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Mast cells are tissue-resident cells playingmajor roles in homeostasis and disease

conditions. Lung mast cells are particularly important in airway inflammatory

diseases such as asthma. Human mast cells are classically divided into the

subsets MCT and MCTC, where MCT express the mast cell protease tryptase

and MCTC in addition express chymase, carboxypeptidase A3 (CPA3) and

cathepsin G. Apart from the disctintion of the MCT and MCTC subsets, little is

known about the heterogeniety of human lung mast cells and a deep analysis of

their heterogeniety has previously not been performed. We therefore performed

single cell RNA sequencing on sorted human lung mast cells using SmartSeq2.

The mast cells showed high expression of classical mast cell markers. The

expression of several individual genes varied considerably among the cells,

however, no subpopulations were detected by unbiased clustering. Variable

genes included the protease-encoding transcripts CMA1 (chymase) and CTSG

(cathepsin G). Human lung mast cells are predominantly of the MCT subset and

consistent with this, the expression of CMA1 was only detectable in a small

proportion of the cells, and correlated moderately toCTSG. However, in contrast

to established data for the protein, CPA3 mRNA was high in all cells and the

correlation of CPA3 to CMA1 was weak.

KEYWORDS

mast cells (MC), single cell RNA sequencing, lung, heterogeniety, chymase (CMA1),
cathepsin G (CTSG), carboxypeptidase A3 (CPA3)
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Introduction

Mast cells play important roles in the lung both in homeostasis

and in disease and they are particularly recognized for their role in

asthma (1). Mast cells are found in all different compartments of the

human lung; i.e., in the epithelium, in smooth muscle bundles,

around pulmonary vessels, and in the parenchyma (2). Upon

activation, mast cells release their preformed granule content,

including histamine, proteases, proteoglycans and some cytokines/

chemokine. In addition mast cells also start de novo synthesis of lipid

mediators and cytokines/chemokines (3). Together, these mediators

have multiple effects on the lung causing smooth muscle constriction,

mucus production, and edema (1).

Human mast cells are classically divided into the MCT and

MCTC subsets depending on the expression of specific proteases.

The MCT subset expresses tryptase and MCTC in addition expresses

chymase, CPA3 and cathepsin G (4). This distinction has been

made with immunohistochemical methods and little is known

about the mRNA expression of the proteases at the single cell

level. Moreover, the heterogeneity of human lung mast cells appears

to be much more diverse, beyond protease expression, including the

expression of receptors, enzymes and other markers in different

compartments of the lung (5). Recently, using flow cytometry, we

demonstrated that human lung mast cell heterogeneity has a

continuous nature, rather than distinct populations, both in

regard to various cell surface markers but also the classical

heterogeneity markers chymase and CPA3 (6). Similarly, a recent

scRNAseq study of human mast cells from nasal polyps in patients

with chronic rhinosinusitis with nasal polyososis (CRSwNP) also

found the heterogeneity of the mast cells to be of a continuous

transient nature from MCT to MCTC, but the study also found a

separate cluster of proliferative mast cells (7).

Several scRNAseq studies using droplet based techniques have

been performed on lung tissue in different human diseases,

including asthma (8), COPD (9, 10), COVID-19 (11) and lung

cancer (12, 13), and a mast cell cluster has been detected in these

studies. The mast cell cluster was shown to be enriched in asthma

(8) and in one COPD study (9), but the same was not seen in a

separate COPD study (10). However, these studies have not been

focused on mast cells, and the heterogeneity of the mast cells have

therefore not been examined.

In this study, we set out to investigate the heterogeneity of

sorted human lung mast cells by scRNAseq using SmartSeq2, a

method that provides deeper sequencing than the previous studies

that have used droplet-based techniques.
Materials and methods

Ethical approval

The local ethics committee approved the collection of lung

tissue from patients undergoing lobectomy, and all patients

provided informed consent (Regionala Etikprövningsnämnden

Stockholm, 2010/181-31/2).
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Cell preparation

Lung tissue was obtained from patients undergoing lobectomy

due to lung cancer (age 57–76 year old, three females, one male). All

patients were ex smokers and none of them had preoperative

chemo- or radiotherapy. Macroscopically healthy tissue distal to

the tumour was used. Single-cell suspensions were obtained by

digesting the tissue as previously described (14). Briefly, human

lung tissue was cut into small pieces and enzymatically digested for

45 min with DNase I and collagenase. Thereafter, the tissue was

mechanically disrupted by shearing with a syringe, debris was

removed by 30% Percoll centrifugation and red blood cells lysed

with an ACK buffer.
Flow cytometry analysis and cell sorting

For single cell sorting of mast cells the following antibodies were

used: V500-CD45 (BD Biosciences, clone HI30), FITC- CD3

(Biolegend, clone SK7), FITC- CD19 (BD Biosciences, clone

4G7), FITC- CD14 (Dako, clone TUK4), FITC- CD1a (Biolegend,

clone HI149), FITC- CD123 (Biolegend, clone 6H6), FITC- BDCA2

(Miltenyi Biotech, clone AC144), FITC- TCR a/b (Biolegend, clone

IP26), FITC- TCR g/d (Biolegend, clone B1), FITC- CD94

(Biolegend, clone DX22), FITC- CD34 (Biolegend, clone 581),

PECy5.5-CD117 (Beckman Coulter, clone 104D2D1), and

Invitrogen Live/Dead™ Fixable Green Dead Cell Stain kit. FlowJo

software was used for flow cytometry data analysis. The mast cells

were gated as Live cells, Lineage negative (CD3, CD14, CD19,

CD1a, CD123, BDCA2, TCRa/b, TCR g/d, CD94, CD34), CD45
positive and CD117 high.
Single cell RNA sequencing

The isolated human lung mast cells were single cell sorted into

384 well plate containing lysis buffer using a BD FACS Fusion. In

total, 332 single mast cells were sorted from 4 lung tissues (83 mast

cells per tissue).The quality of cDNA was assessed by agilent high

sensitivity DNA assay as previously described (15). Single cell RNA

sequencing (scRNA seq) libraries were prepared and sequenced

using Smart-seq2 protocol (16) by the SciLifeLab Eukaryotic Single-

cell Genomics Facility, Stockholm.
Data processing and analyses

Data processing and analyses was performed by the National

Bioinformatics Infrastructure Sweden (NBIS) and the computations

were performed on resources provided by SNIC through Uppsala

Multidisciplinary Center for Advanced Computational Science

(UPPMAX). Reads were aligned to the reference genome

GRCh38 (primary assembly) using star/2.5.3a with default

settings (17). Counts per gene (an arbitrary unit of the number or

reads that were detected per gene) were calculated for each
frontiersin.org
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transcript using featureCounts from subread/1.5.2 using parameters

-t exon -g gene_id (18).

The following analysis were performed using R version 3.6.3 (R

Core Team 2020). Poor quality cells were excluded. Cells were

considered of poor quality if they were outliers (defined using

median absolute deviations (MADs)) in at least one of 6 criteria

listed (1): cells with percentage of uniquely mapped reads with more

than 3 MADs below the median (global median from all plates) (2)

cells with percentage of uniquely mapped reads mapping to protein

coding regions with more than 3 MADs below the median (global

median from all plates) (3) cells with proportions of reads mapped

to spike-in transcripts that are more than 3 MADs above the

median (global median from all plates) (4) cells with proportions

of mitochondrial reads that are more than 3 MADs above the

median (global median from all plates) (5) cells with log-library

sizes that are more than 3 MADs below the median log-library size

of each plate (6) cells which log-transformed number of expressed

genes that are more than 3 MADs below the median of each plate.

Genes with no expression (0 count across all mast cells) were

removed as well as mitochondrial genes and rRNA genes. Counts

were normalized using the logNormCounts function of the scater R/

Bioconductor package version 1.14.6 where counts are divided by a

cell-specific size factor (19).

Most analyzes were done separately on each plate so no batch

correction was performed. The distribution of gene expression of

selected marker genes (selected proteases, cell surface receptors and

lipid metabolism genes) and the top 20 expressed genes was

visualized using violin plots. For each plate, per-gene variance

was modeled using spike-ins, highly variable genes across cells

were selected using the scran Bioconductor package version 1.14.6

(20). Several dimensionality reduction methods were computed on

highly variables genes on the single cell data for each plate

separately. Principal Component Analysis (PCA) on the centered

normalized log counts (the first 3 principal components were

plotted). Uniform Manifold Approximation and Projection

(UMAP) on the normalized log counts. t-Distributed Stochastic

Neighbor Embedding (tSNE) on the normalized log counts with a

perplexity parameter of 100.

The 2-by-2 correlations between CMA1, CPA3 and CTSG was

a s s e s s ed us ing s ca t t e r p lo t s and Spea rman ’ s r ank

correlation coefficients.
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Results

scRNA sequencing of human lung
mast cells

Human lung mast cell heterogeneity has been thoroughly

examined using immunohistochemistry and flow cytometry (5, 6).

However, an unbiased high throughput investigation into human

lung mast cell heterogeneity has not been performed. We therefore

set out to perform scRNAseq on sorted human lung mast cells. The

mast cells were gated as Live Lin- CD45+ CD117high (Figure 1) and

scRNAseq was performed using the Smart-seq2 protocol. Among the

genes with the highest counts (Figures 2A, B, Supplementary Figure

S1) were many known mast cell genes such as the receptor for stem

cell factor KIT, that is needed for mast cell maturation and survival,

the mast cell proteases tryptase (TPSAB1) and carboxypeptidase A3

(CPA3), the proteoglycan serglycin (SRGN) that is needed for the

packing of biogenic amines (histamine, serotonin, dopamine) and

proteases in the secretory granules (21–23), and histidine

decarboxylase (HDC) that is the rate limiting enzyme in the

biosynthesis of histamine. However, we also noted four cells that

had low to undetectable level of several mast cell signature genes,

including TPSAB1, TPSB2, CPA3, HDC and IL1RL1, indicating that

these could be contaminating non-mast cells (data not shown).

Many of the highest expressed genes were also involved in basic

functions of cells and therefore highly expressed in most cells such

as b2 microglobulin (B2M), b-actin (ACTB), vimentin (VIM), lamin

(LMNA), glutamine synthase (GLUL). MALAT1 is a long non-

coding RNA that is frequently high in poly-A captured RNA

sequencing data (24, 25). There are also several genes involved in

transcription and translation, such as transcription factors NFKBIA

and FOSB, regulator of transcription and splicing DDX5, and

regulator of translation initiation EIF1, regulator of the

transcription complex and chaperone HSP90AA1. Annexin A1

(ANX1) is a protein that binds phospholipids and inhibits

phospholipase A2. Synthesis and secretion of annexin A1 is

enhanced by glucocorticoids (26, 27) and mast cell activation is

inhibited by annexin A1 (28). Another highly expressed gene was

CD44, a ubiquitously expressed adhesion molecule with several

ligands, including hyaluronic acid, that previously has been shown

to be expressed by human mast cells (29, 30).
FIGURE 1

A representative figure of the gating of the human lung mast cells. Cells were gated as Single cells, CD45+, cells selected in the FSC, SSC pattern,
CD117 high, dead cell marker (DCM) Low and Lineage (Lin) Low. The Lineage markers consisted of CD3, CD14, CD19, CD1a, CD123, BDCA2, TCRa/b,
TCR g/d, CD94 and CD34.
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Heterogenous expression of
mast cell genes

Next, we specifically examined the heterogeneity of expression of

selected mast-cell related genes. The cell surface receptors KIT and the

IL-33 receptor ST2 (IL1RL1) were as expected high in most cells, while

the two of the subunits of the FceRI receptor (FCER1A and MS4A2)

and CD203c (ENPP3) had a more diverse expression pattern

(Figure 3). Of the enzymes involved in lipid metabolism,

arachidonate 5-lipoxygenase (ALOX5, also known as 5-LOX) was

highly detectable in most cells (Figure 3). 5-LOX converts

arachidonic acid to leukotriene A4 (LTA4), that is further
Frontiers in Immunology 04
metabolized to LTB4 by LTA4 hydrolase (LTA4H) or to LTC4 by

leukotriene C4 synthase (LTC4S). In the human lungmast cells LTA4H

was only detectable in a small proportion of the cells, while LTC4S was

detectable in a higher proportion of the cells and had a variable

expression pattern (Figure 3). Both cyclooxygenases that converts

arachidonic acid to prostaglandin endoperoxide H2 (a precursor for

the prostaglandins D2, E2 and F2), prostaglandin-endoperoxide

synthase 1 (PTGS1- also known as cyclooxygenase 1 (COX-1)) and

PTGS2 (also known as COX-2) were variably expressed (Figure 3). Of

the proteases, the tryptases (TPSAB1 and TPSB2) and CPA3 were high

inmost cells whereas chymase (CMA1) and Cathepsin G (CTSG) had a

variable expression pattern (Figure 3).
A

B

FIGURE 2

(A) Violin plots of the top 20 ranked genes in the dataset from all four donors (B) Boxplots of the top 20 ranked genes separated by each donor.
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No distinct mast cell subsets
were detected

To examine possible subsets of human lung mast cells we used

three different methods to cluster the cells based on the scRNAseq

data: PCA, UMAP and tSNE plots. None of these three methods

provided any obvious sub-clusters (one representative donor in

Figure 4 and the additional three donor in Supplementary Figure

S2). We noted that there were a few cells that positioned apart from

the main cell cluster in two donors, these cells were mainly the

suspected non- mast cells that had low to undectectable levels of the

mast cell signature genes (Supplementary Figures S2A, C). To

specifically examine the classical mast cell subsets MCT and MCTC,

we examined the correlation in expression between the proteases that

are present in the MCTC subset, that is chymase, CPA3 and cathepsin

G. To the contrary of the protein (6), the CPA3 mRNA was highly

detectable in all cells, and the correlation to CMA1 and CTSG was

weak (Figure 5). In contrast, the chymase, CMA1 expression was only

detected in a small fraction of the cells that also had relatively high

CTSG expression, but on the other hand there where cells with high

CTSG that did not have detectable CMA1 expression. Thus, CMA1

correlated moderately with that of CTSG with a Spearman’s rank

correlation coefficient of 0.5 (Figure 5). CTSG and CMA1 did not

show correlation (moderate or high, rs>0.4) to any other genes in the

dataset (Supplementary Tables S1, S2).
Discussion

We have investigated the heterogeneity of human lung mast

cells using SmartSeq2, a method that provides deep sequencing of
Frontiers in Immunology 05
single cells. Among the genes with the highest counts were several

mast ce l l genes , inc luding KIT , t ryptase (TPSAB1 ) ,

carboxypeptidase A3 (CPA3), serglycin (SRGN), histidine

decarboxylase (HDC), verifying the identity of the cells as mast cells.

The expression of two subunits of the FceRI receptor was shown
to be variable (Figure 3), they did not however correlate to each

other (data not shown). Variable surface expression of FceRI has
previously been reported on human lung mast cells as well as for

human skin mast cells (6, 31). The expression of the FceRI protein
on mast cells has also been shown to vary between different lung

compartments, i.e. central airways, small airways, parenchyma, and

pulmonary vessels, with particularly low expression on the

parenchymal mast cells (5). The low parenchymal expression of

FceRI in healthy subjects is, however, increased in patients with

atopic uncontrolled asthma (32). The underlying mechanism for

the varying FceRI expression is not completely known. The FceRI
mRNA expression has been shown to be regulated by IL-4 (33) and

IL-33 (34, 35), and the receptor is stabilized on the cell-surface by

the presence of IgE (36), but other mechanisms might also be

involved in the regulation.

The main prostanoid released from human mast cells upon

activation is PGD2 (37–39), which have potent biological effects in

the lung, such as broncoconstriction (40), vasodilation (41), and

activation and recruitment of group 2 innate lymphoid cells (42).

The first step in the biosynthesis of PGD2, is catalyzed by two

enzymes COX-1 (PTGS1) and COX-2 (PTGS2). In our study both

genes encoding for COX-1 and -2, PTGS1 and PTGS2, were variably

expressed (Figure 3). However, the expression of the two genes did

not correlate to each other (data not shown). Additionally, in nasal

polyps, PTGS2 is enriched in the MCTC cluster (7), which we could

not observe in HLMC. In human mast cells, PGD2 biosynthesis
FIGURE 3

Violin plots of selected mast cells signature genes from all four donors.
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FIGURE 5

Scatter plots of CPA3/CMA1/CTSG expression from all four donors and Spearman’s rank correlation coefficients (rs).
A B

DC

FIGURE 4

Unbiased clustering of the cells from one representative donor using PCA (A, B), UMAP (C), and tSNE (D).
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have been shown to be entirely dependent on COX-1 (37, 43), so,

why PTGS2 (COX-2) is transcribed in these cells and under what

conditions it is enzymatically active remains to be elucidated.

Human mast cells have been shown to be heterogeneous when it

comes to the presence of proteases and thus divided into MCT and

MCTC depending on their expression of chymase (CMA1). The

MCTC subset has in addition also been shown to contain CPA3 and

cathepsin G (44, 45). Human lung mast cells are predominantly of

the MCT subtype, and consistent with this CMA1 was only

detectable in a small proportion of the cells (Figures 3, 5). We

found high expression of CPA3mRNA in all lung mast cells and the

correlation of this expression to CMA1 was weak (Figures 3, 5). In

contrast, CPA3 and chymase proteins strongly correlate in human

lung mast cells as judged by flow cytometry (6). This discrepancy of

CPA3 mRNA and protein has also been shown in human lung mast

cells using RNAscope and immunohistochemistry (46). When the

gene for the equivalent to chymase in mice (based on sequence

alignment), mouse mast cells protease- 5 (mMCP-5), is deleted the

granule storage of CPA3 is lost, despite the CPA3mRNA expression

being unaffected (47). Similarly, if the CPA3 gene is deleted, the

granule storage of the mMCP-5 protein is lost (48). However, when

CPA3 is mutated to render it inactive without deletion of the CPA3

protein, the storage of mMCP-5 is unaffective (49). Thus, in mice

mMCP-5 and CPA3 protein are interdependent on each other for

their granule storage in mast cells. One can speculate that the same

situation could be true for human CPA3, that chymase needs to be

present for the CPA3 protease to be stored in the granules.

Supporting this hypothesis is the finding that when comparing

lung and skin mast cells, skin mast cells have higher expression of

chymase and store more CPA3 protein in spite of expressing lower

level of CPA3 mRNA. This theory does however raise the question;

why do the cells express high levels of the mRNA if the protein is

not stored? Is there a high CPA3 turnover or perhaps a continuous

release of CPA3 in the MCT subtype? Further studies are needed to

answer these questions.

The mast cells in this study comes from lobectomies performed

on cancer patients. The tissue used was macroscopically healthy

distal to the tumour, nevertheless it is of course possible that the

disease has affected the included mast cells. In this context it is

worth noting that CPA3 counts were high (Figure 3) and CPA3

expression has been shown to correlate to decreased lung function

in patients with severe chronic obstructive pulmonary disease

(COPD) and idiopathic lung fibrosis (IPF) (50).

The aim of the present study was to investigate human lung

mast cell heterogeneity in more depth using SmartSeq2 single-

cell RNA sequencing. However, we could not detect any

obvious transcriptional different subpopulations of the

human lung mast cells (Figure 4). There could be several

explanations for this. The human lung mast cells could be

homogenous in nature but it could also be that the number of

mast cells analyzed are too low to distinguish small subsets. The

facts that the mRNA of one of the proteases present in the

MCTC subtype, CPA3, does not correlate to the protein, and

that no other genes then CTSG show a correlation (rs>0.4) to

CMA1, likely contribute to the inability to distinguish the

classical mast cell subsets based on unbiased clustering.
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Furthermore, our study covered mainly mast cells in the

parenchyma and it might be that mast cells in different

compartments of the lung show greater heterogeneity. Thus,

additional analyses including higher number of single mast

cells from different lung compartments will be instrumental to

decipher further the heterogeneity of human lung mast cells.
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