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Editorial on the Research Topic

Stromal and immune cell interactions in intestinal inflammation
and fibrosis
During the last decade accumulating data demonstrated that intestinal stromal cells are

not just a supporting structure that responds homogenously to immune stimuli. Rather

they represent a complex organization of mesenchymal cells, an organ within the intestine,

with discrete roles for every one of its members, orchestrating complex tasks.

Unfortunately, full characterization of stromal cell subsets and comprehension of their

discrete functions has been hampered by the absence of a standardized nomenclature. This

is mostly attributed to species differences and the variable experimental approaches used

for characterization as murine mechanistic studies are based on surface markers of isolated

cells, whereas human descriptive studies are based mostly on single cell transcriptomics.

In the current topic, Chalkidi et al. and Sun et al. align together many pieces of the

puzzle in two comprehensive reviews that examine murine and human intestinal

mesenchymal subsets in parallel and summarize their molecular phenotypes and

functions during intestinal homeostasis and inflammation. CD81+ fibroblasts, (also

called trophocytes) in the small intestine, type III stromal cell in the human colon or

crypt bottom fibroblasts, are located below crypts. They are analogous to human WNT2B+

cells and their main function is to maintain intestinal stem cell identity and proliferation

via antagonizing BMP signal while promoting the Wnt signal by expressing Grem1,Wnt2,

Wnt2b, Wnt5a,Rspo1 and Rspo3 (1, 2). PDGFRahi
fibroblasts, also called PdgfrahiFoxl1+

murine telocytes or CD142+ human telocyte-like cells, are equivalent to human PDGFRA+,

WNT5B+, S2 subsets. They contain two distinct subsets that are located at the top and

bottom of villi and crypts, and regulate epithelial cell differentiation, proliferation, and

maturation via enhanced expression of Wnt and BMP ligands (1, 3). PDGFRaloCD81-

murine intestinal fibroblasts or stromal 1 cells in humans, are located in the lamina propria,

around crypts and inside the villous core. Analogous to human WNT2B+FOS+ lamina

propria fibroblasts, they secrete basement membrane proteins and contribute to
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extracellular matrix (ECM) production, remodeling and intestinal

stem cell niche formation (1), as well as maintenance of lacteal

integrity (4).

These distinct intestinal mesenchymal stromal cells and their

subclasses seem to organize sub-epithelial immune regulatory

centres that can interact with different types of immune cells as

reviewed by Sun et al. In brief, stromal cells support innate defenses

through the production of cytokines such as IL-6, and chemokines

that recruit neutrophils (IL-8), monocytes (CCL-2) and T cells

(CCL-5) to promote bacterial clearance (5). Organized in discrete

immune hubs at the villus tip and the crypt bottom, stromal cells

enhance innate immune responses or regulate autoimmunity

respectively. This is mediated through co-operation with specific

innate lymphoid cell populations and various immunoregulatory

mechanisms that include expression of PD-L1 and PD-L2 immune

checkpoint inhibitors (Beswick et al.), regulation of retinoid acid in

tolerogenic dendritic cells (6) and expansion of regulatory FOXP3pos

T cells (7).

During inflammation, stromal cells both produce and respond

to cytokines and chemokines through a variety of cytokine

receptors that can be up-regulated by inflammatory stimuli (8, 9).

In response to the inflammatory milieu of human Inflammatory

Bowel Disease (IBD) or murine experimental IBD, stromal cells

broaden their chemokine production (10–12) and have been

implicated in treatment-resistant disease in IBD patients that

overproduce Oncostatin M or IL-1b (13). Furthermore, they

produce factors involved in fibrosis like IL-11, which is also part

of the IL-6 family, and TNFSF15 (14; West). IBD is also associated

with expansion of fibroblast clusters with high expression of PDPN

or FAP and up-regulation of inflammation associated genes such as

CCL-19, IL-33, TNFSF14, IL-1R1, TNFSF11, and IL-13RA2 (10, 12)

in parallel with diminished capacity of intestinal fibroblasts to

induce IL-10-producing regulatory T cells (7). The differential

expression of PD-L1 in the two main clinical entities of IBD on

intestinal stromal cells; i.e. Crohn’s disease (CD), and Ulcerative

colitis (UC) with a decreased PD-L1 expression in patients with UC,

but an increased PD-L1 expression in CD patients may indicate an

involvement in the observed distinct immunopathological changes

characteristically seen in these two entities (Beswick et al.).

In the current topic, Monteleone et al., summarize data on

production of IL-34 and M-CSF-1 by intestinal stromal cells that

regulates resident macrophages to promote gut homeostasis. In the

context of intestinal inflammation, blockage of M-CSF1 or IL-34 or

loss of M-CSF-1R protects mice in many experimental colitis

settings. A parallel pro-fibrotic role of IL-34 in human CD is

demonstrated by its higher expression in fibrostenotic samples

and its ability to up-regulate ECM production by human

intestinal stromal cells. This underscores the presence of CD34-

driven inflammatory and fibrotic amplification loops in the

intestinal mucosa that may represent a new therapeutic anti-

inflammatory and anti-fibrotic target in IBD.

Intestinal stromal cell derived ECM has been shown to participate

in engagement of immune cells during inflammation, in profibrotic

cascades or in proper wound healing after inflammation has subsided
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(15). However, Seltana et al. report that fibrinogen produced by a

subset of intestinal epithelial cells has a primary role in proper wound

healing. They show that epithelial derived fibrinogen is deposited at

the basement membrane as fibrin where it serves as a substrate for

wound healing under physiological conditions. During inflammation,

inhibition of fibrin formation exacerbates experimental dextran

sulfate sodium (DSS) colitis indicating that epithelial-derived fibrin

is important for preventing epithelial damage or promoting epithelial

repair. This highlights important interactions between stromal and

epithelial cells during the intestinal wound healing responses.

Previous studies have shown that glycolysis is the preferred

energy source for fibroblasts in fibrosis, while inhibition of

glycolysis decreases fibrosis by reducing ECM (16, 17). The

metabolic enzyme 6-phosphofructo-2-kinase/fructose-2, 6-

bisphosphatase 3 (PFKFB3) is a key kinase regulating glycolytic

activity and it is implicated in inflammation and various immune-

related disorders (18). In the current issue, Zhou et al., present data

for the role of PFKFB3 in patients with IBD. Using single-sample

gene set enrichment analysis, they found that glycolysis is

significantly higher in human intestinal samples from IBD

patients compared to healthy controls, while single-cell

sequencing data showed that PFKFB3 expression is higher in gut

biopsies from IBD patients. Furthermore, PFKFB3 expressed in the

stromal cells of the intestinal samples is upregulated following

stimulation with proinflammatory cytokines in in vitro models. In

addition, inhibition of PFKFB3 by the specific inhibitor PFK15

results in reversion of the increased expression of pro-inflammatory

cytokines and chemokines in fibroblasts and reduction of the

severity of DSS and T cell transfer induced colitis. This study

demonstrates for first time that increased PFKFB3 expression in

stromal cells contributes to inflammation and fibrosis in IBD and

suggests that inhibition of PFKFB3 might be a new therapeutic

strategy in intestinal inflammation and fibrosis.

In the context of recurrent autoinflammatory intestinal disorders

as in IBD, post-inflammatory intestinal fibrosis may occur that alters

mesenchymal cell biologic behavior. Intestinal fibroblasts reduce

migration, and increase proliferation and collagen production, in

parallel clusters that regulate epithelial cell proliferation are

diminished (12, 19–22). In this issue, Dovrolis et al. approach

fibrosis as a universal link in disease. By identifying common

fibrotic transcriptomic signatures, in otherwise uncorrelated

disorders, and their site-specific co-expression, they proceed to

apply this knowledge on the issue of ileal fibrosis during IBD.

Their methodology provides the basis for a practice that can be

applied similarly to other shared molecular mechanisms. Meanwhile,

their findings illuminate the molecular background of a serious

complication in IBD, opening the way for future treatment-focused

mechanistic studies or applications in other fibrotic disorders.

Finally, in the current Research Topic, Chen et al., giving

attention to a new research field, have deeply examined the

expression of cuproptosis-related regulators and their implication

in the pathogenetic mechanisms of IBD. Recently, a copper-

dependent pathway that differs from all other known pathways

that underlie cell death, called cuproptosis, has been described.
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Cuproptosis occurs via copper binding to lipoylated enzymes in the

tricarboxylic acid cycle, which leads to proteotoxic stress and cell

death, and it has been reported to be involved in various disorders.

In the present study, Chen et al. apply bioinformatic strategies to

examine for first time, the implication of cuproptosis in IBD. They

examine the association between immune score and cuproptosis-

related genes, and they present a comprehensive landscape of their

importance in IBD. This study therefore identifies cuproptosis as

playing a key role in the pathogenesis of IBD with its ability to

change chronic death of the intestinal epithelial cells that might be

involved in both disease risk and treatment.

Collectively, these publications in the current Research Topic

highlight the role of stromal cells in the pathogenesis of intestinal

inflammation and fibrosis. They have focused on a wide range of

characteristics of these cells, from their involvement in inflammatory

mechanisms and their crosstalk with immune cells and epithelial cells

of the intestinal mucosa, through soluble mediators, to their pivotal

role in the fibrotic process of IBD. Furthermore, the Research Topic

examines the heterogeneity of stromal cell subtypes and their

contribution to epithelial repair and immune homeostasis in gut

mucosa, giving these cells a primary role in mucosal immunology.
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