
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Silvia Spoto,
Campus Bio-Medico University Hospital,
Italy

REVIEWED BY

Domenica Marika Lupoi,
Campus Bio-Medico University Hospital,
Italy
Shivnarayan Patidar,
National Institute of Technology, India

*CORRESPONDENCE

Tang Jianguo

tangjianguo@5thhospital.com

Baiyin Zhang

boyinercheung@hotmail.com

RECEIVED 31 January 2023

ACCEPTED 03 May 2023
PUBLISHED 24 May 2023

CITATION

Wang Z, Qi Y, Wang F, Zhang B and
Jianguo T (2023) Circulating sepsis-related
metabolite sphinganine could protect
against intestinal damage during sepsis.
Front. Immunol. 14:1151728.
doi: 10.3389/fimmu.2023.1151728

COPYRIGHT

© 2023 Wang, Qi, Wang, Zhang and
Jianguo. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 May 2023

DOI 10.3389/fimmu.2023.1151728
Circulating sepsis-related
metabolite sphinganine could
protect against intestinal
damage during sepsis

Zetian Wang, Yue Qi, Fei Wang, Baiyin Zhang*

and Tang Jianguo*

Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan
University, Shanghai, China
Introduction: Sepsis is intricately linked to intestinal damage and barrier

dysfunction. At present times, there is a growing interest in a metabolite-based

therapy for multiple diseases.

Methods: Serum samples from septic patients and healthy individuals were

collected and their metabonomics profiling assessed using Ultra-Performance

Liquid Chromatography-Time of Flight Mass Spectrometry (UPLC-TOFMS). The

eXtreme Gradient Boosting algorithms (XGBOOST) method was used to screen

essential metabolites associated with sepsis, and five machine learning models,

including Logistic Regression, XGBoost, GaussianNB(GNB), upport vector

machines(SVM) and RandomForest were constructed to distinguish sepsis

including a training set (75%) and validation set(25%). The area under the

receiver-operating characteristic curve (AUROC) and Brier scores were used to

compare the prediction performances of different models. Pearson analysis was

used to analysis the relationship between the metabolites and the severity of

sepsis. Both cellular and animal models were used to HYPERLINK "javascript:;"

assess the function of the metabolites.

Results: The occurrence of sepsis involve metabolite dysregulation. The

metabolites mannose-6-phosphate and sphinganine as the optimal sepsis-related

variables screened by XGBOOST algorithm. The XGBoost model (AUROC=0.956)

has the most stable performance to establish diagnostic model among the five

machine learning methods. The SHapley Additive exPlanations (SHAP) package was

used to interpret the XGBOOSTmodel. Pearson analysis reinforced the expression of

Sphinganine, Mannose 6-phosphate were positively associated with the APACHE-II,

PCT, WBC, CRP, and IL-6. We also demonstrated that sphinganine strongly

diminished the LDH content in LPS-treated Caco-2 cells. In addition, using both in

vitro and in vivo examination, we revealed that sphinganine strongly protects against

sepsis-induced intestinal barrier injury.

Discussion: These findings highlighted the potential diagnostic value of the ML,

and also provided new insight into enhanced therapy and/or preventative

measures against sepsis.
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1 Introduction

Sepsis is a widespread acute disease that causes severe multi-organ

dysfunction syndrome (MODS) and circulatory failure (1, 2). The

injuried intestinal induced by sepsis, which further aggravates septic

development, eventually results in severe infection, and even death (3,

4). Currently, the primary protective measures against sepsis-induced

intestinal injury are modulation of the intestinal flora disorder, along

with the early initiation of enteral nutrition. However, the associated

therapeutic effect is relatively unsatisfactory (5). Given the previous

evidences, protecting the intestine from sepsis-induced damage is

crucial to the prevention and therapy of sepsis itself.

Recent investigations highlighted a strong role of patient metabolism

in modulating cellular function, and this is intricately linked to the

development and pathogenesis of multiple diseases (6). Several

circulating metabolites have been identified as possible diagnostic and

prognostic indicators of different diseases (7, 8). A European research

team, for example, reported that multiple serum metabolites,

phosphatidylcholines, sphingomyelins, triglycerides, amino acids, and

cholesteryl esters, are heavily altered inHepatocellular carcinoma (HCC),

and that several of these metabolites exhibit enhanced diagnostic

sensitivity and specificity, compared to alpha-fetoprotein(AFP) (9).

Notably, the protective function of several metabolites have been

identified. One such example isg-aminobutyric acid(GABA), which

suppresses Reactive Oxygen Species(ROS) generation and monocyte

adhesion to protect cells and tissues against cardiovascular disease (10).

The diagnostic indicators of sepsis mainly include body

temperature, heart rate, respiratory rate, white blood cell count,

serum C-reactive protein (CRP), and procalcitonin (PCT) and other

biochemical indicators. However, these indicators often lack specificity

in many cases and cannot determine whether a patient has sepsis. To

improve the diagnostic accuracy of sepsis, researchers are currently

exploring new diagnostic indicators, such as cell surface receptors,

cytokines, metabolites, etc. Over the past decade, machine learning

(ML) has gained remarkable interest in biomedical research for its

potential to provide computer-aided diagnoses of various diseases (11).

Machine learning techniques can enhance the predictive power of

disease prediction models, notably the blood pressure neural network,

which can be used to exploit genomic information for the discovery of

molecular markers, as well as to aid in the identification of distinctive

methylation sites in stomach cancer (12). Herein, we employed

metabolomics to compare between the serum samples of septic

patients and healthy individuals. Machine learning was used to

screen differential metabolites and construct a diagnostic model to

predict the diagnostic value of metabolites in sepsis. Lastly, we also

explored the metabolite-mediated protection of intestinal barrier using

both in vitro and in vivo experimentations.
2 Materials and methods

2.1 Clinical sample collection

Human samples were retrieved from healthy individuals

(n =13), who were the volunteer population from health check-up
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center and septic patients (n = 13), who sought treatment at the

Shanghai Fifth People’s Hospital. This research received ethical

approval from the aforementioned institution (Reference No. 2019-

118), and informed consent from the legal guardians of study

subjects. The following septic paitents were included in analyses:

those with (i) sepsis diagnosis, based on the Third International

Consensus Definitions for Sepsis and Septic Shock (13); (ii)between

the age of 18 and 80; and (iii) hospitalized in our department within

12 h of sepsis onset. Among septic patients excluded from analyses

were those infected with the human immunodeficiency virus, and

complicated with hematologic malignancies, or those who

underwent immunosuppressive therapy within 1 month of the

start of this investigation. Pregnant and lactating females were

also eliminated from the study analyses. The following healthy

individuals were included in our analyses: (a) age and gender

matched with septic patients; (b) with no abnormality in

biochemical indexes, which was confirmed in the health

examination. Among the healthy individuals who were eliminated

from this study were: those with (a) prior sepsis or other severe

infections; (b) prior hematological malignancies or other solid

tumors; and (c) complicated with inflammatory disease.

Serum samples (n=13) were collected within 12h of admission,

and healthy individual samples (n=13) were taken following

admission. All samples underwent a 10 min centrifugation at

1,500 r/min, prior to storage at −80°C.
2.2 Metabolomics analysis of serum

Diluted serum samples in 1-l aliquots were inserted into a Waters

Ultra-Performance Liquid Chromatography-Time of Flight Mass

Spectrometry(UPLC-TOFMS) machine (Milford, MA). Chemical

components underwent separation at 35°C via an Acquity UPLC

BEH C18 column (Waters). During a 10-minute run, the adjusted

mobile-phase flow rate was 0.5 ml/min, and aqueous acetonitrile

gradient contained 0.1% formic acid (0% acetonitrile for 0.5 min,

20% acetonitrile by 5 min, 95% acetonitrile by 9 min, followed by

equilibration at 100% water for 1 min prior to subsequent

administration). The Waters QTOF Premier mass spectrometer was

adjusted to positive electrospray ionization. The capillary and cone

voltages were maintained at 3 kV and 20 V, respectively. The source

and desolvation temperatures were at 120°C and 350°C, respectively.

Nitrogen was employed as the cone (50 l/h) and desolvation gas (600 l/

h), whereas, argon was used as the collision gas. The flight mass

spectrometry duration was calibrated using sodium formate solution

(range m/z 100-1000), and observed in real time using intermittent

administration of the lock mass sulfadimethoxine ([M + H]+ =

311.0814 m/z). Mass chromatograms and mass spectrum

information were retrieved and assessed in the centroid format with

the MassLynx program (Waters).
2.3 ML analysis

We used sequential linear regression models to establish

correlations among the variables present in the dataset. Then
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extreme gradient boosting (XGBoost)was employed for relevant

metastatic agent identification using python 3.7. The data set was

randomly split into two data sets: a training (75%) data set, which was

used to develop the models, and an internal validation (25%) data set,

which was used to validate the constructed models. We utilized the

following five representative ML classifier algorithms for model

construction in the training data set: Logistic Regression, extreme

gradient boost (XGBoost), GaussianNB(GNB), upport vector

machines(SVM) and RandomForest. To ensure maximum use of

data, we did use a crossvalidation method. The accuracy, precision

(also called positive predictive value) and F1-score (F1) were calculated

for each ML model to be evaluated and compared in the validation

cohort. Through comprehensive evaluation of multiple evaluation

indicators, the best performing model among the five ML models

after using 5 cross- validations, was defined as the optimal model and

selected for further prediction analysis. Finally, we performed

calibration curve to evaluate the consistency of the optimal model.To

build trust with healthcare professionals andmake the decision-making

process of machine learning transparent, it is important to understand

how themodel works. One way we did this was by using the SHAPELY

Additive explanations (SHAP)values method to improve the

interpretability of the best-performing model. SHAP values help us

understand how each feature contributes to the model’s output and

how they affect the final prediction.
2.4 Mouse models

We acquired 6-8 week-old C57BL/6 mice, weighing between 20-

23 g, from the Animal Center of East China Normal University

(Shanghai, China), and housed them in plastic boxes with ad

libitum standard rodent food and water. The room temperature

was adjusted between 20-22°C, with a 12-hour light/dark cycle. All

animal protocols received ethical approval from the East China

Normal University (Shanghai, China). Following 1-week of

adaptive feeding, mice were arbitrarily separated into four groups

as follows, mice were randomly divided into 4 groups, 20 mice per

group [Control, Sepsis, Sepsis+sphinganine(10mg/kg, 15mg/kg and

20mg/kg, respectively), sphinganine 15mg/kg]. Sphinganine was

dissolved in vehicle (10% dmso and 90% saline [1:9]), was

administered intraperitoneally at 6 h and 12 h after surgery and

puncture. At 24 h post-surgery, mice were euthanized and

samples of fresh stool, blood and main organs were isolated.were

collected immediately.
2.5 Cell culture and treatment

Human colorectal adenocarcinoma (Caco-2) cells were maintained

in Eagle’s Minimum Essential Medium with 10% heat-inactivated fetal

bovine serum (FBS, Gemini Bioproducts) and 1% non-essential amino

acids from the American Type Culture Collection (Invitrogen,

Manassas, VA, USA). Caco-2 cells (1 × 106 cells/well) were grown in

6-well plates, prior to treatment with Salmonella enterica serotype

Typhimurium lipopolysaccharide (LPS) (Sigma). With increasing

dosage experimentation, we established the optimal LPS dosage to be
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1 mg/mL for a duration of 48 h. Hence, our cell cultures underwent

LPS stimulation, in presence or absence of 10mM mannose-6-

phosphate (Selleck, USA), and 5mM, 10mM, and 20mM sphinganine

(Selleck, USA), respectively.
2.6 Intestinal histomorphological analysis

To conduct histological analysis, intestinal tissues underwent a 24-

hour fixation in 10% neutral-formalin in PBS, followed by paraffin-

embedding, then slicing into 4m thick sections, and staining with

hematoxylin and eosin (H&E). Finally, IA pathologist, unaware of the

specifics of this investigation, employed a light microscope (Olympus

CX30, Japan) to assess the intestinal mucosal morphological damage.
2.7 Serum cytokine levels analysis

Blood samples were collected immediately following mice

sacrificed, underwent a 10-minute centrifugation at 3,000 rpm at 4°C

for serum extraction, and supernatants were maintained at -80°C till

further analyses. Murine ELISA kits (88-7064, Thermo Fisher, Austria;

EK280/3-01, MuLTI SCIENCE, Shanghai) were employed for D-lactic

acid, Interleukin (IL)-1b, and IL-6 detection, following kit protocols.
2.8 Immunofluorescent assessment
of tight junction

Following fixation and permeabilization in methanol or acetone

at 20°C, intestinal tissues were overnight (ON) exposed to primary

antibodies at 4°C, then treated with FITC-labeled secondary

antibody for 1 hour at RT. Following nuclear counterstaining, the

slices were treated to mounting media with 4,6-diamidino-2-

phenylindole (DAPI), prior to visualization and image capture

under a fluorescence microscopy. DAPI and FITC images were

captured from the same tissue section.
2.9 Quantitative PCR

Murine intestinal samples were collected, and flash-frozen in

liquid nitrogen, before storage at -80°C till further analyses. Total

RNA isolation was conducted using TRIzol (15596026, Invitrogen,

Carlsbad, CA, USA), and quantification via the Universal SYBR

FAST qPCR Kit Master Mix (2x) (KAPA Biosystems, USA). The

qPCR reaction parameters were as follows: 10 minutes at 95 °C, 45

cycles for 10 seconds at 95 °C, and 60 seconds at 59 °C, then 15

seconds at 95 °C, 15 seconds at 72 °C, and 15 seconds at 95 °C.

Relative gene expression of Zonula occludens-1 (ZO-1), Occludin,

and Gapdh were assessed via the 2-DDCt formula. The employed

primer sequences are as follows: ZO-1 forward 5′-GAGCAAGC
CTCC-5′-GAGCAAGCCTCC-5′-GAGCAAGCCTCC-5′-GAGCA
ATGCACATA-3′, reverse 5′-TCAGTTTCGGGTTTCCTT-3′;
Occludin forward 5′-CAACGGCAAAGTGAATGGCA-3′, reverse
5′-CTTTCCTTCGTGGGAGTC-3′; Gapdh forward 5′-TGTGAA
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CGGATTTGGCCGTA-3′, reverse 5′-GATGGTGATG GGTTT

CCCGT-3′.
2.10 Western blot analysis

Murine intestines underwent lysis in lysis buffer, and protein

quantification was performed via a BCA kit (Beyotime, China).

Equal protein amounts were then electrophoresed on SDS/PAGE in

a Bio-Rad Mini-PROTEAN apparatus, prior to transfer to PVDF

membranes (Bio-Rad, Marnes-la-Coquette, France), which then

underwent a 1-hour blocking in 5% nonfat milk (w/v) at RT, with

subsequent ON exposure to primary antibodies at 4°C. The

employed primary antibodies are listed as follows: anti-Occludin

antibody (13409-1-AP); anti-ZO-1 antibody (21773-1-AP); and

anti-GAPDH antibody (60004-1-Ig). All aforementioned

antibodies were used in a 1:1000 dilution, and were purchased

from Proteintech, USA. Subsequently, the separated proteins were

treated with secondary antibodies: HRP-goat anti-mouse IgG (115-

035-003) and HRP-goat anti-rabbit IgG (111-035-144) from

Jackson ImmunoResearch. Protein band visualization was done

with ECL chemiluminescence imaging system, and quantification

via ImageJ software (Version 1.50i; National Institutes of Health,

Bethesda, MD, USA). Finally, we calculated the IntDen (target

protein)/IntDen (GAPDH) ratios.
2.11 Lactate dehydrogenase
cytotoxicity assay

Target cell cytotoxicity was assessed based on the cellular LDH

release, using an LDH cytotoxicity detection kit, following kit

directions (TaKaRa, Japan). The LDH release percentage was

computed as follows: % release =100×(experimental LDH release–

spontaneous LDH release)/(maximal LDH release–spontaneous

LDH release). 1% Triton X-100-treated cells were employed as

positive controls for maximal LDH release.
2.14 Statistical analysis

Data are provided as mean maximal LDH 100ed on thees of

Health, Bethesda, Msessed with the one-way analysis of variance

(ANOVA), and inter-group comparisons were assessed using the t-

test. After feature selection and data preprocessing, we developed 5

popular ML-based models to predict sepsis. Overall performance of

each model was assessed via the accuracy, precision, and F1-

measure. The best performing model was applied to the further

interpretation. Finally, SHAP summary analysis, SHAP dependence

analysis was utilized for model explainability. Statistical analyses

were conducted using SPSS statistical software version 24.0 (IBM

Corp., Armonk, NY, USA), R statistical software version 3.6.1 (R

Project for Statistical Computing, Vienna, Austria), and Python

software version 3.6.6 (Python Software Foundation, Wilmington,

DE, USA). All statistical tests were two-sided, and P-values less than

0.05 were considered to be statistically significant.
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3 Results

3.1 Alterations in serum metabolome
among septic patients

To detect alterations in serum metabolome during early sepsis,

we conducted LC-MS analysis, which identified 507 metabolites

among 26 analyzed serum samples. The PCA scatter plots

(Figure 1A) demonstrated that the metabolomics analysis was of

high quality, with clustered QC samples. Based on our KEGG

network enrichment analysis of differentially regulated

metabolites between the sepsis and healthy cohorts (Fisher exact

test), there were marked alterations in multiple signal transduction

networks, like those involving tryptophan, glycine, serine and

threonine, and pyrimidine metabolisms (Figure 1B). Using

volcano plot filtering, we next revealed marked differentially

regulated metabolites between the two cohorts (Figure 1C). A

heatmap of the metabolites illustrated that the differentially

regulated metabolites were heavily clustered in each cohort

(Figure 1D). The pearson correlation analysis method was

employed to examine variations in the metabolite data between

the two different groups, with the aim of identifying any significant

associations or correlations (Figure 1E).
3.2 Model performance

The variables that showed statistically significant differences in

the single-factor analysis were subjected to multi-factor analysis

using linear regression (Figure 2A). To score the variable sets, the

XGBOOST algorithm was utilized. The scoring process involved

adding variables sequentially, starting with Sphinganine, L-2-

Hydroxyglutaric acid, Mannose 6-phosphate, p-Aminobenzoic

acid, 2,4-Dinitrophenol, 3-Hydroxyphenylacetic acid, Ortho-

Hydroxyphenylacetic acid, 3-Methyl-L-tyrosine, D-Galacturonate,

and Pyrrole-2-carboxylic acid. The order of variables in each set was

determined by their importance, which was estimated prior to

scoring. The best set of variables identified through this process

was Sphinganine and Mannose 6-phosphate (Figures 2B, C). The

XGBoost model outperformed the other models with a higher

AUROC compared with other 4 models, indicating better

performance (Figures 2D, E; Tables 1, 2). Based on the AUROC

of the 5 models, we made a forest plot of the AUC score of the

multiple models. 5 models were seen after using 5 cross- validations,

results showed that the XGBoost model e has the most stable

performanc (Figure 2F). Based on the above aspects, we can

conclude that the XGBoost model(AUROC=0.956) significantly

outperformed 4 other machine learning models. The calibration

plots of the five models are shown in Figure 2G. DCA indicated that

the XGBoost model could serve as the best diagnostic tool for sepsis

in Figure 2H. The SHAP package was utilized to analyze the

XGBoost model, which demonstrated the impact of each feature

on the sample and identified both positive and negative influences.

The resulting bar chart displayed the correlation between the

feature value’s magnitude and its predicted impact (Figure 2I).
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3.3 Analysis of the correlation between the
expression of metabolites and the severity
of sepsis

To investigate the relationship between metabolites (Sphinganine

and Mannose 6-phosphate) and the severity of sepsis, we analyzed the

relative expression levels of metabolites in the healthy group and sepsis
Frontiers in Immunology 05
group, as well as the correlation between metabolites and Acute

Physiology and Chronic Health Evaluation-II(APACHE-II) score,

PCT (mg/L), white blood cell (WBC)×109/L, CRP(mg/L), and

Interleukin-6(IL-6) (pg/ml). Relative expression of sphinganine in

healthy group and sepsis group (Figure 3A). Furthermore, the

expression of sphinganine and APACHE-II(R=0.69, P<0.001), PCT

(R=0.81, P<0.001), CRP(R=0.65, P<0.001), IL-6(R=0.64, P<0.001),
A B

D

E

C

FIGURE 1

Analysis of sepsis-related serum metabolites. Serum samples were obtained from septic patients and healthy individuals. (A) Principal Component
Analysis (B) The metabolite sets enrichment analysis (C) Volcano plot for differentially regulated metabolites between control and sepsis groups.
(D) Heat map of differentially regulated metabolites. (E) significant pearson correlation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151728
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1151728
A B

D E F

G IH

C

FIGURE 2

Machine learning model performance. Linear regression analysis. (B) XGBoost model: feature importance. (C) Model performance. Receiver-
operating characteristic curves for 5 machine learning models. The XGBoost model achieved a larger (better) AUROC compared with the other
models: (D) Train ROC curve, (E) Validation ROC curve. (F) Forest plot of the AUC Score of the 5 models. (G) Calibration plots of 5 models. The
XGBoost achieved lower (better) Brier scores compared with the other models. (H) Decision curve analysis for machine learning models. (I) SHAP
analysis was performed on the XGBoost model to visually represent the importance of each feature. Each feature is represented by a color that
corresponds to the variable’s value, with red indicating a larger value and blue indicating a smaller value. This analysis provides insight into the
relationship between each feature and its importance in the model. (A).
TABLE 1 Performance metrics for five models in the training dataset.

Model AUC
(SD)

Accuracy
(SD)

Sensitivity
(SD)

Specificity
(SD)

PPV
(SD)

NPV
(SD)

F1 score
(SD)

Kappa
(SD)

XGBoost 0.986 (0.006) 0.885 (0.023) 0.907 (0.081) 0.964 (0.045) 0.960 (0.049) 0.838 (0.063) 0.928 (0.023) 0.771 (0.044)

RandomForest 1.000 (0.000) 0.942 (0.019) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.897 (0.032) 1.000 (0.000) 0.885 (0.037)

GNB 0.975 (0.019) 0.885 (0.037) 0.964 (0.073) 0.905 (0.086) 0.910 (0.078) 0.875 (0.054) 0.931 (0.039) 0.771 (0.074)

logistic 0.884 (0.037) 0.875 (0.022) 0.924 (0.038) 0.924 (0.038) 0.918 (0.041) 0.842 (0.034) 0.920 (0.023) 0.750 (0.044)

SVM 0.893 (0.037) 0.875 (0.022) 0.924 (0.038) 0.924 (0.038) 0.918 (0.041) 0.842 (0.034) 0.920 (0.023) 0.750 (0.044)
F
rontiers in Immu
nology
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PPV, Positive Predictive Value; NPV, Negative predictive value; XGBoost, eXtreme Gradient Boosting; SVM, support vector machines; SD, Standard Deviation.
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WBC(R=0.73, P<0.001), showed a strong positive correlation

(Figures 3B–F). Relative expression of Mannose 6-phosphate in

healthy group and sepsis group (Figure 3G). Furthermore, the

expression of sphinganine and APACHE-II(R=0.80, P<0.001), CRP

(R=0.63, P<0.001), IL-6(R=0.93, P<0.001), PCT(R=0.77, P<0.001),

WBC(R=0.75, P<0.001), showed a strong positive correlation

(Figures 3H–L).
3.4 Serum metabolite sphinganine
alleviates LPS-induced intestinal
epithelial cell injury in vitro

We employed the Caco-2 monolayer cell culture model to

validate the mannose-6-phosphate- and sphinganine-mediated

protection of the intestinal epithelium in vitro. Upon sphinganine

treatment, LDH levels were significantly reduced (Figure 4A). Based

on the metabolome database (HMDB), sphinganine (HMDB00296)

is a phosphatidic acid molecule (C18H39NO2) with a molecular

weight of 301.5078Da (Figure 4B). To establish the optimal

treatment concentration of sphinganine in Caco-2 cells, we

performed the LDH release assay. Based on our results, the

optimal dosage was 10mM sphinganine over a 48h period

(Figure 4C). We also observed that the Occludin and ZO-1

contents were strongly enhanced in the LPS + sphinganine

cohort, compared to the LPS cohort, thereby confirming the

sphinganine-mediated protection of the colonic mucosal barrier

from LPS-induced damage (Figures 4D, E).
3.5 Serum metabolite sphinganine
alleviates sepsis-induced intestinal
injury in vivo

To further explore the sphinganine-mediated protection of sepsis-

induced intestinal injury, we established a sepsis animal model

(Figure 5A). Based on our 0-24h observations, control mice exhibited

a 100% survival rate (SR), whereas, sepsis mice exhibited a 15% SR at

24 h. Among the sepsis + sphinganine (10 mg/kg) mice, the SR was

22% at 24 h, whereas, in mice receiving increasing amounts of

sphinganine (15 and 20 mg/kg) with sepsis, the SRs were 65.42%

and 63.48%, respectively, at 24 h. Given these evidences, sphinganine at

15 mg/kg strongly diminished septic mice mortality in a dose-
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dependent manner (Figure 5B). In sepsis mouse, shortened colon

length is a strong biomarker of colon inflammation severity. Relative to

the sepsis mice, mice treated with sphinganine exhibited strongly

enhanced colon length (p < 0.05) (Figure 5C), as well as markedly

diminished D-lactic acid, IL-1b, and IL-6 contents (p < 0.05)

(Figures 5D–F). Herein, we employed the Chiu pathological mucosal

injury score to measure the extent of intestinal histological damage. In

the control and sphinganine-treated mice, we observed normal

epithelial cells without ulcers, a large percentage of goblet cells, a

close arrangement of large intestinal glands, and a normal morphology

of the colonic mucosa. In contrast, the sepsis mice exhibited ulcers in

the colonic mucosa superficial layer, with complete disappearance of

the mucosal tissue layer, and strong infiltration by inflammatory cells.

Alternately, the sepsis + sphinganine mice showed no inflammatory

cell infiltration, ulcers, or epithelial cell damage, and the quantity of

goblet cells was vastly diminished. Based on the Chiu pathological

scoring system, the sepsis + sphinganine mice had considerably less

intestinal mucosa damage, compared to the sepsis mice (Figures 5G).

In addition, the ZO-1 andOccludin protein expressions were enhanced

among sepsis + sphinganine mice, relative to the sepsis mice. This

indicates that sphinganine, indeed, protects the colon mucosa barrier

from sepsis-induced damage. We further confirmed our findings using

immunofluorescence immunostaining and qPCR (Figures 5H–J).
3 Discussion

Herein, serum samples were collected from healthy individuals

and septic patients for metabolome analysis. Based on our results,

the relative gene expression of p-Aminobenzoic acid, Methyl

jasmonate, Tridemorph, Fisetin, Guanidoacetic acid, Threonate,

Dihydrouracil, and 4-Hydroxyphenylpyruvic acid were markedly

enhanced among healthy individuals, relative to septic patients,

thereby suggesting that the early stage of sepsis likely involves

metabolite dysregulation. The XGBOOST algorithm was utilized to

screen the variable sets. The results revealed the metabolites

mannose-6-phosphate and sphinganine as the optimal sepsis-

related variables. A diagnostic model was established by five

machine learning methods, namely XGBoost, RandomForest,

GNB, logistic, and SVM, finally we found that the XGBoost

model has the most stable performance. Pearson analysis

reinforced the expression of Sphinganine, Mannose 6-phosphate

were positively associated with the APACHE-II, PCT, WBC, CRP,
TABLE 2 Performance metrics for five models in the validation dataset.

Model AUC
(SD)

Accuracy
(SD)

Sensitivity
(SD)

Specificity
(SD)

PPV
(SD)

NPV
(SD)

F1 score
(SD)

Kappa
(SD)

XGBoost 0.956 (0.089) 0.887 (0.157) 0.933 (0.133) 1.000 (0.000) 1.000 (0.000) 0.850 (0.200) 0.960 (0.080) 0.790 (0.283)

RandomForest 0.922 (0.097) 0.887 (0.157) 0.867 (0.163) 1.000 (0.000) 1.000 (0.000) 0.850 (0.200) 0.920 (0.098) 0.790 (0.283)

GNB:Gaussian Naive
Bayes;

0.889 (0.141) 0.860 (0.196) 0.867 (0.163) 1.000 (0.000) 0.900 (0.200) 0.833 (0.211) 0.874 (0.170) 0.723 (0.391)

logistic 0.889 (0.141) 0.893 (0.137) 0.933 (0.133) 0.933 (0.133) 0.933 (0.133) 0.867 (0.163) 0.920 (0.098) 0.790 (0.273)

SVM 0.889 (0.141) 0.893 (0.137) 0.933 (0.133) 0.933 (0.133) 0.933 (0.133) 0.867 (0.163) 0.920 (0.098) 0.790 (0.273)
PPV, Positive Predictive Value; NPV, Negative predictive value; XGBoost, eXtreme Gradient Boosting; SVM, support vector machines; SD, Standard Deviation.
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FIGURE 3

The correlation between the expression of metabolites and the severity of sepsis. (A) Relative expression of sphinganine in healthy group and sepsis
group. (B-F) Pearson correlation of the expression of sphinganine and APACHE-II(R=0.69, P<0.001), PCT(R=0.81, P<0.001), CRP(R=0.65, P<0.001),
IL-6(R=0.64, P<0.001), WBC(R=0.73, P<0.001). (G) Relative expression of Mannose 6-phosphate in healthy group and sepsis group. (H-L) Pearson
correlation of the expression of mannose-6-phosphate and and APACHE-II(R=0.80, P<0.001), CRP(R=0.63, P<0.001), IL-6(R=0.93, P<0.001), PCT
(R=0.77, P<0.001), WBC(R=0.75, P<0.001). P values 0.05 (*) or P values 0.01 (**) was regarded as significant.
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and IL-6. Moreover, we explored the physiological roles the

aforementioned metabolites. We demonstrated that sphinganine

strongly diminished the LDH content in LPS-treated Caco-2 cells.

In addition, using both in vitro and in vivo examination, we revealed

that sphinganine strongly protects against sepsis-induced intestinal

barrier injury.

Sepsis is a systemic inflammatory response that leads to

systemic inflammation and multi-organ failure (14, 15). Despite

years of research and clinical trials, there is still no reliable therapy

targeting the dysregulated and inflammatory response that

characterizes sepsis. The current manual assessment of sepsis

using screening tools, such as the (Sequential Organ Failure

Assessment)SOFA score for ICU patients, can be complicated due

to the number of clinical signs measured, and may also lack

sufficient sensitivity (16). On contrast, automated decision

support systems based on artificial intelligence (AI) and machine

learning, which utilize electronic health record (EHR) data, have

shown a marked improvement in adherence to treatment protocols

in ICUs (17). Herein, we employed the XGBOOST algorithm to

screen the variable sets and the XGBoost model has the most stable

performance in constructing the machine learning methods of

sepsis. Machine learning (ML) models are often considered to be

a “black box” in which data goes in and decisions come out, but the

processes that occur between input and output are not transparent.

In this study, we employed the SHAP value to interpret our

XGBoost model, the result revealed that Sphinganine and
Frontiers in Immunology 09
Mannose 6-phosphate were the primary factors that contributed

to the XGBoost model. Previous study has reported the ML models

showed a good prognostic prediction ability in septic patients

requiring ICU readmission (18). Another study reported that the

study aimed to develop a high-performance machine learning sepsis

prediction algorithm based on routinely collected intensive care

unit data, designed to be implemented in European intensive care

units, the result showed that the algorithm uses 4 hours of input and

can identify patients with high risk of developing sepsis, with high

performance (area under the receiver operating characteristics

curve 0.90; area under the precision-recall curve 0.62) for

predictions up to 3 hours before sepsis onset (19).

Following sepsis, there is a rise in intestinal permeability, which

can lead to the translocation of intestinal bacteria and endotoxins.

This process can exacerbate the sepsis and worsen the overall

condition of the individual (20, 21). Hence, it is crucial to develop

effective measures of sepsis-induced intestinal barrier injury

prevention and treatment (22, 23). Currently, the treatment of

intestinal injury involves several approaches such as protopathy,

anti-infective therapy, immune regulation, and organ support and

protection. However, despite these efforts, the effectiveness of the

treatment remains limited and the mortality rate remains high (24).

Ultimately, finding new strategies to treat intestinal injury will be

critical for improving outcomes for patients with sepsis.

With advancements in metabolomics, there is a substantial

increase in functional metabolites exploration and discovery (25,
A B
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C

FIGURE 4

Sphinganine alleviates sepsis-induced intestinal injury in vitro. (A) Effect of a 24 h treatment with mannose-6-phosphate (10mm) and sphinganine
(10mm) on Caco-2 cell cytotoxicity, as evidenced by the LDH assay. (B) Chemical structure of sphinganine. (C) Outcome of 24 h treatments with
varying sphinganine concentrations on Caco-2 cell cytotoxicity, as evidenced by the LDH assay. (D) ZO-1 and occludin protein expressions, as
assessed by Western blot analysis. (E) Statistical plot of gray value of ZO-1 and Occludin were detected by Western blot. P values 0.05 (*) or 0.01 (**)
was regarded as significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151728
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1151728
A

B

D E F

G

IH

J

C

FIGURE 5

Sphinganine alleviates sepsis-induced intestinal injury in vivo. (A) Design of animal experiment. (B) Effect of varying sphinganine concentrations on
the SR of sepsis mice. (C) Colon length. Serum levels of (D) D-lactic acid, (E) IL-6, and (F) IL-1b. (G) Colon tissues stained with HE and
histopathological scores analysis from slides. (H) Immunofluorescent staining of intestinal TJ proteins, namely, ZO-1 and occludin (scale bar, 50um).
(I, J) Intestinal ZO-1 and occludin gene expression analysis via qPCR. Mann-Whitney U test was employed for comparison. P values 0.05 (*), 0.01 (**)
or 0.001 (***) was regarded as significant.
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26). For instance, bile acids, which are critical for immune regulation,

were also shown to regulate the balance between TH17 and Treg cells

using receptors like the farnesoid x (FXR) and G-protein coupled bile

acid receptors (TGR5) (27, 28). Similarly, 3-indolepropionic acid, a

derivative of gut microbiota tryptophan metabolism, also serves as an

anti-inflammatory agent which protects the intestinal barrier

integrity (29). In this study, we demonstrated that sphinganine

protected against sepsis-induced intestinal barrier injury. Prior

investigations revealed that sphinganine is a synthetic bioactive

sphingolipid that inhibits C. glabrata and C. albicans development

(30). This is the first report to demonstrate a protective role of

sphinganine in the intestines. However, further research is needed to

fully understand the mechanism by which sphinganine protects

against intestinal damage.

In conclusion, our analysis of serum metabolites revealed that

sepsis causes a strong dysregulation in serum metabolites. Based on

our ML findings, serum metabolites not only have a good value in

sepsis diagnosis, but also possess a protective value against sepsis-

induced intestinal barrier injury. Our findings highlightedthe

potential diagnostic value of the ML, and also provided new insight

into enhanced therapy and/or preventative measures against sepsis.

However, the number of patients in the sample is relatively small, and

large sampling sizes are needed to comprehensively assess the

diagnostic value of metabolites for sepsis.
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