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An immune-related gene
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mortality in patients with sepsis
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Introduction: Sepsis is the leading cause of death in intensive care units and is

characterized by multiple organ failure, including dysfunction of the immune

system. In the present study, we performed an integrative analysis on publicly

available datasets to identify immune-related genes (IRGs) that may play vital

role in the pathological process of sepsis, based on which a prognostic IRG

signature for 28-day mortality prediction in patients with sepsis was developed

and validated.

Methods: Weighted gene co-expression network analysis (WGCNA), Cox

regression analysis and least absolute shrinkage and selection operator

(LASSO) estimation were used to identify functional IRGs and construct a

model for predicting the 28-day mortality. The prognostic value of the model

was validated in internal and external sepsis datasets. The correlations of the IRG

signature with immunological characteristics, including immune cell infiltration

and cytokine expression, were explored. We finally validated the expression of

the three IRG signature genes in blood samples from 12 sepsis patients and 12

healthy controls using qPCR.

Results: We established a prognostic IRG signature comprising three gene

members (LTB4R, HLA-DMB and IL4R). The IRG signature demonstrated good

predictive performance for 28-day mortality on the internal and external

validation datasets. The immune infiltration and cytokine analyses revealed that

the IRG signature was significantly associated with multiple immune cells and

cytokines. The molecular pathway analysis uncovered ontology enrichment in

myeloid cell differentiation and iron ion homeostasis, providing clues regarding

the underlying biological mechanisms of the IRG signature. Finally, qPCR

detection verified the differential expression of the three IRG signature genes

in blood samples from 12 sepsis patients and 12 healthy controls.
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Abbreviations: AIC, Akaike information criterion; ROC

characteristic; AUC, area under the ROC curve; C-index

DEGs, differentially expressed genes; FC, fold change; GE

Omnibus; GO, Gene Ontology; IRG, immune-related gene;

shrinkage and selection operator; Tregs, regulatory T cells

gene co-expression network analysis; Mars, molecular

stratification of sepsis; SRS, sepsis response signature.
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Discussion: This study presents an innovative IRG signature for 28-day

mortality prediction in sepsis patients, which may be used to facilitate

stratification of risky sepsis patients and evaluate patients’ immune state.
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Introduction

Sepsis affects approximately 49 million people each year, and an

estimated 11 million people die of sepsis, accounting for 19.7% of all

global deaths (1). Sepsis is defined as a heterogeneous clinical

condition with complicated immune pathophysiology where a

“genomic storm” that dynamically alters the leukocyte

transcriptome is provoked by an invading pathogen, with the

activation of the innate immune response and a concomitant

suppression of the adaptive immune response (2). The early

transcriptional changes occur within hours of sepsis initiation and

are reportedly predictive of later clinical outcomes of the hosts (3).

However, a comprehensive characterization of the immune response

in sepsis has not been fully uncovered, and its clinical relevance

deserves further exploration.

The early and accurate diagnosis and risk stratification of

sepsis remains a challenge. Procalcitonin, for example, has shown

clinical utility in guiding antibiotic usage in the setting of lower

respiratory tract infections (4), but its predictive and prognostic

capability in sepsis is controversial (5, 6). Several investigators

have successfully utilized leukocyte-derived mRNA and

bioinformatics approaches to subgroup sepsis patients on the

basis of biological similarities defined by transcriptomic

signature (7). Transcriptomics signature, as one of the

promising new biomarkers, is seemingly able to aid more for

predictive and prognostic purposes (8).

In the current study, by analyzing the transcriptomic data of

peripheral blood mononuclear cells (PBMCs) from sepsis patients,

we identified functional immune-related genes (IRGs) and

constructed a model for predicting the 28-day mortality of sepsis

patients, namely the IRG signature. The prognostic value of the

model was validated in internal and external sepsis datasets. The

correlations of the IRG signature with immunological

characteristics, including immune cell infiltration and cytokine

expression, were explored. We also performed pathway analysis

to uncover the underlying biological mechanisms of the IRG
, receiver operating

, concordance index;

O, Gene Expression

LASSO, least absolute

; WGCNA, weighted

diagnosis and risk
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signature. Finally, experimental verification of the IRG signature

genes was carried out in blood samples from sepsis patients and

healthy controls.
Methods

Data acquisition and preprocessing

The gene expression profiles of whole-blood leukocytes from

sepsis patients and the corresponding clinical information

contained in GSE65682 (9) and E-MTAB-4451 (10) datasets were

downloaded from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) and the ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/) databases, respectively. In

GSE65682, blood samples were taken within 24 h of admission to

critical care and subjected to the GPL570 Affymetrix Human

Genome U133 Plus 2.0 Array (HGU133_Plus_2) platform for

gene-expression quantification. A total of 479 sepsis patients with

available 28-day follow-up information and 42 healthy controls in

GSE65682 were included. In E-MTAB-4451, blood samples of

sepsis patients were obtained after ICU admission at the time of

study enrolment and sequenced on the GPL10558 Illumina

HumanHT-12 V4.0 expression beadchip platform. Totally, 106

cases of sepsis patients with available 28-day follow-up

information in E-MTAB-4451 were included. The baseline

characteristics of sepsis patients included in this study are

summarized in Table 1. For gene expression data preprocessing,

probes were transformed into gene symbols based on the

annotation file provided by the platform manufacturer. In

particular, probes without corresponding gene symbols were

removed, and average values were obtained if one gene

corresponded to multiple probes.
Differential expression analysis

Differential expressed genes (DEGs) between sepsis

patients and healthy controls were identified using the limma

R package. Genes with mean expression value of zero were

filtered out. The gene matrix was normalized with the

normalizeBetweenArrays function of the limma R package.

The screening criteria were log2 |fold change (FC)| ≥ 1 and

adjusted (adj.) P-value < 0.05.
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Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is a

systematic bioinformatics method which constructs a free-scale

network to explore the interrelationship between genes within the

corresponding gene module and associations between gene modules
Frontiers in Immunology 03
and clinical traits (11). In this study, genes with standard deviation

of expression level more than 50% were selected for WGCNA

analysis. Sample hierarchical clustering was performed followed by

establishment of a weighted correlation network using theWGCNA

R package (12). For the scale-free network, the soft power of R2 was

set depending on the scale independence and mean connectivity.

Genes with similar patterns were clustered into the same modules

(minimum size = 50) using average linkage hierarchical clustering,

and modules with highly correlated eigengenes were merged with a

minimum module merging height of 0.25. Gene significance and

module membership were assessed to validate the stability, and

correlations between clinical traits and gene modules were

evaluated using Pearson’s correlation analysis. The module with

the highest positive correlation coefficient was chosen for

further analysis.
Intersection analysis

A list of IRGs was downloaded from the Immunology Database

and Analysis Portal (ImmPort, https://www.immport.org) (Table

S1). The IRGs, DEGs between sepsis patients and healthy controls,

and the genes in the most positively correlated WGCNA module

were subjected to an intersection analysis to obtain functional IRGs

closely related to sepsis by drawing a Venn diagram.
Pathway enrichment analysis

In order to explore the potential pathways the functional

WGCNA module involved, genes of the selected module were

extracted and subjected to enrichment analysis using Metascape, a

free online tool for gene annotation (http://metascape.org) (13). To

explore the potential pathways the IRG signature involved, the

DEGs between the IRG signature subgroups were identified for

pathway enrichment, which was carried out by Gene Ontology

(GO) functional annotation into three major categories: BP

(Biological Process), CC (Cellular Component), and MF

(Molecular Function). The GO analysis was performed using the

clusterProfiler R package (14).
TABLE 1 Baseline characteristics of sepsis patients included in this study.

GSE65682 (n = 479)

Age, years 60.95 (14.79)

Gender

Male 272 (56.78%)

Female 207 (43.22%)

DM

No 301 (62.84%)

Yes 89 (18.58%)

NA 89 (18.58%)

Source of infection

CAP 106 (22.13%)

HAP 77 (16.08%)

Abdomen 48 (10.02%)

NA 248 (51.77%)

Thrombocytopenia

Normal 24 (5.01%)

Low 24 (5.01%)

Medium low 30 (6.26%)

Very low 17 (3.55%)

NA 384 (80.17%)

Mars endotype

Mars1 132 (27.56%)

Mars2 176 (36.74%)

Mars3 118 (24.63%)

Mars4 53 (11.07%)

28-day mortality event

Alive 365 (76.20%)

Dead 114 (23.80%)

Follow-up time, days 23.19 (9.20)

E-MTAB-4451 (n = 106)

Age, years 69.08 (14.36)

Gender

Male 27 (25.47%)

(Continued)
TABLE 1 Continued

GSE65682 (n = 479)

Female 79 (74.53%)

SRS group

SRS1 37 (34.91%)

SRS2 69 (65.09%)

28-day mortality event

Alive 54 (50.94%)

Dead 52 (49.06%)
f

Data are n (%) or mean (SD) unless otherwise specified. DM, Diabetes mellitus; MARS,
the Molecular Diagnosis and Risk Stratification of Sepsis; SRS, sepsis response signature;
NA, not available.
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Construction and validation of a
prognostic IRG signature

The GSE65682 dataset was used to train and test a prognostic

IRG signature, while the E-MTAB-4451 dataset was used to

externally validate the predictive capability of the identified IRG

signature. The GSE65682 dataset was randomly assigned to the

training (n = 240) and testing (n = 239) sets at a 1:1 ratio. Univariate

Cox regression analysis was performed in the training set to identify

IRGs of prognostic value with P-value < 0.05 as the screening

threshold. The LASSO estimation was further applied to penalize

the effect of multicollinearity using the glmnet R package (15).

Subsequently, IRGs reaming from the LASSO estimation were

subjected to multivariate Cox regression to construct a best-fitting

prognostic model, with the Akaike information criterion (AIC)

indicating model fitness and the Harrell’s concordance index (C-

index) indicating the discrimination ability (16). Above steps in the

multivariate Cox regression analysis were executed by the

survminer R package. The product of the multivariate Cox

regression coefficient bi of each gene and the corresponding gene

expression i were added to establish the risk score formula:

risk score =on
i=1bi ∗ i.

The risk score of each patient in the GSE65682 and E-MTAB-4451

datasets was calculated according to the risk score formula. Patients

were categorized into high risk or low risk subgroups based on the

median score of the corresponding dataset. The prognostic

performance of the identified IRG signature was internally tested in

the testing set (n = 239) and entire set (training set plus testing set, n =

479) of GSE65682, and externally validated in E-MTAB-4451 (n =

106). Survival differences between the low and high risk subgroups

were assessed by the Kaplan-Meier estimate. The receiver operating

characteristic (ROC) analysis was performed to assess the sensitivity

and specificity of the survival prediction based on the risk score using

the survivalROC R package.
Estimation of immune cell subtypes

CIBERSORT is a well-established technique for estimating the

immune cell compositions of “bulk tissue” from gene-expression

data (17). In this study, the relative abundances of 22 subtypes of

immune cells in samples were calculated using the CIBERSORT R

package. The Mann-Whitney U test was used to compare the

differences between the IRG subgroups.
Analysis of cytokines and chemokines

A panel of 27 clinically detectable inflammatory cytokines and

chemokines (Table S2) was collected from a published study (18).

The expression values of these cytokines and chemokines were

extracted from the GSE65682 dataset and were further compared

between the IRG subgroups. Differences were analyzed using the

Mann-Whitney U test. Additionally, Spearman correlation analysis

was used to explore the relationship between the IRG signature risk

score and the ratio of IL10/TNF.
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Validation experiments in
clinical specimens

The study was reviewed and approved by the Institutional

Research Ethics Committee of the PLA General Hospital. A

signed informed consent was obtained for each of the

participants. Quantitative real-time PCR (qPCR) was used to

verify the expression of the three genes that comprised the IRG

signature. PBMCs were isolated by density centrifugation of buffy

coats from blood samples of 24 clinical specimens, including 12

sepsis samples and 12 healthy controls. Total RNA of PBMCs was

extracted by the TRIzol method (19). Reverse transcription of RNA

was completed using a RevertAid RT Reverse Transcription Kit

(Thermo Scientific, Waltham, MA). qPCR was performed on the

StepOnePlus Real-Time PCR System (Applied Biosystems, Foster

City, CA) by monitoring the fluorescence of SYBR Green (TaKaRa

BioInc, Dalian, China) binding to double-stranded DNA. The

settings for the PCR thermal were as follows: initial denaturation

at 95°C for 30 s, followed by 40 amplification cycles of 95°C for 5 s,

60°C for 15 s, and 72°C for 15 s. A dissociation analysis was

performed at the end of each PCR reaction to ensure its specificity.

Each PCR was run in triplicate. For quantification of gene

expression changes, the 2–DDCt method was used to calculate

relative fold changes normalized against the GAPDH gene.

Primers for qPCR are listed in Table S3.
Statistical analysis

Statistical analyses were conducted by R software (version 3.6.3)

using the corresponding R package mentioned above or GraphPad

Prism (version 9.0.0). The R scripts utilized in this study exist at

GitHub (https://github.com/pengyaojun0903/sepsis.git). P values <

0.05 were considered statistically significant. All statistical tests were

two sided.
Results

Construction of a prognostic IRG signature
in sepsis

First, we performed differential expression analysis in the

GSE65682 dataset to determine DEGs between sepsis patients (n =

479) and healthy controls (n = 42). According to the screening criteria

(log2 |FC| ≥ 1 and adj. P-value < 0.05), a total of 1185 significant DEGs

were obtained with 528 genes upregulated and 657 genes

downregulated (Figure 1A, Table S4) in sepsis patients. The

expression profile of the most significantly downregulated and

upregulated 20 DEGs is shown in Figure 1B. Next, WGCNA was

performed to detect functional modules closely related to sepsis (Figure

S1). A total of 14 modules were detected, and the brown module was

the one with the highest positive correlation with sepsis (Pearson r =

0.61, P = 3e-54; Figure 1C). There were 743 genes in the brownmodule

(Table S5). The enrichment analysis revealed that they were mainly
frontiersin.org

https://github.com/pengyaojun0903/sepsis.git
https://doi.org/10.3389/fimmu.2023.1152117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2023.1152117
involved in immune-related pathways and metabolic processes

(Figure 1D). The complete list of the enriched terms is shown in

Table S6. Since the brown module was implicated in several immune-

related biological processes, it was used to inform the selection of IRGs

closely related to sepsis. IRGs retrieved from the ImmPort (n = 1793;

Table S1), DEGs of sepsis (n = 1185; Table S4), and genes in the brown

module (n = 743; Table S5) were applied to the intersection analysis. A

total of 36 IRGs were selected (Figure 1E), which were further subjected

to survival analyses to identify prognostic genes and to fit a risk model.

The GSE65682 dataset was randomly assigned to the training (n = 240)

and testing (n = 239) sets at a 1:1 ratio. Univariate Cox regression
Frontiers in Immunology 05
analysis performed in the training set revealed that 9 IRGs were

significantly correlated with the 28-day mortality of sepsis patients

(Figure 1F). 7 of these 9 IRGs were selected through the LASSO

method (Figure 1G, H), and the subsequent multivariate Cox

regression analysis finally determined a prognostic IRG signature

consisting of 3 genes (LTB4R, HLA-DMB and IL4R). The full list of

genes in the IRG signature is shown in Table 2.

The risk score of each patient in the training set (n = 240) was

calculated according to the risk score formula. Sepsis patients were

divided into a high risk (n = 120) or a low risk (n = 120) subgroup

using the median risk score as the cutoff point. Patients with higher
D

A B

E F

G H

C

FIGURE 1

Identification of a prognostic IRG signature in sepsis. (A) The volcano plot showing DEGs between healthy controls (n = 42) and sepsis patients (n =
479) in GSE65682. The screening criteria were set as adjusted P-value < 0.05 and |Log2 FC| ≥ 1. (B) The expression profile of the most significant 20
upregulated and downregulated DEGs. (C) Plot of module–trait relationships by WGCNA analysis in the GSE65682 dataset. Each row represents a
color module, and each column represents a clinical trait (healthy or sepsis). Each cell contains the corresponding correlation and P-value. ME,
module eigengenes. (D) Top 20 enriched terms of the genes in the brown module analyzed by Metascape. (E) The Venn diagram of intersected
genes of brown module genes, DEGs between healthy control and sepsis, and IRGs. (F) Univariate Cox regression analysis to screen IRGs related to
28-day survival of sepsis patients in the training set (n = 240) of GSE65682. Blue triangles represent the hazard ratio of death and open-ended
horizontal lines represent the 95% confidence intervals. All P-values were calculated using Cox proportional hazards analysis. (G) Ten-fold cross-
validation for tuning parameter selection in the LASSO estimation. The partial likelihood deviance corresponding to each lambda value is shown as
mean ± SD. The dotted vertical line (left) indicates the optimal value by minimum criteria. (H) The LASSO coefficient profile of individual genes
included in the estimation.
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risk scores tended to express lower levels of LTB4R, HLA-DMB and

IL4R, indicating that upregulation of the three IRGs was a favorable

prognostic factor in sepsis (Figure 2A). The survival status of sepsis

patients in the low risk (n = 120) and high risk (n = 120) subgroups

is shown in Figure 2B, and higher mortality rate was observed in the

high risk subgroup. Kaplan Meier analysis revealed that a

significantly inferior 28-day survival was reflected in the high risk

subgroup (P = 0.0005, Figure 2C). ROC curve was plotted for the

training set, and the area under the ROC curve (AUC) was

0.704 (Figure 2D).

The predictive capability of the identified IRG signature was

internally tested in the testing set (n = 239) and entire set (n = 479)

of GSE65682. The expression patterns of LTB4R, HLA-DMB and

IL4R in the testing set and entire set were the same with that in the

training set (Figure 3A). The survival status of each patient in the

testing set and entire set is shown in Figure 3B, and higher mortality

rate was observed in the high risk subgroup in both the testing set
Frontiers in Immunology 06
and entire set. Kaplan Meier analyses revealed significantly inferior

28-day survival in the high risk subgroup in both the testing set and

entire set (both P < 0.05; Figure 3C). ROC curves were plotted for

the testing set and entire set, and AUCs were 0.601 and 0.648,

respectively (Figure 3D). These results demonstrated that the IRG

signature could subdivide sepsis patients into subgroups with

significantly disparate survival.
External validation of the identified
IRG signature

To further verify the predictive capability of the identified IRG

signature, external validation was performed in another sepsis

dataset, namely E-MTAB-4451 (n = 106). We calculated the risk

score for each patient in the E-MTAB-4451 dataset using the same

formula. According to the median risk score, sepsis patients were
frontiersin.org
TABLE 2 Three gene members of the IRG signature associated with 28-day mortality of sepsis patients.

Gene symbol Gene name Chromosome Coefficient P-value

HLA-DMB Major histocompatibility complex, class II, DM beta 6p21.32 -0.685 0.002

IL4R Interleukin 4 receptor 16p12.1 -0.668 0.006

LTB4R Leukotriene B4 receptor 14q12 -0.298 0.135
IRG, immune-related gene; AIC, Akaike information criterion; C-index, concordance index; CI, confidence interval.
Global P-value = 9.120e-5; AIC = 542.53, C-index (95% CI) = 0.696 (0.618 to 0.775)
D

A B

C

FIGURE 2

Survival analysis of the IRG signature in the training set (n = 240) of GSE65682. (A) The distribution of risk scores derived from the IRG signature, and the
expression of the three genes that comprised the IRG signature in the training set of GSE65682. (B) The distribution of 28-day survival status in the high
risk (n = 120) and low risk (n = 120) subgroups in the training set. Sepsis patients were divided into low risk or high risk subgroup based on the median of
risk score. (C) Kaplan-Meier estimate of the 28-day survival using the IRG signature in the training set. The difference between the two curves was
determined by the two-side log-rank test. (D) ROC analysis of the sensitivity and specificity of 28-day mortality prediction by the IRG signature in the
training set. P value was obtained from the comparison of the AUC of the IRG signature risk score versus whose classification by 0.5 probability.

https://doi.org/10.3389/fimmu.2023.1152117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2023.1152117
divided into high risk (n = 52) and low risk (n = 54) subgroups.

Lower expression levels of LTB4R, HLA-DMB and IL4R were found

in patients with higher risk scores in E-MTAB-4451 (Figure 4A),

and higher mortality was observed in the high risk subgroup

(Figure 4B). The AUC of the IRG signature in E-MTAB-4451 was

0.619 (Figure 4C). As expected, our validation confirmed that the

IRG signature could predict the prognosis of sepsis patients.
The IRG signature is an independent
prognostic factor of sepsis

The relationship between clinical features and the identified

IRG signature was analyzed. In GSE65682, four classes of endotype

for sepsis, designated as Mars1 - 4, were identified by Scicluna et al.

(9) on the basis of whole-blood RNA expression profiles. The Mars

endotype was associated with 28-day mortality of sepsis, and the

worst outcome was found for patients classified as having a Mars1

endotype (9). In the present study, the IRG signature was

significantly associated with source of infection and Mars

endotype, but not age, gender, history of diabetes mellitus, or

thrombocytopenia (Table 3). In E-MTAB-4451, two distinct

sepsis response signature groups (SRS1 and SRS2) were defined

by Davenport et al. (10) based on transcriptomic analysis of

peripheral blood leucocytes, and the presence of SRS1 was

associated with higher short-term (14 day and 28 day) and long-
Frontiers in Immunology 07
term (6 month) mortality than was SRS2. In our study, the IRG

signature was significantly associated with gender and SRS

group (Table 3).

Next, univariate Cox regression analysis was performed in

GSE65682 (n = 479) to screen prognostic clinical characteristics, and

the result showed that the Mars endotype (Mar1, P = 0.047, HR =

2.001, 95% CI: 1.009 - 3.972) and the IRG signature (P < 0.001, HR =

2.138, 95% CI: 1.455 - 3.142) were significantly associated with the 28-

day survival of sepsis patients (Figure 5A). Furthermore, the

multivariate Cox regression analysis with age, gender, Mars

endotype, and IRG signature included showed that only the IRG

signature could serve as an independent prognostic factor of 28-day

mortality in sepsis (P = 0.002, HR = 1.897, 95% CI: 1.255 - 2.868;

Figure 5B). Additionally, we performed ROC analysis to compare the

sensitivity and specificity of 28-day mortality prediction between the

IRG signature, Mars, and the combination of these two factors. As

shown in Figure 5C, the AUC of the IRG signature was greater than

Mars endotype, though the difference was not statistically significant

(0.648 versus 0.590, P = 0.076). Additionally, the AUC of IRG signature

combined with Mars endotype was significantly superior to Mars

endotype (0.651 versus 0.590, P = 0.012) alone. These results

indicated that the IRG signature was an independent prognostic

factor of 28-day survival in sepsis, and combination of the IRG

signature and Mars endotype may help improve survival prediction

in sepsis patients. We also performed ROC analysis in E-MTAB-4451

(n = 106), and the result showed that there was no substantial difference
D
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FIGURE 3

Internal test the predictive capability of IRG signature in the testing set (n = 239) and entire set (n = 479) of GSE65682. (A) The distribution of risk scores
derived from the IRG signature, and the expression of the three genes that comprised the IRG signature in the testing set and entire set. (B) The distribution
of 28-day survival status in the high risk and low risk subgroups in the testing set and entire set. (C) Kaplan-Meier curves of the 28-day survival based on the
IRG signature in the testing set and entire set. The difference between the two curves was determined by the two-side log-rank test. (D) ROC analyses of
the sensitivity and specificity of 28-day mortality prediction by the IRG signature in the testing set and entire set. P values were obtained from the
comparisons of the AUC of the IRG signature risk score versus whose classification by 0.5 probability.
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in AUCs of SRS group and IRG signature (0.610 versus 0.619, P =

0.882; Figure S2), suggesting the predictive efficacy of IRG signature

was equal to that of SRS group identified by Davenport and

his colleagues.
Distribution of immune cell subtypes and
expression of cytokines and chemokines in
the IRG subgroups

CIBERSORT was applied to GSE65682 to explore the proportions

of immune cells in sepsis. The overall distribution of cell fractions is

illustrated in Figure S3. In the high risk subgroup (n = 232), plasma

cells, CD8+ T cells, regulatory T cells (Tregs), M0 macrophages, M2

macrophages, resting mast cells, and eosinophils were significantly

upregulated, while activated mast cells and neutrophils were

significantly downregulated when compared to those in the low risk

subgroup (n = 247) (all P < 0.05; Figure 6A).

The expression values for the clinically detectable inflammatory

cytokines and chemokines were extracted from GSE65682 and

compared between the IRG subgroups. The results showed that

CCL3, CSF3 and IL10 were significantly higher in the high risk

subgroup (n = 232), while CCL5, IL15, IL1B, IL1RN and VEGFA

were significantly lower in the high risk subgroup (n = 232) (all P <

0.05; Figure 6B). TNF exhibited a trend toward a lower expression in

the high risk subgroup, but the difference was not significant (P =

0.08; Figure 6B). Elevated ratios of anti-inflammatory to pro-

inflammatory cytokines (e.g. IL10/TNF) are proposed markers of

sepsis-induced immunosuppression, and are associated with

multiple organ failure and increasing sepsis severity and mortality

(20, 21). In our study, we found that the IRG signature was

positively correlated with IL10/TNF ratio (r = 0.23, P = 6.8e-

7; Figure 6C).
Assessment of biological pathways
associated with the IRG signature

DEGs between the IRG subgroups in GSE65682 were identified,

and a total of 36 genes were significantly upregulated and 1 gene

was significantly downregulated in the high risk subgroup
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(Figure 7A). These genes were subjected to GO analysis to

explore biological pathways associated with the IRG signature.

Genes enriched for biological process were mainly associated with

myeloid cell differentiation, development and homeostasis,

erythrocyte differentiation and homeostasis, and iron ion

transport and homeostasis (Figure 7B). Genes enriched for

cellular component were mainly involved in specific/secretory/

tertiary granule lumen, basal/basolateral plasma membrane, and

cortical cytoskeleton (Figure 7B). Genes enriched for molecular

function were involved in carbonate dehydratase activity and 2 iron,

2 sulfur cluster binding (Figure 7B). The complete list of the

enriched terms is shown in Table S7.
Validation of IRG signature genes in
clinical specimens

The expression levels of the three genes comprising the IRG

signature in the GSE65682 dataset are shown in Figure 8A.

Compared with healthy controls (n = 42), IL4R and LTB4R were

significantly upregulated in sepsis patients (n = 479), while HLA-

DMB was significantly downregulated (all P < 0.001). We validated

the expression of these genes in PBMCs from 12 sepsis patients and

12 healthy controls using qPCR. The qPCR data exhibited the same

pattern of expression of these genes as the GSE65682 dataset, with

IL4R and LTB4R being expressed at significantly higher levels in

sepsis cases and HLA-DMB exhibiting the opposite trend (all P <

0.01; Figure 8B).
Discussion

A biomarker that would be capable of predicting sepsis disease

outcome would be of considerable clinical importance. There is

emerging evidence for genetic associations with susceptibility to and

outcomes of infectious diseases, including sepsis (22, 23). Blood

transcriptional profiling has led to substantial advances in sepsis

treatment (24). Although promising new diagnostic biomarkers

have been discovered from the application of blood transcriptomics

to sepsis, patient selection for interventional trials and prediction of

patient outcomes in sepsis continue to be driven by clinical signs (9,
A B C

FIGURE 4

External validation of the identified IRG signature in E-MTAB-4451 (n = 106). (A) The distribution of risk scores derived from the IRG signature, and the
expression of the three genes that comprised the IRG signature in E-MTAB-4451. (B) The distribution of 28-day survival status in the high risk (n = 52) and
low risk (n = 54) subgroups in E-MTAB-4451. (C) ROC analyses of the sensitivity and specificity of 28-day mortality prediction by the IRG signature in E-
MTAB-4451. P value was obtained from the comparison of the AUC of the IRG signature risk score versus whose classification by 0.5 probability.
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25, 26). Attributing disease signatures to patient outcomes and

establishing the functional significance of any genetic associations

have so far been limited in such studies.

In the present study, we identified and validated an IRG

signature for 28-day survival prediction in sepsis based on two

publicly available datasets (GSE65682 and E-MTAB-4451). By

applying the risk score model of the IRG signature to sepsis

patients, a clear separation was observed in survival curve

between patients in the high risk and low risk subgroups of the
Frontiers in Immunology 09
training, testing and entire set of GSE65682. The predictive

capability of the IRG signature was also externally validated in

another sepsis dataset, namely E-MTAB-4451. In GSE65682, the

IRG signature was significantly associated with source of infection

andMars endotype, but not age, gender, history of diabetes mellitus,

or thrombocytopenia. Mars endotype is a novel molecular

classification of sepsis patients based on blood transcriptomics

which was carried out within the wide context of the Molecular

Diagnosis and Risk Stratification of Sepsis (MARS) project, a
TABLE 3 Correlations between clinical characteristics and the identified IRG signature.

Variable No. High risk Low risk P value

GSE65682

Age (years) 479 0.399

≤ 60 98 95

> 60 134 152

Gender 479 0.107

Female 109 98

Male 123 149

Diabetes mellitus 390 0.548

No 143 158

Yes 39 50

Source of infection 231 0.034*

Lung (CAP + HAP) 74 109

Abdomen 28 20

Thrombocytopenia 95 0.160

No 10 14

Yes 42 29

Endotype 479 < 0.001***

Mars1 102 30

Mars2 73 103

Mars3 39 79

Mars4 18 35

E-MTAB-4451

Age (years) 106 0.343

≤ 60 13 9

> 60 39 45

Gender 106 0.014*

Female 19 8

Male 33 46

SRS group 106 < 0.001***

SRS1 27 10

SRS2 25 44
fro
P values were acquired by Chi-square test or Fisher’s exact test. *P < 0.05, ***P < 0.001. CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia; Mars, molecular diagnosis
and risk stratification of sepsis; SRS, sepsis response signature.
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prospective observational cohort study in the mixed ICUs of two

tertiary teaching hospitals (Academic Medical Center in

Amsterdam, Netherlands, and University Medical Center in

Utrecht, Netherlands) (9, 27, 28). Of note, we performed Cox

regression analysis, and the results suggested that the prognostic

value of the IRG signature was independent of age, gender and Mars

endotype. Finally, it was fascinating to find that the IRG signature

had greater predictive power than Mars endotype in the ROC

analysis, though the difference was not statistically significant.

Moreover, when combined with Mars endotype, the IRG

signature showed even better predictive ability. These results

indicate that the combination of the identified IRG signature and

Mars endotype may help improve survival prediction in

sepsis patients.

The IRG signature consists of three individual genes, namely

LTB4R, HLA-DMB and IL4R. In GSE65682, the data analysis

demonstrated that IL4R and LTB4R were significantly

upregulated in sepsis, while HLA-DMB was significantly

downregulated compared to healthy controls. We further

validated the expression of these genes in 24 cases of clinical

specimens using qPCR, and the results of qPCR were in

accordance with those of the above bioinformatics analyses.

Although some of these genes are reportedly associated with

sepsis, their biological roles have not been thoroughly

investigated. For example, by analyzing multiple microarray
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datasets, Huang et al. (29) and Zhou et al. (30) simultaneously

identified LTB4R as a promising diagnostic biomarker of sepsis.

Moreover, LTB4R was found to be associated with mortality of

sepsis patients (29). In patients with sepsis who exhibited features of

immune depression, inverse correlations between HLA-DR

(including HLA-DMA and HLA-DMB) and PDE4D expression

were observed, indicating the role of cAMP-related HLA-DR

modulation in sepsis (31). Another candidate, IL4R, encoding the

alpha chain of the interleukin-4 receptor that can bind IL4 and IL13,

has not been previously reported to be associated with infectious

diseases. Our findings suggest that they deserve further

investigation to clarify their potential as biomarkers in sepsis.

Historically, sepsis was considered to consist of an initial hyper-

inflammatory phase followed by an anti-inflammatory or

immunosuppressive phase (32). This biphasic paradigm has been

challenged by numerous recent reports, and it has now become

evident that pro-inflammatory and anti-inflammatory phases can

occur during variable time points in the disease course of sepsis (33,

34). Sepsis-related immune cell death and compromised immune

cell function were suggested to be evidence of immunosuppression

(35). For example, early activation of Tregs during Staphylococcus

aureus sepsis was found to induce CD4+ T cell impairment and

increase susceptibility to secondary pneumonia (36). Moreover,

macrophages play an important role in regulating the host’s

immune balance and inflammatory response in sepsis, and an
A

B

C

FIGURE 5

The IRG signature is an independent prognostic factor of sepsis. (A) The univariate Cox regression analysis performed on sepsis patients in
GSE65682 (n = 479). Orange solid dots represent the hazard ratio of death and open-ended horizontal lines represent the 95% confidence intervals
(CIs). All P values were calculated using Cox proportional hazards analysis. (B) The multivariate Cox regression analysis performed on sepsis patients
in GSE65682 that contained age, gender, Mars endotype, and IRG signature as covariates. (C) ROC analysis of the sensitivity and specificity of 28-day
survival prediction by the IRG signature risk score, Mars endotype, and combination of the two factors. P values were obtained from the
comparisons of the AUC of the Mars endotype versus those of the IRG signature risk score and Mars endotype combined with the IRG signature risk
score. *P < 0.05, **P < 0.01, ***P < 0.001. Mars, molecular diagnosis and risk stratification of sepsis.
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imbalance between M1-like and M2-like macrophages has been

suggested to contribute to the occurrence of sepsis (37). In the

present study, we inferred from transcriptomics data the

enrichment of Tregs and M2 macrophage in the IRG high risk

subgroup, suggesting possible involvement of Tregs and

macrophage in sepsis-related immunosuppression as early as 24h

amid sepsis occurrence. Various molecules, including cytokines,

chemokines, and acute phase reactants are involved in the process
Frontiers in Immunology 11
of sepsis (38–40). The cytokine and chemokine analysis in our study

revealed that anti-inflammatory cytokine (IL10) showed higher

expression level in the high risk subgroup classified by the IRG

signature, while pro-inflammatory cytokines (IL1B and IL15)

were downregulated in the high risk subgroup. Moreover,

the ratio of IL10/TNF, a reported indicator of sepsis-induced

immunosuppression and sepsis-related mortality, was significantly

correlated with the IRG risk score. Taken together, we concluded
A

B C

FIGURE 6

Distribution of immune cell subtypes and expression of cytokines and chemokines in the IRG subgroups. (A) Comparisons of immune cell fractions
between low risk (n = 247) and high risk (n = 232) IRG subgroups in GSE65682. The Mann-Whitney U test was used to compare the differences. (B)
Comparisons of cytokines and chemokines between low risk and high risk IRG subgroups. Differences were determined by the Mann-Whitney U
test. (C) The relation between the IRG risk score and the ratio of IL10/TNF in sepsis by Spearman correlation analysis. *P < 0.05, **P < 0.01, ***P <
0.001, ns, no significance.
A B

FIGURE 7

Assessment of biological pathways associated with the IRG signature. (A) The expression profile of the DEGs between the low risk (n = 247) and high
risk (n = 232) subgroups classified by the IRG signature in GSE65682. The screening criteria were set as adj. P-value < 0.05 and |Log2 FC| ≥ 1. (B) GO
analysis of the identified DEGs. Top 10 significant biological process (BP), top 10 significant cellular component (CC) and 2 significant molecular
function (MF) of GO analysis were shown.
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that the IRG signature could mirror the immunological

status of sepsis patient, which may aid in stratifying suitable

patients for immune-modulating therapy and evaluating the

therapeutic efficacy.

We also performed differential analysis to screen DEGs between

IRG subgroups in GSE65682. It is interesting to note that several

DEGs (namely OLFM4, LCN2, MMP8 and LTF) identified in the

present study were coincidently uncovered by other groups as

potential biomarkers capable of distinguishing septic shock from

non-septic shock in postsurgical patients (41, 42).The above genes

were able to discern between both shock conditions better than

other biomarkers used for diagnosis of these conditions, such as

procalcitonin, C-reactive protein or neutrophils (41). We further

performed GO analysis of the identified DEGs, and the result

suggested their possible involvement in myeloid cel l

differentiation and iron ion homeostasis among others, providing

clues regarding the underlying biological mechanisms of the

IRG signature.

The limitations should be acknowledged for our study. First, the

predictive model was established merely based on transcriptomics

data. The AUCs of the IRG signature were 0.704, 0.601, 0.648 and

0.619 for the training, testing, entire (training set plus testing set)

sets of GSE65682 and E-MTAB-4451, respectively. There is still a

long way to go before utilizing the IRG signature as a clinically

useful biomarker, particular given that performance could very

likely be lower in a sepsis patient with different disease etiology or

genetic background. Other system-based omics data or clinical

characteristics of patients should also be included to increase its

predictive power when applied it for clinical practice. Second, since

changes of the disease state of sepsis are rapid and dynamic,

longitudinal studies of the molecular changes and how those

changes might impact patient outcomes and response to therapies

are required. Third, based on bulk transcriptomics data,

CIBERSORT deconvolution algorithm may not accurately identify

immune cell subpopulations. It is necessary to use flow cytometry or

single-cell RNA-Seq methods to verify our results. Finally, we have

limited experimental data and lack information on the regulatory

mechanisms and functional roles of the three individual genes of the

IRG signature.
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Conclusions

In conclusion, the present study identified an IRG signature

capable of predicting the 28-day mortality in sepsis patients. The

innovative IRG signature may aid in stratifying risky sepsis patients

and evaluating patients’ immune state. Also, clinical investigations

in additional sepsis patient cohorts are needed to validate and

elaborate its clinical utility.
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SUPPLEMENTARY FIGURE 1

WGCNA of sepsis patients (n = 479) and healthy controls (n = 42) in

GSE65682. (A) Sample clustering to detect outliers. (B) Analysis of the

scale-free fit index (left panel) and the mean connectivity (right panel) for
various soft-threshold powers. R2 = 0.988 and b = 8 (red line) were selected

for the subsequent analysis. (C) Cluster dendrogram (unmerged) of co-
expression network modules ordered by a hierarchical clustering of genes

and based on the 1-TOMmatrix. Different colors represent different modules.
(D)Clustering of module eigengenes. Modules whose distance were less than

0.25 (red line) were merged. (E) Cluster dendrogram (merged) of co-
expression network modules. (F) Module membership (MM) versus gene

significance (GS) plot of the brown module.

SUPPLEMENTARY FIGURE 2

ROC analysis of the sensitivity and specificity of 28-day survival prediction in
E-MTAB-4451 (n = 106).

SUPPLEMENTARY FIGURE 3

Immune cell fractions of sepsis patients in GSE65682 (n = 479) analyzed by

CIBERSORT method.
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