
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jiang Huai Wang,
University College Cork, Ireland

REVIEWED BY

Ranya Elsayed,
Augusta University, United States
Sebastian Aguayo,
Pontifical Catholic University of Chile, Chile

*CORRESPONDENCE

Chufan Ma

machufan_fmmu@163.com

Jianliang Pang

37420802@qq.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cytokines and Soluble
Mediators in Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 26 January 2023

ACCEPTED 28 March 2023
PUBLISHED 11 April 2023

CITATION

Cai R, Wang L, Zhang W, Liu B, Wu Y,
Pang J and Ma C (2023) The role of
extracellular vesicles in periodontitis:
pathogenesis, diagnosis, and therapy.
Front. Immunol. 14:1151322.
doi: 10.3389/fimmu.2023.1151322

COPYRIGHT

© 2023 Cai, Wang, Zhang, Liu, Wu, Pang and
Ma. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 11 April 2023

DOI 10.3389/fimmu.2023.1151322
The role of extracellular vesicles
in periodontitis: pathogenesis,
diagnosis, and therapy

Rong Cai1†, Lu Wang2†, Wei Zhang1, Bing Liu1, Yiqi Wu2,
Jianliang Pang1* and Chufan Ma1*

1Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University,
Beijing, China, 2Department of Critical Care Medicine, The First Medical Center, Chinese PLA General
Hospital, Beijing, China
Periodontitis is a prevalent disease and one of the leading causes of tooth loss.

Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue

by producing virulence factors. The overactivated host immune response is the

primary cause of periodontitis. The clinical examination of periodontal tissues

and the patient’s medical history are the mainstays of periodontitis diagnosis.

However, there is a lack of molecular biomarkers that can be used to identify and

predict periodontitis activity precisely. Non-surgical and surgical treatments are

currently available for periodontitis, although both have drawbacks. In clinical

practice, achieving the ideal therapeutic effect remains a challenge. Studies have

revealed that bacteria produce extracellular vesicles (EVs) to export virulence

proteins to host cells. Meanwhile, periodontal tissue cells and immune cells

produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a

critical role in the pathogenesis of periodontitis. Recent studies have also

presented that the content and composition of EVs in saliva and gingival

crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators.

In addition, studies have indicated that stem cell EVs may encourage periodontal

regeneration. In this article, we mainly review the role of EVs in the pathogenesis

of periodontitis and discuss their diagnostic and therapeutic potential.

KEYWORDS
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1 Introduction

Periodontal disease is the sixth most prevalent disease in the world (1, 2). According

to a 2017 report, periodontitis affects 796 million people worldwide (3), places a

substantial financial and health burden on those affected, and drastically lowers their

quality of life (4, 5).
Abbreviations:MSCs, mesenchymal stem cells; EVs, extracellular vesicles; Th, helper T cells; Treg, regulatory

T cell; LPS, lipopolysaccharide; BMSCs, bone mesenchymal stem cells; ADSCs, adipose-derived mesenchymal

stem cell; DFSCs, dental follicle stem cells; SHED, stem cells of human exfoliated deciduous teeth; PDLSCs,

periodontal ligament stem cells; GMSCs, gingiva mesenchymal stem cells; PRRs, pattern recognition

receptors; MMP, matrix metallopeptidase; IL, interleukin; COX-2, cyclooxygenase 2; TNFa, tumor

necrosis factor-a.
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In recent years, risk factors of periodontitis have been grouped

into three main categories: biofilms, host, and environment (6).

When local biofilms and the mild host immune are in balance, the

immune surveillance and appropriate immune response

predominate (7). When exposed to persistent microbial

challenges or when the pathogenicity of the local microbiome

increases, the balance between biofilms and the host is lost, and

the host’s immune reactivity is excessive. This results in a highly

inflammatory state with immune cell infiltration, pro-inflammatory

and inflammatory cytokines up-regulation, excessive osteoclasts

activation, ligament fiber degradation, granulation tissue

formation, and final periodontal destruction (8–16).

Clinical features of periodontitis include red, swollen, and

receding gums, bleeding on periodontal probing, a deeper pocket,

the destruction of periodontal tissue, tooth displacement, and

eventually tooth loss (17, 18). Unfortunately, due to the low

sensitivity and low positive predictive value of these tests, the

parameters can only evaluate historical data on periodontal tissue

loss and cannot forecast future disease activity (19–21).

Furthermore, these parameters vary among dentists, which

impacts the accuracy of diagnosing periodontitis (22). To prevent

and diagnose periodontitis early and effectively refer patients to

specialized therapy, it is crucial to investigate more repeatable,

sensitive, and specific methods of periodontal diagnosis that

provide current and future disease information (23, 24).

Periodontitis treatment comprises non-surgical treatment,

surgical treatment, and adjuvant medicine treatment (25–27). The

treatment objectives are to control inflammation, halt disease

progression, and help patients reconstruct a healthy and

functional dentition (28). Surgical intervention is required when it

is necessary to rebuild a bone defect to establish a good bone

structure or when regeneration is needed to restore lost periodontal

structures (29). Periodontal regeneration is a complex process due

to the unique anatomical structure and composition of periodontal

tissue, including periodontal ligament, cementum, and alveolar

bone (30). Osteogenesis, inflammation control, and angiogenesis

play important roles in periodontal regeneration (31, 32). At

present, guided tissue regeneration techniques, including the

transplantation of soft and hard tissues, the use of growth factors

and host regulatory factors, and the use of biomaterials, are the

mainstays of periodontal regeneration (33–35). Nevertheless, there

are just a few materials with high potential for periodontal

regeneration, and present technologies have limitations in

attaining periodontal regeneration. Thus, looking for more

durable and potent therapies and materials is critical to

improving periodontal regeneration (36–38).

EVs are a group of bilayered lipid membrane-structured vesicles

secreted by multiple kinds of cells. They carry a variety of

substances from the parental cells, like DNA, RNA, lipids, and

proteins (23, 39). EVs play a role in various pathological and

physiological processes, including immunological regulation,

inflammatory response, and tissue healing and regeneration. EVs

have been discovered valuable to study physiological processes,

pathologies, as well as regeneration (40).

We outlined the function of EVs in the pathogenesis and

diagnosis of periodontitis and discussed methods used to isolate
Frontiers in Immunology 02
and characterize salivary and GCF EVs in this paper. We also

reviewed recent research on stem cell-derived EVs in periodontitis

therapy and addressed the flaws and future directions.
2 Extracellular vesicles

2.1 Definition of EVs

EVs can be secreted by humans, plants, animals, and microbial

origins (40). Only a few nonmammalian sources have been explored

in preclinical or clinical settings, and most studies and reviews have

concentrated on EVs derived frommammalian cells and body fluids

(40). EVs can be classified as endosome-derived exosomes (Exo),

plasma membrane-derived microvesicles (MVs), and apoptotic

bodies (ApoEVs) based on their secretion processes and

characteristics (41, 42). Exosomes (30-100 nm) germinate inward

from the endosome membrane, forming multivesicular bodies

(MVBs) in the cytoplasm. Some MVBs are degraded by

lysosomes, while others fuse with the cell membrane and are

discharged into the extracellular environment by exocytosis. MVs

(50 nm-2mm) and ApoEVs (50 nm-5 mm) were derived from

outward budding. Exosomes and MVs are secreted during normal

cellular processes, whereas ApoEVs are only produced during

programmed cell death (43–46). In 2018, the International

Extracellular Vesicle Society recommended researchers

characterize EVs by size: “small EVs” (sEVs < 200 nm) and

“medium and/or large EVs” (m/lEVs > 200 nm) unless specific

EVs markers are available (47).

EVs can participate in physiological and pathological processes

by directly binding to receptors on recipient cells, fusing with the

plasma membrane of recipient cells and the membrane of the

endosome following endocytosis (48, 49). Various endocytosis-

related pathways, including clathrin-dependent endocytosis and

clathrin-independent pathways such as caveolin-mediated uptake,

macropinocytosis, phagocytosis, and lipid raft-mediated

internalization, are thought to be the primary mechanisms of EVs

uptake by recipient cells (48, 50).
2.2 Functions of EVs

In physiological and pathological processes, including cancer

treatment, early diagnosis, tissue regeneration, and medication, the

released EVs can remove metabolic proteins during cell maturation

and regulate cell-to-cell communication (39, 51–54).

The RNA composition of EVs varies with pathological

situations, and as a result, they have become a source of

biomarkers for diagnosing human diseases (55). Proteins, genetic

material, and lipids in EVs extracted from oral biofluids (saliva and

GCF) have recently emerged as potential sources of biomarkers for

periodontal diseases (23).

On the other hand, EVs are used in disease therapy in that the

biological properties of EVs can modulate the phenotype and

behavior of recipient cells (56, 57). Due to their innate ability to

promote tissue regeneration, mesenchymal stem cells (MSCs) have
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been employed as a source of regenerative EVs. Besides, MSCs-EVs

have the following advantages (1): MSCs-EVs have the innate

capacity to cross physiological barriers, such as the blood-brain

barrier, due to their nanoscale size (58, 2). The risk of immune

rejection and tumorigenicity induced by cell transplantation can be

decreased with MSCs-EVs therapy (59, 3). MSCs-EVs are highly

stable and biocompatible, and recipient cells may quickly absorb

them (60, 4). MSCs-EVs are more convenient to store and transport

since they can be kept stable at low temperatures (61, 5).

Appropriate modification can enhance the targeting and repair

abilities of MSCs-EVs (50, 62, 6). Studies have also demonstrated

that MSCs-EVs have no adverse effects in toxicology tests (63, 7).

MSCs-EVs are comparable to MSCs in their capacity to repair

injured tissues, resist inflammation, inhibit cell apoptosis, and

regulate immune responses (64–67). In vitro and animal studies

have shown the potential of MSCs-derived EVs for treating

periodontitis (68, 69). MSCs-EVs have demonstrated potential in

the prevention and treatment of periodontal disease as well as

periodontal regeneration due to their ability to regulate

inflammation and promote osteogenesis (70, 71).
2.3 Extraction and characterization of EVs

Five basic extraction techniques are frequently employed

based on the physical (density, size, and solubility) and biological

(surface antigen) properties of EVs: precipitation, membrane

affinity, size-exclusion chromatography, iodixanol gradient, and

phosphatidylserine affinity (72). Additional methods have been

developed to improve the specificity of EVs, including tangential

flow filtration (73), field-flow fractionation (74), asymmetric flow

field-flow fractionation (75), field-free viscoelastic flow (76),

alternating current electrophoretic (77), acoustics (78), ion

exchange chromatography (75), microfiltration (79), fluorescence-

activated sorting (80), etc.

According to the latest MISEV 2018 guidelines for EVs

characterization, scientists should include at least three distinct

characteristics, such as EVs particle quantity, morphology, and

protein markers (47). Dynamic light scattering (81) and

nanoparticle tracking analysis (82) are frequently applied to

estimate the quantity and size of EVs particles. Transmission

electron microscopy (83), scanning electron microscopy (84), and

atomic force microscopy (85) can be used to examine the

morphology of EVs. Bicinchoninic acid assay (86), fluorimetric

assays (87), or the global protein stain on SDS-PAGE (88) were used

for EVs protein quantification. Western blot (89), enzyme-linked

immunosorbent assay (90), bead-based flow cytometry (91),

aptamer- and carbon nanotube-based colorimetric assays (92),

and surface plasmon resonance (93) were employed to detect

protein markers. Generally, at least one protein from each of the

following groups must be assessed (47): (1) Transmembrane or

GPI-anchored proteins connected to the plasma membrane or

endosomes (Tetraspanins, integrins, etc.). (2) Cytosolic proteins

(membrane binding proteins, etc.). (3) Major non-EVs co-isolated

structural constituents (lipoproteins, Apolipoproteins, ribosomal

proteins, etc.). When claiming specific analysis of sEVs, analysis
Frontiers in Immunology 03
of transmembrane, lipid-bound and soluble proteins associated

with other intracellular compartments (histones, cytochrome C,

etc.) is required. Secreted proteins recovered with EVs (cytokines

and growth factors, adhesion, extracellular matrix proteins, etc.) are

needed to document the functional activities of sEVs. To further

indicate particle per volume and particle size distribution, the

guidelines also suggested the addition of EVs purity metrics, such

as protein/particle ratio, protein/lipid ratio, or RNA/particle ratio.
3 EVs and the pathogenesis of
periodontitis

3.1 Direct pathogenic role of outer-
membrane vesicles in periodontitis

The Gram-negative bacteria that are closely related to the

progression of periodontitis, including Porphyromonas gingivalis

(P. gingivalis), Treponema denticola (T. denticola), Tannerella

forsythia (T. forsythia), Actinomyces reticulata (A. reticulata),

Fusobacterium nucleatum (F. nucleatum) and Prevotella

intermedia (P. intermedia) have been isolated from the

periodontal pocket (94–96). P. gingivalis is the primary pathogen

responsible for chronic periodontitis (97, 98). It forms the “red

complex” along with T. forsythia and T. denticola, which are

accessory pathogens with complementary or supplementary

functions (99, 100).

Gram-negative bacteria can selectively export toxins and other

virulence factors to host cells through vesicles named OMVs. In

light of our current knowledge, OMVs are double-layered spherical

membrane-like structures with a diameter ranging from 20 to 250

nm. OMVs contain bacterial parts and products such as fimbriae,

lipopolysaccharides (LPS), toxins, outer membrane proteins,

peptidoglycans, and bacteria’s DNA and RNA (101–107). Yet it is

unclear how these elements are packed into OMVs, and how the

cargos are selected (101). OMVs can directedly fuse with target cells

or be internalized by lipid rafts, micropinocytosis, and clathrin-

dependent endocytosis (108–110).

After entering host cells, OMVs can exhibit a variety of

virulences (111), and host-derived proteases have little effect on

them (112). While requiring much energy, OMVs are crucial for

maintaining bacterial virulence, colony formation, material transfer

inside bacteria, immune escape, and host cell immune regulation

(101, 103, 113–116).

The gingival epithelium is a physical barrier against invasion by

biofilms and other nonautologous substances and is the first line of

defense in the oral cavity (117, 118). There have been reports of P.

gingivalis OMVs invading oral epithelial cells (119). By the

endocytic pathway, P. gingivalis OMVs can efficiently infiltrate

human epithelial cells and interfere with their function by

destroying signaling molecules necessary for cell migration, such

as transferrin receptor, paxillin, and focal adhesion kinase (120,

121). T. denticola can disrupt the function of the epithelial barrier

and penetrate the epithelial layers by degrading tight junctional

proteins like ZO-1 (122). According to Bartruff (123) et al., OMVs

derived from P. gingivalis significantly inhibited the proliferation of

cultured gingival fibroblasts and human umbilical vein endothelial
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151322
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2023.1151322
cells (hUVECs), as well as hUVECs’ ability to form capillaries,

which restrained periodontal tissue healing.

OMVs could be oral microbial communication between P.

gingivalis and other oral bacteria (119). Kamaguchi (124) et al.

demonstrated that P. gingivalis OMVs significantly promoted oral

bacteria coaggregation. Grenier (125) noticed that P. gingivalis

OMVs could mediate the coaggregation between T. denticola and

L. saburreum. P. gingivalis and T. denticola co-inoculation

synergistically triggered host immune responses and alveolar bone

loss in a murine experimental periodontitis model (126). According

to Inagaki (127) et al., P. gingivalis OMVs play an important role in

virulence by enhancing T. forsythia’s adherence and penetration of

epithelial cells. P. gingivalis OMVs have explicitly been enriched for

the heme-binding lipoproteins HmuY and IhtB, which can provide

micronutrients to several other subgingival biofilms, resulting in

community benefits that encourage biofilm proliferation (128). In

addition, P. gingivalis OMVs can suppress and disperse rival

biofilms in a gingipains-dependent manner to create a favorable

environment for P. gingivalis (119).

In brief, these findings indicate that OMVs, which can mediate

the interaction between biofilms and host cells and hasten the

destruction of periodontal tissue, are substantially responsible for

the pathogenicity of biofilms (Figure 1). Nevertheless, the precise

mechanisms by which OMVs alter the nature of biofilms remain

unclear. Further research is required to determine the specific

function and associated mechanisms of OMVs in periodontitis.
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3.2 Pathogenic role of OMVs in
periodontitis by affecting immunity and
inflammation

Pattern recognition receptors (PRRs), expressed by host

immune cells, are essential molecules that trigger local immune

responses. OMVs from periodontal pathogens can induce PRRs

reactions (112). OMVs can activate PRRs in gingival epithelial cells,

causing the secretion of pro-inflammatory and anti-inflammatory

cytokines and activating neutrophils, T and B lymphocytes, and

osteoclasts. These reactions promote connective tissue destruction

and alveolar bone resorption (129). Choi (130) et al. derived that

OMVs secreted by major periodontal pathogens transferred

microRNA (miRNA) to immune cells to suppress target genes

related to immune response, thereby evading the host adaptive

immune responses. The potent but flexible immunostimulatory

effects of P. gingivalis OMVs may help manipulate and

dysregulate host immune responses to initiate disease, and the

pro-inflammatory effects of other bacteria may contribute to the

disease progression (100). P. gingivalis OMVs can selectively

promote tumor necrosis factor (TNF) tolerance in a Toll-Like

Receptor 4 and mTOR-Dependent manner, leading to local

immune evasion (131). P. gingivalis OMVs can selectively entrap

and activate human neutrophils to initiate degranulation without

being destroyed by neutrophils, and they can also breakdown

components of secretory granules with antibacterial activity,
FIGURE 1

The roles of bacterial outer membrane vesicles (OMVs) and host cell-derived EVs in the pathogenesis of periodontitis. OMVs produced by Gram-
negative bacteria contain bacterial components and bacterial products, such as outer membrane proteins, peptidoglycan, and lipopolysaccharide,
which play a crucial role in the pathogenesis of periodontitis. Firstly, OMVs can enter the gingival epithelial cells through endocytosis and thus impair
the function of gingival epithelial cells, inhibiting epithelial cell proliferation, slowing down angiogenesis, and inducing the response to PRRs.
Secondly, OMVs can also inhibit bacterial clearance by immune cells by affecting a variety of cellular functions through different inflammatory
mediators, including neutrophils, macrophages, fibroblasts, periodontal stem cells, and dendritic cells, which impede the host immune response.
OMVs can cause aggregation of bacteria and act synergistically with them to induce the onset and progression of periodontitis. In addition, the EVs
secreted by the host cells, such as dendritic cells, fibroblasts, and epithelial cells, can also cause alveolar bone loss, periodontitis and tissue damage.
The Graph was created with BioRender.com. PRRs, pattern recognition receptors; MMP, matrix metallopeptidase; IL, interleukin; COX2,
cyclooxygenase 2; TNF-a, tumor necrosis factor-a.
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especially LL-37 and myeloperoxidase (MPO), to ensure bacterial

survival (132).

The levels of inflammatory mediators, particularly interleukin

(IL)-1, TNF, prostaglandin E2, and cyclooxygenase-2 (COX-2), are

correlated with the severity of inflammatory response and

periodontal disease (133, 134). Kou (135) et al. discovered that co-

culturing immortalized human gingival epithelial cells with P.

gingivalis OMVs elevated the production of inflammatory factors

as COX-2, IL-6, IL-8, matrix metalloproteinase (MMP)-1, andMMP-

3. Another study demonstrated that P. gingivalisOMVs enhanced the

expression of IL-6 and IL-8 in human gingival epithelial cells via

activating the signaling pathways Erk1/2, JNK, MAPK, STING, and

NF-kB (136). Fleetwood (137) et al. confirmed that P. gingivalis

OMVs could penetrate the gingival tissue and stimulate macrophages

to produce large amounts of TNF-a, IL-12, IL-6, IL-10, IFN-b, and
NO, resulting in tissue inflammation and damage. OMVs from P.

gingivalis and T. forsythia induced the expression of pro-

inflammatory cytokines like IL-1b, IL-6, IL-23, and IL-12p70 in

bone marrow-derived dendritic cells (DCs) (138). Human

monocyte cell line U937 and periodontal ligament fibroblasts were

activated by T. forsythia OMVs in a concentration-dependent

manner to produce pro-inflammatory mediators, and the

inflammatory response was noticeably greater than that induced by

whole T. forsythia cells (139).

OMVs should be considered as part of a larger picture because

they not only contribute to the local problem of periodontitis (40).

As EVs communication is not confined to species, OMVs from

periodontal pathogens are also involved in human systemic diseases

(104), for instance, Alzheimer’s disease (140), neuroinflammation

and neurodegeneration (141), cardiovascular disease (142), and

diabetes mellitus (98). Investigating interkingdom communication

of EVs from different origins may help discover new pathologic

mechanisms and innovative therapies.

OMVs derived from probiotic strains contain immunomodulatory

molecules that decrease pro-inflammatory cytokines and strengthen

epithelial barriers (143, 144). According to reports, OMVs are protease

resistant, can withstand long-term storage, and their structural stability

makes it easier for them to deliver contents into the host immune

system. Moreover, OMVs are attractive vaccines against pathogenic

bacteria due to their immunogenicity (145, 146). Specific antibodies

against P. gingivalis can be produced in mice’s blood and saliva by

intranasal inoculating OMVs (147, 148).Whereas, because they are still

in the very early stages of development, periodontal vaccines face

obstacles such as limited yield, unfavorable toxicity, and insufficient

immunogenicity (149).
3.3 Host cell-derived EVs in the
pathogenesis of periodontitis

Immune senescence plays a pivotal role in the pathophysiology

of experimental periodontitis. P. gingivalis directly invades DCs to

cause premature senescence and dramatically accelerates the

senescence of normal bystander DCs by secreting inflammatory

exosomes (150). Exosomes of the P. gingivalis-invaded DCs
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transmit senescence to normal bystander DCs and T cells,

resulting in the loss of alveolar bone, according to recently

published research (151). Another study demonstrated that

biofilms could contribute to inflammation and periodontal

destruction by promoting gingival fibroblasts to exhibit a tissue-

destructive phenotype via increased secretion of epithelial EVs

(152). Otherwise, LPS-treated periodontal ligament fibroblasts

induce inflammation and inhibit the osteogenic activity of

osteoblasts by releasing exosomes (153). Presumably, EVs

secreted by host cells significantly impact periodontal disease.

In conclusion, OMVs from periodontal pathogens and host

cell-derived EVs are critical in the pathogenesis of periodontitis.

Nevertheless, there is still much to learn about the precise molecules

and mechanisms by which EVs mediate innate and acquired

immune response in periodontitis (6).
4 EVs and diagnosis of periodontitis

4.1 Diagnostic role of EVs in saliva and GCF

Saliva, a hypotonic solution composed of GCF, serum, salivary

glands secretion, oral mucosal secretion, and microorganisms, is

responsible for oral cleaning, antibacterial effect, and host’s

resistance to oral infections (154, 155). Another important oral

biofluid is GCF, a serum exudate of periodontal tissue, presented in

the healthy gingival sulcus or the periodontal pocket. Saliva and

GCF are rich in biomolecules from the host and microorganisms,

such as inflammatory mediators, cytokines, tissue breakdown

products, DNA, RNA, EVs, etc. (23, 154, 156–158). Therefore,

saliva and GCF can be applied as promising non-invasive indicators

for periodontitis (159).

Genetic analysis of saliva sEVs showed that innate immune

response proteins were considerably enriched in patients with

severe periodontitis, particularly the complement component 6

(C6) (160). One study proposed that the DNA methylation

pattern of 5-methylcytosine (5mC) in saliva EVs was comparable

in the groups with healthy gums, gingivitis, and periodontitis (161).

According to another study, patients with periodontitis had

considerably fewer CD9+ and CD81+ saliva exosomes than

healthy controls (162). CD63+ exosomes in GCF were increased

in patients with periodontitis compared with those without

periodontitis (157). In addition to EVs surface markers, miRNAs

were abundant in EVs, and the level of hsa-miR-199a-3p decreased

with the development and progression of periodontitis (163). There

was a decrease in miR-223-3p concentration in periodontitis (164).

In contrast, periodontitis dramatically enhanced the expression of

hsa-miR-140-5p, hsa-miR-146a-5p, hsa-miR-628-5p, and PD-L1

mRNA (165, 166). A P. gingivalis saliva diagnostic kit for the

detection of P. gingivalis and P. gingivalis OMVs has been

developed by researchers using monoclonal antibodies that

identify the conserved P. gingivalis virulence factor RgpA-Kgp

complex (167).

These findings demonstrate that EVs released by saliva and

GCF can reveal alterations in the local microenvironment and may

indicate periodontitis (157, 168, 169). Owing to that, saliva and
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GCF EVs may one day become simple and fast chair-side methods

for diagnosing and evaluating periodontitis activity.
4.2 Collection of saliva and GCF and
isolation of EVs

Patients should refrain from drinking and eating for at least one

hour before sampling to avoid contamination of saliva and GCF with

food and drink (23, 161, 163). Saliva can be collected either stimulated

or unstimulated. Stimulated saliva is collected by chewing or gustatory

stimulation (such as chewing paraffin or placing citric acid). In contrast,

unstimulated saliva is collected by spitting or drooling without chewing

or gustatory stimulation (170). Techniques used to collect saliva can

affect its composition and the ultimate determination of particular

biomarkers (171). As a result, saliva collection should closely resemble

actual clinical conditions, and sample collection and processing should

be consistent throughout.

Subgingival biofilms should be removed, and teeth should be

blown dry to exclude saliva interference before GCF collection.

After gently sampling with filter paper strips to prevent

contamination from bleeding, GCF is eluted with PBS (172).
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Researchers should make it clear whether the GCF is from the

healthy or the diseased site and correctly record the clinical

parameters of each site, which is of great value in parsing the

biochemical information (159, 168).

Although there is no optimal method for isolating saliva and GCF

EVs, several researchers have compared different isolation protocols.

In a comparison of saliva sEVs obtained by ultracentrifugation (UC)

and ExoQuick-TC (TM) (EQ) precipitation, Zlotogorski - Hurvitz

(173) et al. found that EQ generated a larger shape/aggregation

pattern and a higher CD63/CD9/CD81+ sEVs subset than UC.

Other investigators compared the particle production and particle/

protein ratio of UC-sEVs and SEC-sEVs in saliva, showing that SEC-

sEVs were superior in both categories (23).

In summary, mounting evidence points to the possibility that

EVs generated from GCF and saliva may serve as vital diagnostic

biomarkers for periodontitis owing to their cargo of proteins, RNA,

and DNA (Table 1). But there is still a long way to go before EVs can

be used for clinical diagnosis because the techniques for collecting

EVs are currently only in-vitro or pre-clinical. The primary

challenge is standardized techniques for isolating and

characterizing EVs. More specific, sensitive, and practical

biomarkers should be developed (174). An analysis with a large
TABLE 1 Application of exosomes in the diagnosis of periodontitis.

Author (Year) Research type Origin
of EVs

Contents/
markers Groups Sample

size Conclusions Reference

Chaparro Padilla A,
et al. (157)

cross-sectional case-
control study

saliva,
GCF

CD9,
TSG101, Alix

Periodontitis(stages
II, III, and IV)

41
hypersecretion, pro-
inflammatory

(141)
Gingival health or
Gingivitis

45

Huang X, et al. (160)
cross-sectional case-
control study

saliva CD9, CD81

Severe Periodontitis
(SP)

11 protein expression difference,
pro-inflammatory

(144)

Periodontal health 11

Han P, et al. (161)
cross-sectional case-
control study

saliva
CD9,

TSG101

Periodontitis 8

hypersecretion, pro-
inflammatory

(145)Gingivitis 7

Periodontal health 7

Tobon-Arroyave SI,
et al. (162)

cross-sectional case-
control study

saliva CD9, CD81
Periodontitis 104

hyposecretion (146)
Periodontal health 45

Nik Mohamed Kamal
NNS, et al. (163)

cross-sectional case-
control study

saliva,
plasma

unspecified

Chronic
Periodontitis(CP)

8 miRNA expression difference,
expression downregulated

(147)

Periodontal health 8

Xia Y, et al. (164)
cross-sectional case-
control study

saliva miR-223-3p

Periodontitis(stages
III and IV)

none expression downregulated, anti-
inflammatory

(148)

Periodontal health none

Yu J, et al. (165)
prospective
observational
investigation

saliva PD-L1
Periodontitis 61

expression upregulated, pro-
inflammatory

(149)
Periodontal health 30

Han P, et al. (166)
cross-sectional case-
control study

saliva unspecified

Periodontitis(stages
III and IV)

10

expression upregulated (150)
Gingivitis 9

Periodontal health 10
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sample size is required to establish proper EVs-periodontitis

diagnostic criteria matched with different ages, genders, etc.
5 MSCs-derived EVs and therapy of
periodontitis

5.1 Role of MSCs-EVs in periodontitis
treatment via anti-inflammatory and
immune regulation

As an essential component of the innate immune system,

macrophages mediate the onset and progression of periodontitis

(175). Macrophages can differentiate into either a pro-inflammatory

(M1) or an anti-inflammatory (M2) phenotype in reaction to local

microenvironments, with each playing a unique role in a variety of

physiological or pathological conditions (176, 177). Cytokines like

TNF- and IL-6, which are produced by M1 macrophages, increase

inflammation, activate osteoclasts, and result in the resorption of

alveolar bone. In contrast, factors such as IL-10 and transforming

growth factor (TGF) -b, produced by M2 macrophages, have anti-

inflammatory and angiogenic effects and can activate osteoblasts

(175, 176, 178, 179). Consequently, modulating the macrophage

M1/M2 polarization ratio is an effective strategy for intervening

in diseases.

In a rat calcaneus defect model, TNF-a-pretreated MSCs-EVs

possess stronger immunomodulatory properties that can suppress

M1 macrophages markers like IL-1b and iNOS and increase M2

macrophages markers like Arg1 and CD206, thereby promoting

bone formation (180). MSCs-derived exosomes can improve the

treatment of periodontitis by reestablishing the equilibrium of T

helper 17/regulatory T cells (Th17/Treg) in inflamed periodontal

tissues (181).

Bone mesenchymal stromal cells (BMSCs)-derived EVs regulate

the inflammatory immune response and promote periodontal

regeneration by inhibiting osteoclast activity, influencing

macrophage polarization to M2, and regulating the production of

TGF-b1 (68). Xu (182) et al. found that upon LPS stimulation,

BMSCs-EVs converted macrophages from M1 to M2 phenotype in

vitro, which decreased inflammation. In addition, ApoEVs derived

from BMSCs can inhibit the polarization of macrophages into the

M1 phenotype, reduce the COX-2 expression, down-regulate the

TNF-a secretion, and inhibit adjacent osteoclasts, which serve as

the foundation for the treatment of periodontitis (183). BMSCs-EVs

have become promising therapeutic strategies for managing

periodontitis (184).

The TNF-a-pretreated exosomes derived from gingiva

mesenchymal stem cells (GMSCs) are notable for their ability to

induce M2 polarization and prevent osteoclast formation (185).

Wang (186) et al. observed that macrophages co-cultured with

GMSCs exosomes in the inflammatory microenvironment showed

significantly lower levels of M1 markers but somewhat raised levels

of M2 features. In other words, GMSCs exosomes could trigger the

transformation of M1 macrophages into M2 macrophages and
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lessen the pro-inflammatory substances that M1 macrophages

release (186). Another study showed that GMSCs-sEVs

significantly improved periodontal regeneration by inhibiting the

release of pro-inflammatory cytokines from T cells and monocytes/

macrophages, blocking T cells activation, and inducing the creation

of Tregs (187).

Zheng (188) et al. discovered that periodontal ligament stem

cells (PDLSCs)-derived exosomes alleviated the inflammatory

microenvironment in chronic periodontitis via the Th17/Treg/

miR-155-5p/SIRT1 regulatory network. EVs derived from LPS-

pretreated PDLSCs induced M1 polarization of macrophages,

whereas DNase I-treated EVs abolished M1 polarization. EVs

derived from PDLSCs may be a potential therapeutic target for

periodontal inflammation (189).

LPS-pretreated dental follicle stem cells (DFSCs)-sEVs

polarized macrophages to an M2 phenotype through the ROS/

ERK signaling pathway, inhibiting the alveolar bone loss and

promoting periodontal regeneration in dogs with experimental

periodontitis (69).

DCs-derived exosomes are relevant to immune therapy of

periodontitis (190, 191). It has been demonstrated that engineered

EVs derived from DCs can modulate the immune response in

periodontitis and prevent inflammatory bone loss (192).

Consequently, studies have presented that MSCs-EVs from

various sources can promote M2 macrophage polarization,

restrict osteoclast activity, and reduce alveolar bone resorption,

which paves the way for the development of periodontitis therapy

(Figure 2; Table 2).
5.2 Role of MSCs-EVs in periodontal
regeneration

To achieve functional periodontal regeneration, periodontal

ligament fibers need to be inserted between the newly produced

cementum and alveolar bone (193). Recent studies are concerned

mainly with the osteogenic and angiogenic properties of MSCs-EVs,

which are critical elements of periodontal regeneration.

Zhu B (194) et al. co-cultured MSCs-Exo with PDLSCs and

noticed increased proliferation and osteogenic differentiation of

PDLSCs. Furthermore, in vitro experiments demonstrated that

MSCs-Exo promoted the PDLSCs proliferation and migration by

activating AKT and ERK signaling pathways (70). Hypoxic

preconditioning of MSCs-sEVs significantly enhanced the

proliferation, migration, and angiogenesis of human umbilical

vein endothelial cells (UVECs) and promoted the formation of

vascularized bone (32). In a rat model of the alveolar bone defect,

Chew (70) et al. transplanted a collagen sponge loaded with MSCs-

Exo and observed the regeneration of alveolar bone and functional

periodontal ligament fibers.

Wei (195) et al. proposed that BMSCs-Exo derived from

different stages of osteogenic induction could exert a sustained

anti-inflammatory effect during osteogenesis, up-regulate genes

associated with osteogenesis at the early stage, and promote

MSCs migration at the later stage. EVs derived from neural
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FIGURE 2

Immunomodulatory and anti-inflammatory effects of stem cell-derived EVs in periodontitis. In periodontitis, MSCs secreted EVs were able to
promote the M2 polarization of macrophages and maintain the balance of Th17 and Treg cell ratio. MSCs secreted apoptotic vesicles were also able
to inhibit the M1 polarization of macrophages, reduce the level of inflammatory mediators such as TNF-a, and promote the M2 polarization of
macrophages. Pretreatment of MSCs with LPS or TNF-a enhanced the effect of MSCs-EVs, mainly by affecting macrophage polarization to control
the inflammatory response and promote osteogenesis. Gingival mesenchymal stem cells (GMSCs) secrete EVs that affect macrophage polarization
and inhibit osteoclastic and inflammatory reactions in periodontitis. GMSCs-EVs also inhibit monocyte and T-cell activation and promote periodontal
tissue regeneration. Periodontal membrane stem cells (PDLSCs)-derived EVs could regulate the Th17/Treg ratio via the miR-155/SIRT1 axis and
inhibit macrophage M1 polarization. LPS-stimulated dental follicular stem cells (DFSCs)-derived EVs also promoted macrophage M2 polarization and
reduced alveolar bone loss. The Graph was created with BioRender.com. MSCs: mesenchymal stem cells; EVs, extracellular vesicles; Th, helper T
cells; Treg, regulatory T cell; LPS, lipopolysaccharide.
TABLE 2 Anti-inflammatory and immunomodulatory effects of stem cell exosomes in periodontitis.

Author
(Year)

MSCs
source

Pretreatment
of MSCs or

EVs

Recipient
of EVs

Experimental
model EVs administration Functional

outcome Reference

Chew JRJ,
et al., (70)

hMSC / rPDLSCs

①cells co-culture;
②Experimental
periodontal defect
rat;

①cells co-culture; ②Experimental
periodontal defect rat: transplant/
implant with exosome-loaded
collagen sponge (CS/Exosome) or
control collagen sponge (CS/
Control);

repair periodontal
defects, increase
PDLSCs migration
and proliferation

(67)

Cebatariuniene
A, et al., (71)

hPDLSC / hPDLSCs cells co-culture cells co-culture
suppress basal and
LPS‐induced
activity of NFkB

(68)

Liu L, et al.,
(68)

rBMSC /
hPDLSCs/
RAW264.7
cells

①cells co-culture;
②Experimental
Porphyromonas-
induced
periodontitis rats;

①cells co-culture; ②Experimental
Porphyromonas-induced
periodontitis rats: inject in
periodontal pocket;

promote PDLSCs
migration,
proliferation and
osteogenic
differentiation

(65)

Huang Y, et al.,
(69)

hDFMSC LPS pretreatment hPDLSCs

①cells co-culture;
②Experimental
Porphyromonas-
induced
periodontitis dogs;

①cells co-culture; ②Experimental
Porphyromonas-induced
periodontitis dogs: inject into the
periodontal pocket;

promote PDLSCs
proliferation and
migration and
macrophage
proliferation

(66)

(Continued)
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TABLE 2 Continued

Author
(Year)

MSCs
source

Pretreatment
of MSCs or

EVs

Recipient
of EVs

Experimental
model EVs administration Functional

outcome Reference

Kang M, et al.,
(180)

hBMSC
TNF-a
pretreatment

mBMMs
①cells co-culture;
②Experimental
calvaria defect rat;

①cells co-culture; ②Experimental
calvaria defect rat: place on the
wound by a clinical grade collagen
scaffold (OraPLUG, Salvin);

immunoregulation,
anti-inflammatory

(164)

Zhang Y, et al.,
(181)

hDPSC 3D culture
mouse naive
CD4+ T cells

①cells co-culture;
②Experimental
Ligature-induced
periodontitis mice;

①cells co-culture; ②Experimental
Ligature-induced periodontitis
mice: inject into the palatal
gingiva;

miR-1246
expression
upregulated,
reactive Th17 cell/
Treg balance, anti-
inflammatory

(165)

Xu R, et al.,
(182)

rBMSC LPS pretreatment
Raw264.7
cells

①cells co-culture;
②Experimental
myocardial
infarction mice;

①cells co-culture; ②Experimental
myocardial infarction mice:
intramyocardial injection at four
sites around the infarct border
zone;

promote M2
macrophage
polarization,
attenuat the post-
infarction
inflammation and
cardiomyocyte
apoptosis

(166)

Ye Q, et al.,
(183)

mBMSC / mBMDMs

Porphyromonas
gingivalis derived
LPS (Pg-LPS)
induced
inflammation of
mouse bone
marrow-derived
macrophages
(mBMDMs)

cells co-culture

inhibit M1
macrophage
polarization and
TNF-a secretion

(167)

Yue C, et al.,
(184)

hBMSC /
RAW264.7
cells

cells co-culture cells co-culture

regulate
macrophage
metabolism,
differentiation, and
inflammation
resolution

(168)

Nakao Y, et al.,
(185)

hGMSC
TNF-a
pretreatment

hPBMCs

①cells co-culture;
②Experimental
wound healing
mice;
③Experimental
Ligature-induced
periodontitis mice;

①cells co-culture; ②Experimental
wound healing mice:
subcutaneously inject into the
cutaneous wounds;
③Experimental Ligature-induced
periodontitis mice: inject into the
palatal gingiva of the ligated
second maxillary molar;

promote M2
macrophage
polarization,
immunoregulation

(169)

Wang R, et al.,
(186)

hGMSC / THP-1 cells cells co-culture cells co-culture

promote M2
macrophage
polarization, anti-
inflammatory

(170)

Zarubova J,
et al., (187)

hGMSC / macrophages cells co-culture cells co-culture
reactive Th17 cell/
Treg balance, anti-
inflammatory

(171)

Zheng Y, et al.,
(188)

hPDLSC LPS pretreatment CD4+ T cells cells co-culture cells co-culture
reactive Th17 cell/
Treg balance, anti-
inflammatory

(172)

Kang H, et al.,
(189)

hPDLSC LPS pretreatment THP-1 cells cells co-culture cells co-culture

inhibit M1
macrophage
polarization and
TNF-a secretion

(173)
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EGFL-like 1 modified BMSCs were more capable of stimulating

BMSCs osteogenesis due to the downregulation of miR-25-5p (196).

Huang (197) et al. demonstrated that EVs derived from BMP2-

overexpressing BMSCs preserved the essential physical and

biochemical characteristics of BMSCs-EVs but showed greater

bone regeneration capability in a rat calvarial defect model. The

ApoEVs from dying BMSCs can effectively promote the viability of

endogenous BMSCs and repair bone defects (198). In critical-size

calvarial bone defects, BMSCs-EVs positively regulate osteogenic

genes and osteoblast differentiation in vitro (199). It has also been

reported that BMSCs-derived exosomes overexpressing hypoxia-

inducible factor (HIF)-1a can increase the packaging of Jagged1

and angiogenesis of endothelial cells (ECs) via the Notch signaling

pathway (200). BMSCs-derived Nidogen1-enriched EVs enhanced

the migration and angiogenic capacity of rat arterial endothelial

cells (AECs) and promoted bone regeneration in rat femoral defect

models (201). Hui (202) et al. coated BMSCs-EVs on a

demineralized bone matrix to create a functional scaffold with

enhanced pro-angiogenic and pro-bone regeneration activities.

Through a rat periodontitis model, Mohammed (203) et al.

found that the injection of adipose-derived mesenchymal stem cells

(ADSCs) exosomes suspension can be used as an auxiliary tool to

promote periodontal regeneration, specifically periodontal fibers,

blood vessels, and alveolar bone. The polydopamine-coated poly

(lactic-co-glycolic acid) (PLGA/pDA) scaffold combined with

ADSCs-EVs significantly induced the alveolar bone defect repair

in the rat model (204). The ADSCs exosomes immobilized on the

PLGA/pDA scaffolds promote the repair of critical-size skull defects

in rats by stimulating osteogenesis and promoting BMSCs

migration and homing (205).

In the inflammatory microenvironment, dental pulp stem cells

(DPSCs)-EVs may shutter LMBR1-targeting miR-758-5p via the

BMP signaling pathway to promote osteogenic and odontogenic

differentiation of PDLSCs and provide a potential strategy for bone

regeneration (206). DPSCs exosomes can effectively reduce

periodontal bone loss by stimulating the migration of human

DPSCs and mouse osteoblasts (207). It is addressed that DPSCs-

EVs can induce the regeneration of experimental bone defects by

enhancing the phosphorylation of ERK 1/2 and JNK and promoting

the osteogenic differentiation of ADSCs (208). Xian (209) et al.

found that DPSCs exosomes could stimulate endothelial cell

proliferation and pro-angiogenic factors production, such as FGF-

2, VEGF-A, KDR, and MMP-9. It has been demonstrated that

DPSCs-EVs isolated from periodontally healthy and unhealthy

teeth can enhance endothelial cell angiogenesis activity,

accelerate wound healing, and encourage angiogenesis in mouse

skin lesions (210). The co-injection of DPSCs-EVs with collagen, b-
tricalcium phosphate, or hydroxyapatite can stimulate new bone

formation in rat skull defects (211).

Invitro studies performed by Wang (212) et al. demonstrated

that stem cells of human exfoliated deciduous teeth (SHED)-Exo

under osteogenic induction conditions could up-regulate the

expressions of osteogenic markers like osteopontin (OPN),

osteocalcin (OCN), and Runx2 during the osteogenic

differentiation of PDLSCs and enhance the osteogenic
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differentiation of PDLSCs via Wnt and BMP signaling pathways.

Wei (213) et al. observed that exosomes repaired the defect to the

same extent as original stem cells, increased the osteogenic impact

of BMSCs, and inhibited adipogenesis after injecting SHED-derived

exosomes into the bone defect area of a mouse periodontitis model.

Purified PDLSCs-EVs were discovered to reduce LPS-induced

NF-B activity in PDLSCs and enhance osteogenic mineralization in

PDLSCs, which may be helpful for the targeted treatment of chronic

inflammation in periodontitis (71). Engineered EVs from PDLSCs

promoted bone regeneration and angiogenesis of skull defects in

rats (214). Collagen membrane enriched with PDLSCs-EVs or

polyethylenimine (PEI)-engineered EVs (PEI-EVs) can activate

osteogenesis and promote bone regeneration (215). PDLSCs-EVs

immobilized in matrigel accelerated bone tissue repair by inducing

BMSCs proliferation and migration through increasing the

phosphorylation of AKT and ERK1/2 (216).

GMSCs-exosomes were shown to contain a variety of growth

factors, such as transforming growth factor-b (TGF-b) and vascular
endothelial growth factor (VEGF), which were shown to promote

pre-osteoblast migration and osteogenic differentiation (217). 3D-

engineered scaffolds complexed with GMSCs-EVs exhibited strong

osteogenic induction ability (218).

According to Ma L (219) et al., DFSCs-sEVs boosted PDLSC

migration, proliferation, and osteogenic differentiation, which offers

a novel approach to periodontal regeneration in the future.

In conjunction with the current investigations, it is proposed

that MSCs-EVs possess the potential to treat periodontitis and

promote periodontal regeneration (Figure 3; Table 3). While the

effectiveness of MSCs-EVs on periodontal ligament fibers and

cementum regeneration needs to be further studied. Moreover,

effectively alleviating the homeostasis imbalance is the key to

periodontal regeneration. The application of MSCs-EVs in

dentistry is restricted to fundamental research, and its clinical use

requires more rigorous evidence. There is still a long way to go

before MSCs-EVs can be used as an effective and safe dental clinical

treatment method (220).
6 Summary and prospect

Several findings imply that OMVs can interfere with host

gingival epithelium functions, affect angiogenesis, and induce

PRRs reactions. OMVs also play a role in the pathogenicity of

biofilms, such as promoting bacteria coaggregation, providing

micronutrients to subgingival biofilms, and dispersing rival

biofilms. These indicate that OMVs can promote connective

tissue destruction and alveolar bone resorption. More research is

required on the precise function and related mechanisms of OMVs

in periodontitis. For example, the molecules and pathways by which

OMVs affect innate and acquired immune defense (6).

Growing evidence suggests that saliva and GCF-derived EVs may

serve as periodontitis biomarkers. Although the potential of saliva

and GCF-derived EVs is promising, many obstacles must be solved

before EVs can be translated into chair-side or off-the-shelf diagnostic

tools. The major challenges are: (1) The need for standardized
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FIGURE 3

Role of stem cell-derived EVs in periodontal tissue regeneration. Different sources of MSCs can promote periodontal tissue regeneration and thus
play a role in the treatment of periodontitis. Various sources of MSCs-EVs (including BMSCs, ADSCs, DFSCs, SHED, DPSCs, and PDLSCs) can
promote the proliferation of periodontal membrane stem cells and alveolar bone osteogenesis by regulating osteogenic differentiation. DPSCs-
derived EVs can promote alveolar bone regeneration by affecting the osteogenic differentiation of ADSCs. In addition, GMSCs-derived EVs can
promote alveolar bone regeneration by regulating osteoblast precursor cells. In addition, BMSCs, PDLSCs, and SHED-derived EVs can promote
osteogenic differentiation and inhibit lipogenic differentiation of BMSCs, thus promoting alveolar bone regeneration. The Graph was created with
BioRender.com. BMSCs, bone marrow-derived mesenchymal stem cells; ADSCs, adipose tissue-derived mesenchymal stem cells; DFSCs, dental
follicle stem cells; SHED, stem cells of human exfoliated deciduous teeth; PDLSCs, periodontal ligament stem cells; EVs, extracellular vesicles;
GMSCs, gingiva-derived mesenchymal stem cells.
TABLE 3 Tissue regeneration of stem cell exosomes in periodontitis.

Author
(Year)

MSCs
source

Pretreatment
of MSCs or EVs

Recipient
of EVs

Experimental
model EVs administration Functional

outcome Reference

Zhu B, et al.
(194)

hPDLSC,
hIBMMSC,
JBMMSC

/ hPDLSCs
①cells co-culture;
②nude mice;

①cells co-culture; ②nude
mice: transplant/implant
into;

pro‐osteogenic,
osteoimmunomodulatory

(178)

Zhuang Y,
et al. (32)

hox-rBMSC
hypoxia
pretreatment

HUVECs

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: transplant/
implant into;

promote HUVECs
proliferation, migration
and angiogenesis, pro‐
osteogenic

(179)

Wei F, et al.
(195)

hBMSC /
hBMDMs and
RAW264.7

cells co-culture; cells co-culture;
pro‐osteogenic,
osteoimmunomodulatory

(180)

(Continued)
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TABLE 3 Continued

Author
(Year)

MSCs
source

Pretreatment
of MSCs or EVs

Recipient
of EVs

Experimental
model EVs administration Functional

outcome Reference

cells
(macrophages)

Lan Y, et al.
(196)

rBMSC
neural EGFL-like 1
(Nell1)
pretreatment

rBMSCs

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: transplant/
implant into;

pro‐osteogenic (181)

Huang CC,
et al. (197)

hBMSC

genetically
modified by
constitutively
expressing BMP2
(bone
morphogenetic
protein 2)

hBMSCs

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: place on the
wound;

pro‐osteogenic (182)

Li M, et al.
(198)

mBMSC / rBMSCs

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: transplant/
implant into;

promote rBMSCs
proliferation, migration,
and osteogenic
differentiation

(183)

Qin Y, et al.
(199)

hBMSC /
human
osteoblasts
(hFOBs)

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: transplant/
implant into;

promote hFOBs
proliferation, migration,
and osteogenic
differentiation

(184)

Gonzalez-
King H, et al.
(200)

hDPSC
hypoxia
pretreatment

HUVECs
①cells co-culture;
②nude mice;

①cells co-culture; ②nude
mice: inject subcutaneously
into the flanks;

pro-angiogenic (185)

Cheng P,
et al. (201)

rBMSC / RAECs
①cells co-culture;
②nude mice;

①cells co-culture; ②nude
mice: inject subcutaneously
into the bac;

enhance RAECs
migration, pro-
angiogenic

(186)

Xie H, et al.
(202)

rBMSC / HUVECs
①cells co-culture;
②nude mice;

①cells co-culture; ②nude
mice: nude mice: implant
into subcutaneously;

promote grafts
vascularization, pro-
angiogenic, pro‐
osteogenic

(187)

Mohammed
E, et al. (203)

hADSC / /
Experimental
periodontal defect
rat;

Experimental periodontal
defect rat: inject in
periodontal pocket;

immunomodulatory,
anti-inflammatory, pro‐
osteogenic

(188)

Yang Y, et al.
(204)

hADSC / hPDLSCs

①cells co-culture;
②Experimental
alveolar Bone
Defects rat;

①cells co-culture;
②Experimental alveolar
Bone Defects rat:
transplant/implant into;

pro-angiogenic (189)

Li W, et al.
(205)

hADSC / hBMSCs

①cells co-culture;
②Experimental
calvarial defect
mice;

①cells co-culture;
②Experimental calvarial
defect mice: transplant/
implant into;

promote hBMSCs
osteogenic, proliferation
and migration, pro-
angiogenic

(190)

Yan C, et al.
(206)

ihDPSC / hPDLSCs cells co-culture; cells co-culture;
promote hPDLSCs
osteogenic and
osteogenic differentiation

(191)

Shimizu Y,
et al. (207)

hDPSC /

mouse
osteoblastic
MC3T3- E1
cells

①cells co-culture;
②Experimental
periodontal defect
mice;

①cells co-culture;
②Experimental periodontal
defect mice: directly appliy
onto the silk ligature;

promote MC3T3- E1
cells migration

(192)

Jin Q, et al.
(208)

hDPSC / hADSCs

①cells co-culture;
②Experimental
mandible defect
rat;

①cells co-culture;
②Experimental mandible
defect rat: injecte into the
hydrogel scaffold material
and sutur;

promoted hADSCs
migration,
mineralization and
osteogenic differentiation

(193)

Xian X, et al.
(209)

hDPSC / HUVECs cells co-culture; cells co-culture;
promote HUVECs
proliferation and tube

(194)

(Continued)
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methods for EVs isolation and characterization. (2) More useful,

sensitive, and specific biomarkers must be developed. (3) A large

sample size analysis is required to establish the diagnostic standards

for EVs-periodontitis that are appropriate for individuals of different

ages and genders (23, 174). Despite the current challenges, the

diagnostic potential of saliva and GCF-derived EVs is compelling,

and future clinical applications can be expected.

MSCs-derived EVs have massive advantages, particularly

convenient access, a wide range of sources, immunomodulatory

ability, and tissue repair and regeneration capacities. EVs derived

from MSCs have emerged over the past decades as an alternative

therapy for stem cells in the field of regenerative medicine (221),
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and they are expected to be a novel therapeutic tool for periodontal

regeneration (222). However, the oral cavity is a highly complex

environment constantly changing, and it is unclear how several

elements, including temperature, pH, oxygen, inflammation, and

microbiota species, affect EVs. The majority of current MSCs-EVs

studies use animal models. Yet the clinical application of MSCs-EVs

in periodontal regeneration has not been reported. There are no

standardized methods for the clinically graded manufacture and

quality control of EVs medicines, which are crucial in following EVs

clinical trials (223). In addition, there are still no low-cost

technologies to swiftly produce an abundance of highly

homogenous MSCs-EVs (224).
TABLE 3 Continued

Author
(Year)

MSCs
source

Pretreatment
of MSCs or EVs

Recipient
of EVs

Experimental
model EVs administration Functional

outcome Reference

formation, pro-
angiogenic

Zhou H,
et al. (210)

hDPSC / ECs

①cells co-culture;
②Experimental
skin wound
healing mouse;

①cells co-culture;
②Experimental skin wound
healing mouse:
subcutaneously inject into
the full-thickness excisional
skin wound;

pro-angiogenic (195)

Imanishi Y,
et al. (211)

rDPSC / /
Experimental
calvarial defect
rat;

Experimental calvarial
defect rat: transplant/
implant into;

pro-angiogenic, pro‐
osteogenic

(196)

Wang M,
et al. (212)

hSHED / hPDLSCs cells co-culture; cells co-culture;
promote hPDLSCs
osteogenic differentiation

(197)

Wei J, et al.
(213)

hSHED / mBMSCs

①cells co-culture;
②Experimental
periodontal defect
rat;

①cells co-culture;
②Experimental periodontal
defect rat: inject into the
buccal and lingual sides of
the first molar;

promote mBMSCs
osteogenesis,
differentiation, and bone
formation

(198)

Pizzicannella
J, et al. (214)

hPDLSC / hPDLSCs

①cells co-culture;
②Experimental
calvarial defect
rat;

①cells co-culture;
②Experimental calvarial
defect rat: transplant/
implant into;

pro-angiogenic, pro‐
osteogenic

(199)

Diomede F,
et al. (215)

hPDLSC / hPDLSCs
①cells co-culture;
②Experimental
calvaria defect rat;

①cells co-culture;
②Experimental calvaria
defect rat: transplant/
implant into;

pro-angiogenic, pro‐
osteogenic

(200)

Zhao B, et al.
(216)

hPDLSC / hBMSCs
①cells co-culture;
②Experimental
calvaria defect rat;

①cells co-culture: none;
②Experimental calvaria
defect rat: transplant/
implant into;

promote hBMSCs
proliferation, migration,
and osteogenic
differentiation

(201)

Jiang S, et al.
(217)

hPDLSC /

mouse
osteoblastic
MC3T3- E1
cells

cells co-culture; cells co-culture;

promote pre-osteoblasts
migration and MC3T3-
E1 cells osteogenic
differentiation

(202)

Diomede F,
et al. (218)

hGMSC / hGMSCs
①cells co-culture;
②Experimental
calvaria defect rat;

①cells co-culture;
②Experimental calvaria
defect rat: transplant/
implant into;

pro‐osteogenic (203)

Ma L, et al.
(219)

hDFSC / hPDLSCs

①cells co-culture;
②Experimental
periodontal defect
rats;

①cells co-culture;
②Experimental periodontal
defect rats: transplant/
implant into;

promote hPDLSCs
proliferation, migration,
osteogenic differentiation

(204)
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It is anticipated that more comprehensive research on EVs

affecting periodontitis will be produced, demonstrating tremendous

promise for clinical treatment, and opening up new doors for the

advancement of stomatology.
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