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Thrombosis is a frequent cause of cardiovascular mortality and hospitalization.

Current antithrombotic strategies, however, target both thrombosis and

physiological hemostasis and thereby increase bleeding risk. In recent years

the pathophysiological understanding of thrombus formation has significantly

advanced and inflammation has become a crucial element. Neutrophils as most

frequent immune cells in the blood and their released mediators play a key role

herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties

has also shown to modulates thrombosis and thus presents a potential

therapeutic target. In this article we review direct and indirect (immune- and

endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation

system. Further we discuss its implications for large vessel thrombosis and

consecutive thromboinflammation as well as immunothrombosis in sepsis and

COVID-19 and give an outlook for potential therapeutic prospects.
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Introduction

Thrombosis and thrombo-embolism are common causes of death and major health

issues worldwide (1). Thrombosis can occur in arteries, veins and the microcirculation, and

thus can affect all parts of the cardiovascular system. While arterial thrombosis (commonly

associated with atherosclerosis) can result in myocardial infarction, peripheral artery

disease and stroke, deep vein thrombosis and pulmonary embolism are major

complications of thrombus formation in the venous system. Microvascular thrombosis is

triggered mainly in the setting of septic or sterile inflammation, as recently demonstrated

impressively in COVID-19 infection, where thrombo-embolic complications turned out as

main drivers of mortality (2, 3). For a long time, platelets and the coagulation system have

been considered the main players in thrombosis and eventually developed successful

targets of therapeutic approaches. However, current antithrombotic strategies (i.e. platelet

inhibition and anticoagulation) also affect physiological hemostasis and thereby increase
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bleeding risk (4). Over the last decade inflammation has been

established as a hallmark in the pathophysiology of thrombosis

(5). Today, thrombotic and inflammatory processes are considered

as inseparably linked and regulated by a complex interaction

between immune cells, platelets, and soluble factors (5). While

inflammatory diseases constitute a risk factor for both arterial (6–8)

and venous thrombosis (9, 10), primary thromboembolic events can

directly induce local tissue inflammation and a systemic

inflammatory response (11–14). Crosstalk between thrombosis

and inflammation in some settings can also be beneficial, as

formation of thrombi inside blood vessels can support the

immune system facilitating pathogen recognition and destruction,

a process termed immunothrombosis (15).

Cathelicidins are antimicrobial peptides that form an effective

component of the innate immune system (16–18). Various cells can

release these peptides with neutrophils constituting the major source

in the blood stream (16, 19–21). Neutrophil-activation is a key feature

of thromboinflammation and cathelicidin is abundantly released and

able to influence both inflammation and thrombosis (5, 22, 23). This

article summarizes recent findings of how cathelicidin affects different

aspects of thrombotic processes and highlight its consequences for

thrombosis and thromboinflammatory disorders. Eventually, we also

discuss these neutrophil-derived antimicrobial peptides as possible

therapeutic targets.
General features of cathelicidin

Structure and function

Cathelicidins are antimicrobial peptides usually 10–50 residues

in length and constitute a crucial component of the innate immune

response (16). Though the mature form of the peptides is diverse in

length, composition, net charge, and structure, the organization of

the coding sequence is well conserved across species even beyond

mammals including several vertebrates (24–26). Overall, the

biological structure of cathelicidin peptides is diverse and

complex, reflecting the many different roles that these peptides

play in the immune system. The molecules are generally

characterized by a net positive charge and a high proportion of

hydrophobic amino acids and share some common structural

features (16, 17, 27). Cathelicidins often contain a conserved

region called the cathelin domain (28), which is thought to play a

role in regulating the activity of the peptide (29). Further, many

cathelicidins are alpha-helical peptides, that allows interaction with

the membranes of bacterial cells and disrupture of their integrity

(30, 31).

Humans express only one cathelicidin, hCAP18 gene is

transcribed to a precursor peptide, which is extracellularly cleaved

into the active form, that is called LL-37 because it consists of 37

amino acids. The mouse analogue is referred to as cathelicidin-

related antimicrobial protein (CRAMP) (16). LL-37 is mainly

expressed by immune cells (mainly neutrophils, macrophages,

dendritic cells, and natural killer cells), but also by epithelial cells

of the skin, eyes, gastrointestinal, genital and respiratory tract (32–

34). It is released upon pathogen-mediated (bacteria, viruses, fungi,
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parasites) endoplasmatic reticulum stress (35), and also by NF-kB-

induced inflammatory signals (16, 36), while active vitamin D and

several other factors, such as short-chain fatty acids and some

cytokines induce cathelicidin transcription (33, 37, 38).

Cathelicidin next to physical interaction with negatively

charged membranes can directly or indirectly activate a variety of

surface receptors or intracellular targets that are structurally

unrelated (16, 39). The most studied receptor interacting with

human cathelicidin is formyl peptide receptor like-1 (FPR2), a G-

protein-coupled receptor with downstream effects on chemotaxis

and angiogenesis (40). Further chemokine (C-X-C motif) receptor 2

(CXCR2), MrgX2, EGFR, IGF1R, or purinergic receptors P2X7

ionotropic receptor and P2Y11 have been associated to cathelicidin

(16, 41, 42). After binding to nucleic acids, cathelicidin can enhance

cell responses to self-nucleic acids released from damaged and

dying cells, by permitting recognition by intracellular recognition

systems such as Toll-like receptor (TLR) mitochondrial antiviral-

signaling protein (MAVS) and stimulator of interferon genes

(STING) (24, 43). Downstream pathways of cathelicidin signaling

result in transcription and translation, including the modulation of

NF-kB inhibitor-a (IkBa) and several kinase pathways (e.g.

mitogen-activated protein kinases (MAPKs) p38, extracellular

signal-regulated kinase 1 and 2, JUN N-terminal kinase (JNK)

and phosphoinositide 3-kinase) (24, 44–46).
Antimicrobial and immune-modulatory
effects

The first and most extensive investigated function of

cathelicidin is its direct antimicrobial activity (44, 47, 48). The

cationic and amphophilic character allows direct binding to

negatively charged pathogen membranes or nucleic acids (24, 49,

50). These physical properties are prerequisites to induce

membrane permeability, pore formation and eventually

disruption leading to effective killing of pathogens, which makes

cathelicidin a crucial player in the first line of immune defense.

Cathelicidin is also effective against viral infection by direct

interaction with viral particles and consecutive destabilizing their

envelopes (51–54). Recent studies reported a strong interaction with

the SARS-CoV2 receptor binding domain (RBD) of the spike

protein, and cathelicidin thereby reduced the binding capacity of

the cellular SARS-CoV2 receptor ACE2 (55).

Next to their antimicrobial activity, cathelicidin exerts

pleiotropic effects on different cell types including both pro- and

anti-inflammatory effects (16, 24, 44, 56). These could be explained

by their strong affinity to bind other molecules and thereby

modulate their function, resulting in enormous variations of the

net effects, that can either be beneficial or detrimental in different

pathophysiological context and tissue environments. Immune-

modulatory effects of cathelicidin most importantly contain

enhanced cellular killing capacities e.g. in neutrophils or T-cells

(57–60), degranulation of mast cells (61–65), differentiation and

polarization of immune cells such as pro-inflammatory macrophage

differentiation (66–68), leukocyte recruitment (56, 69),

neutralization of bacterial molecules that normally induce
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proinflammatory immune responses such as LPS (36, 41, 56, 70–73)

and induction of type I interferon response (24, 74).
Thrombo-modulatory mechanisms
of cathelicidin

Direct effects on platelets

Platelets play a central role in thrombus formation in arteries,

veins and microvessels. They interact frequently with immune cells

to propagate thromboinflammation (5). Platelets are exposed to

released cathelicidin locally at sites of thrombus formation but also

systemically in the blood stream. Interestingly, data on direct effects

of cathelicidin on platelets are scarce.

In a first study from 2015 investigating possible side effects of

cationic antimicrobial peptide-based therapeutic strategies, P-

selectin exposure on platelets was not observed after in vitro

treatment of human platelet rich plasma (PRP) with LL-37 in

concentrations from 0.025 mg/mL to 0.1 mg/mL (approximately

5-20 µM) (75). Another study reported inhibitory effects of LL37 on

agonist-induced (ADP, U46619, collagen and thrombin at medium

dose concentrations) expression of P-Selectin, platelet aggregation

and fibrinogen-triggered platelet spreading of isolated human

platelets. Mechanistically these observations were linked to

reduced phosphorylation of Akt- and Src-kinases, however,

cytotoxicity should be taken into consideration since in vitro

concentrations of LL-37 peptide were in the range of 0.1 mM to

1.2 mM (76). Importantly, cytotoxic effects on eukaryotic cells have

been described under culture conditions in the presence of 0.1 mM

of LL-37 (77). Two studies published in 2018 more extensively

focused on cathelicidin effects exerted on platelets at lower

concentrations (20, 78), which are more likely to be achieved

locally in inflammatory settings in vivo (47, 79–82). Pircher et al.

reported that LL-37 in isolated washed human platelets dose-

dependently induced alpha degranulation (P-selectin and CD40L

surface expression and release) as well as release of IL-1b and

HMGB1 (high mobility group box1) starting at 5 µM, which

promoted platelet-neutrophil-aggregate formation and neutrophil

activation. The suggested molecular mechanism involves

glycoprotein VI receptor and downstream signaling through

protein tyrosine kinases Src/Syk and phospholipase C. Blockade

of other possible receptors for cathelicidin (as described in other cell

types) such as FPR1, FPR2, or purinergic P2X7 did not alter LL-37-

dependent platelet activation. Interestingly, LL-37 at the same

concentrations did not induce GPIIb/IIIa-activation, and did not

affect fibrinogen-dependent platelet spreading or platelet

aggregation in PRP (both spontaneous and agonist-induced). In

line with these findings, Salamah et al. reported comparable effects

on LL-37-induced alpha degranulation in isolated platelets (78).

Additionally, they observed increased fibrinogen binding, platelet

aggregation and spreading. Interestingly, LL-37 hereby induced

intracellular calcium mobilization comparable to that induced by

cross-linked collagen-related peptide (CRP-XL 1 mg/mL), albeit

with faster kinetics. Moreover, this study found low levels of LL-37

stored in platelet granules which were, in analogy to neutrophil
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responses, released upon activation indicating auto- and paracrine

mechanisms of activation. Mechanistically, in mice CRAMP bound

to formyl peptide receptor 2 (FPR2/ALX)/Fpr2/3, which is an

orthologue to human FPR2/ALX, a Gi-coupled receptor for LL-

37/CRAMP on immune cells (83, 84), whose expression has also

been reported in megakaryocytes and human and mouse platelets

(85, 86). Activation of FPR2/ALX/Fpr2/3 on platelets can increase

P-selectin secretion and fibrinogen binding by reducing cAMP-

dependent signaling that is known as an inhibitor of platelet

functions (78). Accordingly, plasma of mice with psoriasis (that

show significantly increased levels of CRAMP) considerably

activated wildtype platelets but failed to do so in Fpr2/3-deficient

mice (87). In addition to classical platelet activation, both LL-37-

stimulated human platelets but also platelet intrinsic cathelicidin

showed considerable antibacterial activity in vitro characterized by

increased binding and killing of bacteria (88). In summary,

cathelicidin is a potent activator of platelets that contributes to

thromboinflammation (Figure 1).
Direct effects on coagulation and bleeding

The plasmatic coagulation system is an essential factor for

thrombus stabilization as well as its resolution. Few studies have

investigated possible interactions of cathelicidin and coagulation

pathways. In an in vitro study that analyzed interactions of

cathelicidin and related components with blood cells, LL-37 at

concentrations of 50 µg/mL did not influence PT (prothrombin

time) and aPPT (activated partial thromboplastin time) in poor

platelet plasma, while at higher concentrations (0.2 mg/mL) both

PT and aPTT were significantly prolonged (75). However, latter

concentrations are unlikely to be reached locally in vivo (47, 80,

82). At lower concentrations LL37-dependent alterations in whole

blood coagulation were not observed, neither in clotting time nor

in clot thickness (75). Mice deficient in hematopoietic CRAMP

did not show differences in both extrinsic or intrinsic coagulation

ex vivo as assessed by ROTEM thrombelastometry (20). In mouse

tail bleeding assays, injection of human LL-37 reduced bleeding

time (78), however, no changes were observed in mice deficient for

hematopoietic CRAMP (20). In summary, while cathelicidin

exerts various effects on platelet functions, the peptides have

minimal (if any) effects on blood coagulation at concentrations

expected in vivo in the absence of inflammatory conditions or

infections. New light has been shed on the effects of cathelicidin

on the coagulation system in the context of Covid-19 (89), which

is associated thromboembolic complications such as pulmonary

embolism (2, 3, 90). In this condition levels of LL-37 were

negatively correlated with thrombin time and positively related

to plasma fibrinogen level suggesting pro-coagulatory effects.

Indeed, LL-37 (0-50 ug/mL) increased activity of thrombin and

FXa (Factor Xa), fibrinogen, and prothrombin, respectively (91).

Further, LL-37 might decrease heparin effects by binding to

heparin due to its cationic and amphipathic properties (92),

which might influence coagulation. In summary, effects of

cathelicidin on the coagulation system are not clear yet with

dose-dependency possibly playing a role (Figure 1).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151926
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1151926
Effects on neutrophil activation and NETs
(Neutrophil extracellular traps)

Next to direct effects on platelets or plasmatic coagulation,

cathelicidin might modulate thrombosis via immune-cell-mediated

mechanisms. Neutrophils play a crucial role in venous and arterial

thrombosis as well as in immunothrombosis (15, 22, 93). Beside

representing the main source of blood cell-derived cathelicidin

neutrophil themselves can be activated by human LL-37 in an

auto- and paracrine fashion (24). LL-37 potentiates neutrophil

respiratory burst and induces NETosis partially through FPR2 (58,

59, 94). Hereby LL-37 translocates towards the nucleus and can

disrupt the nuclear membrane (58). Neutrophil extracellular traps

(NETs) are released by neutrophils upon activation and a potent

mechanism to capture invading pathogens (95). Besides that, NET

formation can stimulate coagulation through multifaceted

mechanisms including NET-mediated platelet activation,

disintegration of tissue factor pathway inhibitor (TFPI), and direct

binding of vWF and activating factor XII (15, 96). Cathelicidin is a

major component of neutrophil secondary granules and can be

released and adhere to NETs (97, 98). In arterial thrombi,

extracellular cathelicidin was abundantly associated with NETs

(20). While NETs could simply serve as scaffold for cathelicidin to

approach pathogens, the specific role of cathelicidin within NETs has

been controversially discussed. LL-37 has been reported to be

essential for NET survival and persistence by protecting neutrophil

DNA from cleavage by bacterial nucleases (58, 59, 94), however, other

studies suggested that LL-37 could also help cleanNETs by binding to

DNA and condensing it to denser assemblies for more effective

phagocytosis by macrophages (99, 100). Further, cathelicidin-induced
Frontiers in Immunology 04
platelet activation led to increased platelet-neutrophil-interaction and

thereby enhanced neutrophil ROS production and NETosis.

Eventually, CRAMP-activated platelets enhanced injury-induced

neutrophil extravasation in mice cremaster muscle venules (20).

Thus, cathelicidin associate with extracellular nucleosomes that

affect NET functions and provide a platform for interactions with

adjacent cells or pathogens (Figure 1).
Effects on monocytes and other
immune cells

Monocytes are important cells of the host defense system, but also

play a role in thrombotic processes (15). Mechanistically, they express

plenty of tissue factor once they are activated, which initiates the

coagulation system (101, 102). Cathelicidin not only serves as

chemoattractant for neutrophils and monocytes (17, 40) but can

upregulate the expression and release inflammatory factors from

monocytes, such as IL-1b (17). In vivo, cathelicidin recruits classical

monocytes to the arteriolar endothelium in the mouse cremaster muscle

through formyl-peptide receptor 2 (FPR2), a chemotactic receptor (19,

40, 103). Overall, might contribute to immunothrombosis and

thromboinflammation in a monocyte-dependent manner.

In addition to effects on myeloid cells, cathelicidin can

potentiate T-helper cell differentiation into a Th17 phenotype

(104), thereby linking innate and adaptive immune responses.

Th17/IL-17A-mediated inflammatory response in turn has been

associated to a pro-atherosclerotic phenotype (105) and

prothrombotic effects in autoimmune diseases (106). Further,

stimulation of PBMCs (peripheral blood mononuclear cells) with
FIGURE 1

Thrombo-modulatory mechanisms of cathelicidin. The scheme displays effects of cathelicidin on cell types (platelets, endothelial cells, neutrophils,
monocytes) and systems (coagulation) that are directly involved in thrombosis and thromboinflammation. Arrows indicate up-/down-regulation or
increase/decrease of molecules or functions, respectively. References are indicated in brackets.
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LL-37 was associated with reduced programmed cell death protein 1

(PDCD1) mRNA expression in patients with acute coronary

syndrome (107) (Figure 1).
Effects on endothelial cells

Next to blood and immune cells the vascular endothelium is an

essential regulator of hemostasis and functional endothelial cells

continuously release antithrombotic mediators such as nitric oxide

and prostaglandin to prevent blood clotting (108–111). While

disruption of the endothelium leads to exposure of subendothelial

collagen to the blood stream with consecutive rapid thrombus

formation, also endothelial dysfunction is associated with a

prothrombotic state and additionally leads to progressive vascular

inflammation (22, 112–114). Activated endothelial cells express

adhesion molecules including P-selectin, E-selectin, vWF, ICAM,

and VCAM that recruit neutrophils, platelets, and monocytes (114).

Effects of cathelicidin on endothelial cells are not understood in

detail and are probably context-related. While LL-37 was shown to

inhibit apoptosis of endothelial cells by neutralizing LPS (115),

endothelial cells showed LL-37-dependent NF-kappaB-activation,

expression of ICAM-1 and monocyte chemoattractant protein 1

(115–117). Further, LL-37 induces autophagy in endothelial cells

but enhances cell death in autophagy-dysfunctional conditions, that

plays a role in the pathogenesis of atherosclerosis (118). In vitro, LL-

37 rapidly activated endothelial IL-6 gene expression, but this effect

was temporary and not observed after several hours. However, LL-

37 strongly boosted upregulation of IL-6, IL-8 and interferon beta

expression induced by double-stranded RNA-analogon

polyinosinic:polycytidylic acid (polyI:C). In contrast, while

endothelial uptake of viral DNA was facilitated by LL-37, DNA-

induced inflammatory response was abrogated (119). While

abovementioned rather pro-inflammatory effects are clearly

related to prothrombotic consequences, other studies describe

cathelicidin-dependent effects that would rather decrease

thromboinflammation. So, LL-37 has been shown to induce

endothelium-dependent angiogenesis via FPR2-receptor and to

stimulate proliferation and formation of vessel-like structures in

cultivated endothelial cells (120). Similarly, the murine homologue

CRAMP induced prostaglandin-dependent angiogenesis in vivo

(121). Immobilized forms of cathelicidin in vitro showed

mitogenic effects on endothelial cells that were comparable to

those of vascular endothelial growth factor (VEGF) (122).

Further, LL-37 induced tumor stromal cells to express strong pro-

angiogenic factors that eventually facilitated tumor progression

(123). Consequently therapeutic approaches of topical application

of recombinant LL37 promoted wound healing through

vascularization (124). In line with this, neutrophil-born LL-37/

CRAMP promoted re-endothelization potentially through the

same receptor (125). This limited neointima formation at sites of

endothelial injury, mediated by recruitment and increased survival

of endothelial outgrowth cells (125, 126). Further, LL-37 promoted

endothelium-dependent relaxation in human omental veins

mediated by FPR2-dependent release of nitric oxide and
Frontiers in Immunology 05
endothelium-derived hyperpolarizing factor (EDHF) but not

prostanoids (127) (Figure 1).
Cathelicidin in thrombotic and
thromboinflammatory diseases

Release in thrombosis and
thromboinflammation

Several cell types involved in thromboinflammation such as

neutrophils, endothelial cells and macrophages express cathelicidin

(16), with neutrophil-born likely to be the main source particularly

in acute thrombotic processes (20). Neutrophil-activation is found

in both pathogen-triggered immunothrombosis as well as sterile

thrombosis with consecutive thromboinflammation. In microbial

infection as well as sterile inflammation pathogen- or damage-

associated molecular patterns (PAMPs or DAMPs, respectively) as

well as many inflammatory cytokines (e.g. IL-8, IL-6, IFN-g, TNF a)
and chemokines activate neutrophils and trigger cathelicidin release

(24, 31, 128–133). In thrombosis activated platelets interact with

neutrophils via P-selectin and P-selectin glycoprotein ligand 1 as

well as glycoprotein Ib and macrophage-1 antigen, which mediate

reciprocal activation directly via physical cell interactions as well as

release of soluble mediators (23, 102, 134–136). Inflammatory

signals lead to cathelicidin gene expression in response to

endoplasmic reticulum (ER) stress and NF-kB activation (35).

Additionally, cathelicidin stored as inactive precursor in

azurophilic granules can be rapidly released by degranulation

during immune responses (132, 137). Cathelicidin can be

released, but also be exposed and bound to surface membranes

and extracellular nucleosomes such as NETs as described above,

which is a key feature in thrombosis (20, 97, 100, 138).

Although the effects of cathelicidin on different cell types have

been extensively studied in vitro, the dynamics of release and

concentration in vivo remain speculative. This is in part due to

limitations in rapid local sample acquisition as well as technical in

vitro handling, since the positively charged peptides readily stick to

negatively charged surfaces such as cell membranes and also

laboratory tubes. The concentrations of cathelicidin shown to

have effects on platelets and other blood cells in vitro are not

reached by those measured in the systemic circulation (79),

although higher local concentrations have been found in

bronchoalveolar lavage (BAL) fluid and at different mucosal sites

(47, 80, 82). Although cathelicidin is considered to have a short half-

life, it is very likely that relevant amounts of neutrophil-derived

cathelicidin are exposed to blood components and other cells at

sites of thrombosis. Though, neutrophils are considered the main

source of cathelicidin in thromboinflammation that have capacity

of immediate release of high amounts with influence on acute

processes (20), release by other cells such as monocytes/

macrophages, endothelial, smooth muscle cells or even platelets

(16, 78, 88, 139) might contribute to ongoing inflammation with

effects on development of chronic vascular diseases such as

atherosclerosis (19, 116) (Table 1).
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TABLE 1 Cathelicidin expression and proposed function in thromboinflammatory diseases.

Disease Main findings and mechanism Ref.

Atherosclerosis LL-37 detected in human atherosclerotic plaques (116, 139)

Decreased lesion size in CRAMP-/- ApoE-/- mice due to reduced recruitment of classical
inflammatory monocytes and neutrophils

(19)

CRAMP-mtDNA complexes aggravate atherosclerosis in ApoE-/- mice (140)

T cells reactive to mouse cathelicidin modulate plaque calcification in ApoE-/- mice (107)

Thrombosis and haemostasis Neutrophil-derived cathelicidin found in human coronary artery thrombi and FeCl3 induced
mouse carotid thrombi

(20)

Deficiency of (hematopoietic) CRAMP reduced FeCl3-induced carotid artery thrombosis and
ligation-induced platelet adhesion

(20, 91)

IV injection of LL-37 shortened bleeding time in mice (78)

IV injection of LL-37 or CRAMP accelerated arterial thrombosis in mice (91)

Injection of LL-37 decreased thrombus weight in arterio-venous shunt thrombosis in rats (76)

Myocardial infarction and ischemia LL-37-reactive CD8+ effector T-cells are associated with acute coronary events in
human

(107)

Systemic plasma levels of LL-37 transiently decreased in patients with STEMI, but are higher
levels in culprit lesion

(141)

CRAMP protects against cardiomyocyte apoptosis and cardiac I/R injury via activation of
Akt and ERK and nuclear export of FoxO3a

(142)

CRAMP aggravates ischemia-reperfusion injury via TLR4 and NLRP3-inflammasome
activation

(143)

Basal plasma levels of LL-37 associated with lower risk of ischemic events within the first 3
years after STEMI

(144)

Cathelicidin recruits and retain bone marrow-derived stem/progenitor cells after myocardial
infarction

(145–147)

Cathelicidin-biofunctionalized stent reduced the incidence of in-stent-restenosis due to
reduced neointima formation

(125)

LL-37/CRAMP increases angiogenesis in rabbit hindlimb ischemia and wound
revascularizatoin in mice

(120)

Immunothrombosis and sterile
thromboinflammatory microvascular diseases

Protective role of cathelicidin in mouse models of sepsis by neutralization of LPS and
induction of NETosis

(31, 58, 72, 94,
148, 149)

Hematopoietic CRAMP-deficient mice protected from acid-induced lung injury and reduced
pulmonary NETosis

(20)

IV injection of high doses of human LL-37 or murine CRAMP induces
pulmonary microvascular thrombosis in mice

(91)

LL-37 strongly induces NETs in systemic lupus erythematosus (150)

Strong cathelicidin-dependent platelet activation in psoriasis (87)

Covid-19 Neutrophil-derived LL-37 inversely correlated with disease severity in Covid19-infection (151)

Epithelial LL-37 was upregulated by SarsCov-2 spike protein and elevated in plasma of
Covid19-patients

(91)

Intranasal administration of LL-37 decreased lung infection in mice infected with human
ACE2 expressing adenovirus

(55)

LL-37 levels negatively correlated with thrombin time but positively correlated with
fibrinogen level

(91)
F
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Cathelicidin in atherothrombotic and large
vessel disease

Cardiovascular diseases remain the leading cause of mortality

worldwide despite current therapeutic interventions. The majority

of cardiovascular deaths are caused by myocardial infarction and

stroke following rupture of an atherosclerotic plaque and

subsequent thrombotic arterial occlusion. Atherosclerosis is

nowadays considered an inflammatory disease and immune cells,

including neutrophils, play a role in all steps of atherothrombosis

(152–156).

In this context, LL-37 has been detected in human

atherosclerotic plaques, where it interacts with macrophages and

endothelial cells (116, 139). A functional role in the progression of

atherosclerosis was identified in ApoE-deficient mice (a commonly

used mouse model for atherosclerosis), where cathelicidin

deficiency significantly decreased atherosclerotic lesion size (19).

Mechanistically neutrophil-derived cathelicidin enhanced

recruitment of classical inflammatory monocytes and neutrophils

(19). Another study indicated that CRAMP-mtDNA complexes

aggravate atherosclerotic lesion formation in ApoE-deficient mice

and suggests that LL-37-mtDNA complex acts as a key mediator of

atherosclerosis formation (140). Furthermore, T cells reactive to

mouse cathelicidin may be involved in modulating plaque

calcification in ApoE-deficient mice (107).

Rupture of atherosclerotic plaques is the primary cause for

arterial thrombosis and associated mortality in myocardial

infarction and stroke. LL-37 was abundant in coronary artery

thrombi of patients with acute myocardial infarction as well as

mouse arterial thrombi induced by ferric chloride injury (20). In

this context cathelicidin derived almost exclusively from neutrophils

and was abundantly associated to neutrophil-derived nucleosomes

(NETs). Deficiency in hematopoietic CRAMP delayed ferric chloride-

induced carotid artery occlusion and decreased thrombus size and

stability; similarly, carotid artery ligation-induced platelet adhesion

was reduced (20, 91), while bleeding time was unaffected (20). An

independent study showed that intravenous injection of LL-37 (20

µM) into mice shortened bleeding time (78). Accordingly, addition of

LL-37 (10-50 µM) to human whole blood concentration-dependently

increased thrombus formation ex vivo on collagen-coated slides

under arterial shear rates (78). Recently, similar effects with

accelerated arterial thrombosis in mice were described upon

injection of both human LL-37 or murine CRAMP (91).

Interestingly in a slightly higher dose (10-15 mg/kg corresponding

approximately 50 µM in the blood) LL-37 decreased thrombus weight

in a model of arterio-venous shunt thrombosis in rats (76). Future

studies should address the role of cathelicidin in venous thrombosis

and thromboembolism.
Cathelicidin in myocardial infarction
and ischemia

Though one could assume that cathelicidin could promote acute

myocardial infarction, the best example for atherothrombosis, its role

in this setting remains unclear. A recent study suggested that the
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persistence of LL-37-reactive CD8+ effector T-cells may be involved

in acute coronary events (107). Observations from clinical studies

showed that systemic plasma levels of LL-37 transiently decreased in

patients with ST-segment myocardial infarction (STEMI) as

compared to patients without or stable coronary artery disease, but

were restored within 24 hours (141). However, local plasma levels in

the culprit lesion were higher than in the systemic circulation (141).

Explanations for these observations are speculative, as excessive

trapping of the positively charged peptides at injury sites but also

binding to heparin (which is routinely administered early even after

suspicion of acute myocardial infarction) are possible. As cathelicidin

release is likely to promote acute events, its role for consecutive

myocardial injury is controversially discussed, as discrepant impact

on ischemia-reperfusion injury have been described, including both

protective effects on cardiomyocytes as well as harmful response via

activation of Akt/ERK and nuclear export of FoxO3a or via TLR4-

and NLRP3-inflammasome activation, respectively (142, 143).

Interestingly, higher basal plasma levels of LL-37 were associated

with lower risk of ischemic cardiovascular events within the first 3

years after STEMI (144).

Further, cathelicidin may recruit and retain bone marrow-

derived stem/progenitor cells (BMSPC) after myocardial

infarction, which potentially could help post-AMI remodeling

and recovery (145–147). On the other hand neutrophils after

myocardial infarction induce excessive release of platelets and

thereby boost the risk of recurrent ischemia (157). Another study

showed that LL37/CRAMP increases angiogenesis in rabbit

hindlimb ischemia model as well neovascularization of wounds in

mice (120). Noteworthy, as neutrophil-born cathelicidin promoted

angiogenesis and re-endothelialization, in an experimental model of

stent-thrombosis (stenting of occluded arteries is the first-line

intervention in acute coronary syndrome) a cathelicidin-

biofunctionalized stent reduced the incidence of in-stent-

restenosis (125).
Cathelicidin in immunothrombosis

Immunothrombosis is a critical process in which pathogen-

induced inflammation uses microvascular thrombosis to combat

infections and defend pathogens (5, 15, 96). Immunothrombosis

can facilitate pathogen recognition, compartmentalization, trapping

and killing, but also prevent spreading. Mechanistically the process

is based on complex and reciprocal interplay between platelets, the

coagulation system and innate immune cells. Herein the role of

neutrophils is to highlight and their property to undergo NETosis is

a key feature to induce thrombosis (96, 158–161). Considering

cathelicidin an essential component of neutrophil granules as well

as NETs, it might play a central role in this context. Surprisingly its

precise role has not been investigated in a specific model of

immunothrombosis so far. However, several studies showed that

cathelicidin has a protective role in mouse models of sepsis which is

mediated by several mechanisms (31, 72, 148). Hereby, next to

direct antibacterial properties and neutralization of LPS, LL-37

strongly induced of NETosis in sepsis (58, 94, 149, 162), which in

term is a main driver of immunothrombosis. While the term
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151926
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1151926
“immunothrombosis” has developed with respect to thrombosis in

response to pathogens, similar mechanisms are observed in

response to sterile inflammatory conditions such as ARDS (acute

respiratory distress syndrome) or autoimmune diseases (5, 163,

164). In a mouse model of sterile lung injury deficiency of

hematopoietic cathelicidin reduced pulmonary NETosis and

systemic markers of thromboinflammation (20). Interestingly, a

recent study described spontaneous microvascular thrombus

formation in the lung of mice 10 minutes after intravenous

injection of high doses (30 mg/kg) of human LL37 or murine

CRAMP (91). However, it remains unclear whether local thrombus

formation or thromboembolism was responsible for these

observations. Further, LL-37 has shown to be a strong inducer of

NETs in systemic lupus erythematosus (150) that correlates with

both micro- and macrovascular thrombosis (98, 129, 165). In

psoriasis, a systemic autoimmune disease mainly affecting skin

and joints, cathelicidin levels are locally but also systemically

elevated (60, 87). Strong cathelicidin-dependent platelet activation

has been described (87) and may contribute to the prothrombotic

state in these patients (166).
Cathelicidin in Covid-19

The importance of the crosstalk between inflammation and

thrombosis got notable attention in the context of the Covid-19-

pandemic. Soon after the beginning of the global spread of SARS-

CoV-2-virus it became evident that next to acute respiratory

distress syndrome, cardiovascular events such as venous

thromboembolism, MI and stroke were major causes of fatality in

infected patients (2, 3, 90). Numerous studies have highlighted the

role of NETosis and thromboinflammation in this context (5, 167–

169). Given the outstanding position of cathelicidin at the

crossroads of infection, inflammation and thrombosis several

studies have focused on a pathophysiological role and speculated

with therapeutic prospects (170, 171). Human cathelicidin LL-37

exerted antiviral properties by reducing SARS-CoV-2 binding

capacity to its cellular receptor ACE2 (55) and neutrophil-derived

LL-37 was inversely correlated with disease severity supporting

protective effects in Covid19-infection (151). A study particularly

focusing on possible effects of cathelicidin on thrombotic processes,

observed that epithelial LL-37 was upregulated by the spike protein

and consequently elevated in plasma of Covid-19 patients. LL-37

levels negatively correlated with thrombin time but positively

correlated with fibrinogen level. Cathelicidin enhanced platelet

activation and activity of coagulation factors Xa (FXa) and

thrombin, suggesting that it significantly contributes to

prothrombotic state in Covid-19-infection (91).
Cathelicidin as possible therapeutic target

Ever since cathelicidin has been discovered more than 20 years

ago, the promise to take therapeutic advantage of the peptide has

shined on the horizon. Particularly its antimicrobial effects have been

considered as useful synergism to conventional antibiotics in bacterial
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infections (31, 48, 172–174). Nevertheless, most of the pre-clinical

studies have failed to advance the therapeutic implications for the

clinic. One reason for this might be a relatively narrow window of

bioavailability, because peptides are quickly broken down by

proteases, which limits routes of administration. This problem has

not been reliably managed so far even with modern technologies,

such as nanoparticle-carriers, which modulate its functions (175,

176). Local applications such as the cornea of the eye or skin lesions

may be accessible for therapeutic approaches of cathelicidin-

modifying therapies (124, 177, 178). However, systemic

interventions are hampered by context-related pleiotropy and

complex immunomodulatory effects, and by consecutive unwanted

side effects. For example in immunothrombotic settings it is

challenging to find a therapeutic range in which cathelicidin

successfully combats microbes and on the other hand does not

drive excessive thromboinflammation (5, 31). With respect to

sterile thrombotic disorders, where antimicrobial properties might

be dispensable, a straightforward approach for pharmacologic

inhibition of cathelicidin remains still challenging as beneficial

effects on ischemic tissues might escape (142, 143, 179). Therefore,

to take therapeutic advantage of cathelicidin particularly in

thrombosis and thromboinflammation, it is essential to know its

precise pathophysiological spatial and temporal role in several tissues.

Though, this still will not automatically overcome above-listed

problems and make cathelicidin a grateful target in thrombosis,

however it could propose interesting new or more easily accessible

downstream targets, such as platelet GPVI- and FPR2-receptors or

even the P-selectin-PSGL1-axis as master regulator of platelet-

neutrophil-interaction (20, 23, 78, 180).
Conclusion

Cathelicidin – in particular of neutrophil origin – plays an

important role in both inflammation and thrombosis, and thereby

in principle represents an excellent therapeutic target candidate for

thrombosis and thromboinflammation. So far clinical application

has been limited by in part poorly understood and highly variable

effects on tissues. Further research extending our knowledge on the

precise function of cathelicidin in health and disease might

overcome limitations and bring advantages for the treatment of

inflammatory diseases.
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