T (Th)
Frontiers in Immunology 08
cells and Tregs in COVID-19 were below normal levels, which are

both more obviously decreased in severe groups (21). In addition,

the expression of inhibitory receptors on CD8+ T cells, including

PD-1, TIM-3, TIGIT, CTLA-4, and NKG2A were increased in the

early phase after infection (41). Moreover, the magnitude of anti-

SARS-CoV-2 antibody reaction correlated with the severity of

COVID-19 disease. It has been demonstrated that T-cell memory

unique to SARS-CoV-2 can be preserved for ten months in patients

convalescing from COVID-19 (42, 43). However, the fundamental

mechanism of immune cell activation in COVID-19 is still not

fully understood.

As an essential trace element in the body, copper has a broad

and vital role in biological systems. Copper metabolism in the body

is in a state of dynamic equilibrium, termed copper homeostasis.

When copper homeostasis in the body is disrupted, abnormal
A B

D

E F

C

FIGURE 4

Clinical significance and immune landscape of cuproptosis subtypes in the GEO cohort. (A) GSVA analyzed the biological pathways of two
cuproptosis subtypes. Red represents the activation of biological pathways and blue represents inhibition of biological pathways. (B) Gene set
enrichment analysis (GSEA) shows the significant enrichment in immune-associated biological processes. (C) The landscape of immune cell
infiltration between two cuproptosis subtypes. (D) Immune score between two cuproptosis subtypes. (E) Gene expression of T-cell stimulators gene
sets between two distinct clusters. (F) Gene expression of HLA gene sets between two distinct clusters. *p< 0.05, **p< 0.01, ***p< 0.001, ****p<
0.0001, ns, no significance.
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copper metabolism can lead to a series of diseases. Diseases such as

Wilson′s disease, Menkes disease, Alzheimer′s disease, Parkinson′s
disease, obesity, hypertension, and tumors have been proven to be

implicated in abnormal copper metabolism (44–50). Copper is

engaged in the functionality of immune cells such as natural killer

cells and macrophages, based on which it can help kill some viruses

such as bronchitis viruses, single- or double-stranded DNA, and

RNA viruses (51). Interestingly, copper also exerts a role in

COVID-19. It was found that whole blood copper levels were

significantly higher in COVID-19 patients with severe condition

compared to those with non-severe condition (52). In addition,

during the initial stages of the disease, COVID-19 patients had

increased serum levels of copper ions, which were mainly associated
Frontiers in Immunology 09
with the inflammatory response (53). Moreover, copper ion levels

are valuable in the prognosis prediction of COVID-19 patients. One

research found that serum copper and selenium levels in COVID-

19 patients helped predict patient prognosis, and copper

supplementation in patients diagnosed with copper deficiency

may improve the prognosis of the disease (54). Cuproptosis, as a

newly observed copper ion-induced cell death form, copper death,

has been demonstrated to be a potential therapeutic target for

Wilson’s disease and cancer, but its role in COVID-19 remains

unclear (55).

In this study, we performed a thorough analysis of the

cuproptosis landscape in COVID-19 patients. When compared to

those who did not have COVID-19, the expression levels of CRGs
A B

D
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C

FIGURE 5

Construction of the CRRS. (A) Intersection of critical genes via multiple machine-learning algorithms. (B) Multivariate analysis for the GEO cohort.
(C) The expression of 4 signature-related genes between the two cuproptosis clusters. (D) ROC analyses of the diagnostic efficacy for the CRRS and
4 signature-related genes in GSE157103. (E) ROC analyses of the diagnostic efficacy for the CRRS and 4 signature-related genes in GSE152418. (F)
ROC analyses of the diagnostic efficacy for the CRRS and 4 signature-related genes in GSE171110. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001,
ns, no significance.
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were higher in COVID-19 patients’ blood lymphocytes, indicating

that cuproptosis may play an essential role in COVID-19 patients.

Subsequently, based on the expression of CRGs, we discovered

that COVID-19 could be divided into two subgroups, cuproptosis

cluster A and cuproptosis cluster B. These two subtypes showed a

significantly different prognosis, with cluster A having higher

HFD45 values than cluster B. More patients in cluster B had

diabetes, and had been treated by mechanical ventilation, as

revealed by an analysis of clinical features, helps to explain why

this cluster has a worse survival rate. The causes of these disparities

were clarified using GSVA and GSEA enrichment analysis. The

findings demonstrated that T cell receptor signaling, Th1 and Th2

cell differentiation, and Th17 cell differentiation were highly

enriched in cluster A, which is associated with immunological

activation. Therefore, we looked into the connection between

immune cell infiltration and two cuproptosis subtypes.

Because of the complexity of the human immune system,

various immune cells have various functions. Macrophages

typically consist of two subtypes, with M1 macrophages playing a

pro-inflammatory role and M2 macrophages playing an anti-

inflammatory and immunomodulatory role by secreting IL-10

and TGF-b to assist in tissue repair, revascularization, and

homeostasis maintenance while reducing inflammation (56). In

humans, neutrophils are the most prevalent immune cells. Previous

studies have highlighted the potential association between elevated

neutrophil levels and unfavorable tumor prognosis. This correlation

can be at t r ibuted to severa l fac tors , inc lud ing the

immunosuppressive effects of neutrophils, their ability to promote

tumor growth, and their facilitation of tumor cell migration and

invasion through the release of factors such as hepatocyte growth

factor (HGF) (57–59). In renal cell carcinoma, intratumoral

neutrophils, along with other factors like myeloid-derived
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suppressor cells, arginase, reactive oxygen species, B7-Hx, and

PD-1, contribute to the inhibition of an effective immune

response, thus allowing the tumor to evade immune surveillance

and foster its growth (59). Similarly, in bronchioloalveolar

carcinoma, tumor-infiltrating neutrophils produce HGF, which

promotes the migration of tumor cells through its interaction

with the c-met receptor on tumor cells. Elevated levels of HGF in

bronchoalveolar lavage fluid are associated with poorer clinical

outcomes in patients with bronchioloalveolar carcinoma (58). In

the present study, we observed that cuproptosis cluster A exhibited

lower neutrophil infiltration compared to cuproptosis cluster B.

Furthermore, cuproptosis cluster A demonstrated a higher HFD45

value, providing further validation that cuproptosis cluster A is

associated with a more favorable prognosis. The conversion of B

cells into plasma cells for antibody production is facilitated by T-

follicular helper cells, which is essential for eradicating viruses and

bacteria. Several studies have demonstrated that T-follicular helper

cells help to contain hepatitis C virus infection, human

immunodeficiency virus infection, and group A streptococcal

bacterial infection (60). CD8+ T cells are cytotoxic cells. The

presence of virus-specific CD8+ T lymphocytes was linked to

better COVID-19 outcomes in SARS-CoV-2 infection (61).

Natural killer cells are important early effector lymphocytes.

Lower NK cell counts have been reported to be associated with

poorer survival rates in COVID-19 (62). As previously described,

we determined the relationship between cuproptosis and T-cell

activators, HLA genes, and immune cell infiltration and found that

cuproptosis and immune regulation are tightly linked. Next, we

examined the connection between immune cell infiltration and

cuproptosis subtypes. We found that M2 macrophages, T follicular

helper cells, CD8 T cells, and natural killer infiltrated more in

cluster A than in cluster B, which was associated with anti-
A B
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C

FIGURE 6

Correlation between CRRS expression and clinical parameters. (A) CRRS between the two cuproptosis clusters. (B–E) The correlations between
CRRS and age (B), the number of patients undergoing mechanical ventilation (C), CRP (D) and ferritin (E).
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inflammatory and viral clearance, and therefore led to a better

prognosis. In addition, T-cell stimulators, and human leukocyte

antigen (HLA) genes were also upregulated in cluster A, further

confirming the better prognosis of cluster A. On the other hand,

neutrophils were more infiltrated in cluster B than cluster A, thus

leading to a poorer prognosis.

Given the influence of CRGs and cuproptosis subtypes on

clinical results, we constructed a cuproptosis-related risk score

based on univariate and multifactorial logistic regression analysis

using four identified genes (CDKN2A, MTF1, PDHA1, PDHB).

CDKN2A is an essential tumor suppressor gene encoding p14ARF

and p16INK4A. Lungs of patients who died from SARS-CoV-2 have

been reported to express more p16INK4A than those who died

from other causes, which may be due to upregulation of CDKN2A

leading to cell cycle arrest and thus apoptosis (63, 64). MTF-1 is a

zinc-dependent transcription factor that is involved in maintaining

intracellular metal homeostasis as well as regulating inflammatory
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responses. When inflammation occurs, zinc ions are released from

metallothioneins. Free zinc ions stimulate MTF-1 function and

decrease gene expression of pro-inflammatory cytokines, thereby

regulating inflammation (65, 66). PDHA1 encodes the pyruvate

dehydrogenase alpha subunit, which is part of the pyruvate

dehydrogenase (PDH) complex. PDHA1 has been reported to

facilitate the activation of the NLRP3 inflammasome in response

to COVID-19 infection (67). Similar to PDHA1, PDHB encodes the

pyruvate dehydrogenase beta subunit (68). PDHB is aberrantly

expressed in gastric cancer and is associated with a better prognosis.

In addition, it has been shown that inhibition of PDHB promotes

colorectal cancer growth and metastasis (69, 70). However, there is

no report of PDHB with COVID-19.

In this study, the CRRS achieved high AUC values in several

datasets. We conducted a comparative analysis of the CRRS with

existing models for COVID-19 prediction, and the results

demonstrated the excellent predictive performance of the CRRS.
A B

D

E

C

FIGURE 7

Establishment of the nomogram model. (A, B) Univariate analysis and multivariate analysis containing CRRS and clinical factors. (C) Establishment of
the nomogram model based on age, HFD45 and CRRS. (D) Predictive robustness of the nomogram model as disclosed by the calibration curve.
(E) ROC analysis of the diagnostic efficacy for the nomogram model.
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Sun et al. developed a model utilizing ferroptotic genes, achieving an

AUC value of 0.897 (71). Zhou et al. employed machine learning

methods to construct a disease diagnostic model with an AUC value

of 0.815 (72). Moreover, Nguyen et al. introduced a novel index,

CD24-CSF1R, which exhibited a significant correlation with COVID-

19 severity, yielding an AUC of 0.850 (73). These findings indicate

that the CRRS demonstrates competitive discrimination power and

model performance, as it achieves comparable or even higher AUC

values when compared to the referenced models. What’s more,

patients with COVID-19 had a lower risk score than those with

COVID-19; thus, the CRRS is a protective score. Previous studies

have reported that CRP and fibrinogen were more elevated in patients

with COVID-19 (74, 75). Coincidentally, the findings of correlation

analysis revealed that the CRRS was adversely linked to CRP and

fibrinogen, consistent with the results of the study as mentioned

above. These findings suggest that CRRS is a promising predictor of

clinical result and prognosis in patients with COVID-19. Finally,

combined with other clinical parameters, univariate and

multifactorial logistic regression analyses showed that CRRS was an

independent factor for COVID-19.

This study possesses certain limitations that warrant

acknowledgment. Firstly, the precise relationship between CRGs

and COVID-19 necessitates further evaluation and validation in

larger sample sizes and diverse populations. In addition, we could

not analyze the precise prognostic value of CRRS because HFD45

only provided a rough prognostic response, and the GSE157103

dataset did not provide specific survival information.
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In conclusion, our investigation showed that patients with

different cuproptosis subtypes had different immune infiltration

features. The CRRS can reliably identify patients contracting

COVID-19 and predict clinical results. In conclusion, our

research sheds new light on cuproptosis in SARS-CoV-2-infected

patients’ blood cells. It provides a tool for assessing clinical

prognosis and the likelihood of COVID-19 infection.
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