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Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing

cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four

main forms of autoimmune liver diseases (AILDs), which are all defined by an

aberrant immune system attack on the liver. Most previous studies have shown

that apoptosis and necrosis are the two major modes of hepatocyte death in

AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is

critical for the inflammatory response and severity of liver injury in AILDs. This

review summarizes our present understanding of inflammasome activation and

function, as well as the connections among inflammasomes, pyroptosis, and

AILDs, thus highlighting the shared features across the four disease models and

gaps in our knowledge. In addition, we summarize the correlation among NLRP3

inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier

disruption in PBC and PSC. We summarize the differences in microbial and

metabolic characteristics between PSC and IgG4-SC, and highlight the

uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and

chronic cholestatic liver injury, as well as the complex and controversial crosstalk

between various types of cell death in AILDs. We also discuss the most up-to-

date developments in inflammasome- and pyroptosis-targeted medicines for

autoimmune liver disorders.
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inflammasomes, pyroptosis, autoimmune hepatitis (AIH), primary biliary cholangitis
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1 Introduction

Autoimmune liver diseases (AILDs) are a group of chronic liver diseases caused by

immune dysfunction (1), including autoimmune hepatitis (AIH), primary biliary cholangitis

(PBC), primary sclerosing cholangitis (PSC), IgG4-related sclerosing cholangitis (IgG4-SC),

and the so-called overlap syndrome (2). In AIH, hepatocytes undergo pathological

alterations, with high serum levels of transaminase and IgG (or gamma globulin) and

positive serum antinuclear and smooth muscle antibodies (3). Inflammation of interlobular

bile ducts and tiny bile ducts is the primary hallmark of PBC (4). Liver function tests show

intrahepatic cholestasis and a significant increase in serum IgM levels, positive serum
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1150879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1150879/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1150879&domain=pdf&date_stamp=2023-03-08
mailto:lgy1976190606@sina.com
mailto:aizongxiong7@163.com
https://doi.org/10.3389/fimmu.2023.1150879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1150879
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2023.1150879
antinuclear antibodies, and anti-smooth muscle antibodies (5). PSC

lesions mainly occur in the intrahepatic bile duct, and in a few

patients, the extrahepatic bile duct can be affected (6). Most patients

also have ulcerative colitis (UC). IgG4-SC shares many primary

clinical symptoms with PSC, such as multifocal biliary strictures,

and is characterized by high serum IgG4 levels and

lymphoplasmacytic infiltration of a significant number of IgG-

positive cells (7). Symptoms from any two of the four disorders

may be considered to reflect overlap syndrome. Immune-mediated

liver disease is the result of innate and adaptive immune-mediated

hepatocyte damage (8). The liver immune system is characterized by

the predominance of innate components. AILDs is characterized by

the loss of self-tolerance, which is caused by activation and

proliferation of innate immune cells, especially macrophages, and

autoreactive CD4 and CD8 T cells (9). Macrophages are thought to be

a major source of inflammasomes and proinflammatory cytokines

(10). The innate immune system supports the surveillance of

pathogenic and aseptic damage caused by multicellular organisms.

Pattern recognition receptors (PRRs) respond to pathogenic

virulence factors, environmental toxins, and host-derived danger

signals to initiate cytokine and chemokine production, thereby

activating inflammasomes and subsequent pyrodeath that promote

liver inflammation (11).

Pyroptosis, a type of programmed cell death, is crucial for

defending the liver against infections (12). Inflammatory caspases

and the gasdermin (GSDM) protein family are required for

pyroptosis (13). GSDMs are a class of efficient factors that can

create pores in the cell membrane during pyroptosis (14). Among

the many molecules involved in pyroptosis, GSDMs play a crucial

role.GSDMA,GSDMB,GSDMC,GSDMD,GSDME, and PJVK are six

identified human paralogous genes. With the exception of PJVK, all

GSDMs can create pores in the cell membrane, thus triggering

pyroptosis (15). The inflammasome, a multiprotein signal

transduction complex, assembles in the cytoplasm in response to

danger signals produced by the host or a pathogen and activates

caspase-1 (16). Activated caspase-1 promotes the transcription and

expression of the inflammatory factors interleukin (IL)-1b and IL-18

and cleaves GSDMD, which results in the release of the active N-

terminal domain. The N-terminal domain of GSDMD is a p30

fragment that is capable of forming pores in the cell membrane,

thereby causing pyroptosis and inflammatory reactions (17).

Inflammasome-mediated GSDMD-dependent pyroptosis is

considered the canonical mode of pyroptosis, which is closely

related to the inflammatory response and the severity of liver

injury in AILDs and has been recognized as core components that

drive immune-mediated pathology in hepatitis and liver injury (18).

This review addresses the links among inflammasomes, pyroptosis,

and AILDs, as well as the similarities among these disease models,

advancements, controversies, and the limitations of the current data.

Furthermore, numerous studies have linked gut microbiota and the gut

barrier to the etiology of liver disease (19). We conclude that there is a

correlation among NLRP3 inflammasome activation in the liver-gut

axis, liver injury, and intestinal barrier disruption in PBC and PSC,

which may be closely related to the susceptibility of patients with PBC

or PSC to inflammatory bowel disease. We also summarize the

differences in microbial and metabolic characteristics between PSC
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and IgG4-SC, and highlight the uniqueness of IgG4-SC.We discuss the

different roles of NLRP3 in acute and chronic cholestatic liver injury.

We also explore the gaps in existing AILD-related research, such as the

need to understand the pro-inflammatory and pro-pyroptotic

mechanisms of NLRP6 inflammasomes associated with the gut-liver

axis in AILDs, as well as the complex and controversial crosstalk

between various types of cell death in AILDs.
2 Composition and classification
of inflammasomes

Two families of receptors make up the inflammasome sensor

complex: the nucleotide-binding oligomerization domain-like

receptors (NLRs) family, including NLRP1, 2, 3, 6, NLRC4

andNLRP12, and the HIN domain-containing (PYHIN) family,

including absent in melanoma 2 (AIM2) and pyrin (20). Most

inflammasomes consist of sensors (NLRs or PYHIN), caspase

recruitment domains (CARD), and procaspase-1. NLRs consist of

the following three components: ligand-binding N-terminal signaling

domain, nucleotide binding oligomerization domain (NACHT), and

nucleotide-binding C-terminal region containing a leucine-rich

repeat (LRR) (21). Whether or not an NLR component requires

the apoptosis-stimulating complex (ASC) adapter for assembly

depends on the presence of a pyrin domain (PYD) or CARD in its

N-terminus (22). AIM2 structurally contains an N-terminal PYD

domain and a C-terminal hematopoietic interferon-inducible nuclear

protein with a 200-amino acid repeat (HIN200) domain (23). Pyrin

has two B-boxes, a PYD, a coil–coil domain, and a B30.2 domain

(24). ASC structurally consist of PYD and CARD, whereas

procaspase-1 has a CARD structure; therefore, it can promotes

PYD and CARD homotypic interactions between sensors (NLRs or

PYHIN) and procaspase-1 (25). Procaspase-1 can be recruited to

complexes in two different ways: via the junction with ASC or via

CARD–CARD interactions, which represents direct contact (26). All

six inflammasome receptors can recruit procaspase-1 in an ASC-

dependent manner, whereas NLRP1 and NLRC4 may also recruit

procaspase-1 to the complex via CARD–CARD interactions

(Figure 1). Inflammasomes are formed when PRRs, such as NLRs,

on cells recognize microbe-associated molecular patterns (MAMPs)

or endogenous damage-associated molecular patterns (DAMPs) and

bind to caspase-1 and ASC, thus triggering the release of

proinflammatory factors and GSDMD-mediated pyroptosis (27).
2.1 NLRP1 inflammasome

A C-terminal function-to-find domain (FIIND) is also present

in NLRP1 but not in NLRP3 (Figure 1). Posttranslational

proteolytic cleavage of the FIIND yields a heterodimer

comprising the ZU5 and UPA subdomains, which are essential

for NLRP1 activation via their noncovalent bonds and interaction

with the remaining FIIND (28). According to a recent study, one

kind of NLRP1 activation involves the modification and

degradation of the N-terminal region of the NLRP1 gene by

anthrax lethal toxin and Shigella flexneri (29). The other kind of
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activation involves indirect activation by Toxoplasma gondii

infection, inhibitors of dipeptidyl peptidases 8 and 9, and

metabolic inhibitors (30). NLRP1 inflammasome activation is

followed by caspase-1-dependent cytokine release, which

promotes pyroptosis (31). In the livers of patients diagnosed with

PBC or PSC cholestasis, the expression of NLRP1, caspase-1, and

IL-1b was found to be increased (32). In addition to caspase-1,

NLRP1 can also aggregate in a complex with caspase-5, but the role

of caspase-5 is still controversial. Owing to the structural and

functional differences between the human and mouse NLRP1

proteins, it is not always easy to investigate the function of the

NLRP1 inflammasome in AILDs (33).
2.2 NLRP3 inflammasome

The NLRP3 inflammasome can be activated by both MAMPs

and DAMPs, such as extracellular ATP, amyloid beta protein, and

uric acid crystals (34). Lipopolysaccharide (LPS) and ectopic

cytokines may also activate human caspase-4 and 5 or mouse

caspase-11 to initiate pyroptosis, which in turn triggers ATP and

K+ efflux and activates the NLRP3 inflammasome (35). NLRP3

oligomerizes through intercellular connections between NACHT
Frontiers in Immunology 03
domains and recruits ASC through homologous PYD–PYD

interactions to initiate the formation of helical ASC filaments in

response to stimulation. The assembled ASC recruits procaspase-1

through CARD–CARD interactions (Figure 1). The aggregated

caspase-1 on ASC filaments splits at the p20/p10 juncture. The

p20–p10 heterotetramer is released from ASC after further

processing that involves CARD and p20. The activated caspase-1

cleaves GSDMD to trigger pyroptosis and amplify the inflammatory

response by promoting the maturation and secretion of IL-1b and

IL-18. NLRP3 complexes are critical in AILDs as well as in UC (36).
2.3 NLRP6 inflammasome

NLRP6 has the ability to directly bind double-stranded (ds)

RNA, which can recognize microbial metabolites (37). Liquid–

liquid phase separation occurs when NLRP6 interacts with

dsRNA (38). Moreover, lipoteihoic acid, a known NLRP6 ligand,

can promote NLRP6 liquid–liquid phase separation, and the RNA

helicase DHX15 can form a complex with NLRP6 and dsRNA (39).

NLRP6 protein is mostly expressed in the intestine, followed by the

liver (40). In intestinal goblet cells, Toll-like receptor (TLR) ligands

activate the myeloid Differentiation Factor 88 (MyD88)–reactive
FIGURE 1

NLRP1, NLRP3, NLRP6, NLRC4, AIM2, and Pyrin can recruit procaspase-1 in an ASC-dependent manner, whereas NLRP1 and NLRC4 may also recruit
procaspase-1 to the complex via CARD–CARD interactions. MAMPs and DAMPs are detected by TLR4, which induces the MyD88/NF-kB signaling
pathway to produce pro-IL-1b and pro-IL-18. Activated caspase-1 promotes the maturation and secretion of IL-1b and IL-18 and cleaves GSDMD.
The released active N-terminal domain of GSDMD causes membrane perforation and the release of the cell contents. LPS initiates pyroptosis via the
noncanonical route by activating mouse caspase-4 and 5 or human caspase-11 to cleave GSDMD. The activated caspase-4, 5, and 11 cleave
pannexin-1 and induce the release of ATP and K+, thereby activating the NLRP3 inflammasome. The efflux of K+ and ATP also activates P2X7, which
forms a P2X7 pore in the cell membrane, promoting Ca2+ and Na+ influx. TWIK2 mediates K+ efflux in coordination with P2X7 and thus initiates
P2x7-related pyroptotic cell death.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1150879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1150879
oxygen species (ROS) pathway and NLRP6 inflammasome. By

forming a helical structure, NLRP6 attracts ASC and then recruits

caspase-1 to cleave GSDMD, which promotes IL-18 production and

leads to pyroptosis (41). NLRP6 inflammasome secretes IL-18,

which leads to production of antimicrobial peptides to maintain

intestinal homeostasis. However, when intestinal homeostasis is

disrupted, NLRP6 expression is increased in macrophages and IL-

18 secretion promotes intestinal inflammation (42). The gut–liver

axis links disturbances in the intestinal microbial equilibrium to

autoimmune liver disorders (43). NLRP6 is a protective factor

against the development of nonalcoholic fatty liver disease

(NAFLD) and has been found to play a crucial role in

inflammatory and immunological responses (44). Reports have

suggested that the NLPR6 gene is a candidate tumor suppressor

gene (45). This gene has been shown to be capable of inducing

pyroptosis in hepatocellular carcinoma and is linked to higher levels

of immune cell infiltration, both of which are associated with a more

favorable prognosis. A negative association has been revealed

between NLRP6 expression and alpha-fetoprotein (AFP) >400 ng/

mL and mortality in Asian patients (46). Compared with liver

biopsy samples from healthy controls, fibrotic and cirrhotic livers

have lower levels of Nlrp6 expression (44). Therefore, the NLRP6

inflammasome is an essential component in both the upkeep of the

gut microbiota and the protection of the liver against

inflammatory damage.
2.4 NLRC4 inflammasome

NLRC4 consists of the CARD, NACHT, and LRR domains and

either dependently or independently activates caspase-1 (Figure 1).

The human neuronal apoptosis inhibitory protein (NAIP) senses

bacterial flagellin and type III secretion system components to form

NAIP/NLRC4 inflammasomes (47), which are formed by

oligomerization with NLRC4 adapters to recruit and activate

caspase-1 (48). Patients with NAFLD have increased levels of

tumor necrosis factor (TNF) express ion and NLRC4

inflammasome activation, which results in a rise in the synthesis

of IL-18 and IL-1b and causes pyroptosis (49). The NLRC4

inflammasome has been shown to be crucial in bacterial

infections in the liver, and NLRC4-mediated IL-1b release has

been linked to liver inflammation.
2.5 AIM2 inflammasome

AIM2 is able to detect dsDNA derived from the host or a

pathogen, which allows it to recruit ASC and procaspase-1 for

inflammasome formation (Figure 1). Kupffer cell inflammation is

exacerbated when AIM2 is absent in hepatocellular cancer (50).

Reports have suggested that AIM2 may be related to hypoxia/

reoxygenation-mediated hepatocyte pyroptosis because interference

with AIM2 gene expression could reduce L02 cell pyroptosis caused

by hypoxia/reoxygenation by suppressing caspase-1, IL-1b, and IL-18
levels (51). Additionally, AIM2 has been shown to have its own

unique expression pattern in chronic viral hepatitis (52).
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2.6 Pyrin inflammasome

The MEFV gene encodes a protein called pyrin, which has two

B-boxes, a PYD, a coil–coil domain, and a B30.2 domain (24). Pyrin

is stimulated by Rho-modifying proteins and recruits caspase-1 in

an ASC-dependent manner (Figure 1) (53). Mouse pyrin lacks the

B30.2 domain. Moreover, the bile acid analog BAA485 was shown

to activate the pyrin inflammasome pathway in immune and

intestinal epithelial cells (54). However, whether endogenous bile

acids from the gut microbiota, which is intimately associated with

the inflammatory response in AILDs, can trigger pyrin

inflammasome formation has not been determined.
3 Inflammasome-mediated pyroptosis

Recently, pyroptosis has been reclassified as gasdermin-

dependent cell death after the pore-forming protein GSDMD was

discovered to be a caspase-1, 4, 5, and 11 substrate necessary to

mediate pyroptosis (55). Inflammasome-mediated GSDMD-

dependent pyroptosis is considered to involve a canonical

signaling pathway. As pyroptosis effector molecules, members of

the GSDM protein family have a crucial function. In humans, six

GSDM genes have been identified, namely, GSDMA, GSDMB,

GSDMC, GSDMD, GSDME (also known as DFNA5), and PJVK

(also known as DFNB59). With the exception of PJVK, all GSDMs

consist of a C-terminal inhibitory domain and an N-terminal

effector domain. Hydroxylation of the C-terminal domain frees

the N-terminal domain to generate pores in the cell membrane by

binding to lipid components (56).
3.1 GSDM protein family

In mice, three isoforms of Gsdma (Gsdma1–3) and four

isoforms of Gsdmc (Gsdmc1–4) are present (57), while Gsdmb is

not observed. Streptococcus A secretes the protease streptococcal

exotoxin B (SpeB), which can directly cleave GSDMA to activate

pyroptosis (58). Recent studies have found that GSDMA-deficient

mice are susceptible to streptococcal infection in a SpeB-dependent

manner (59, 60). Caspase-3, 6, and 7 have the ability to break down

GSDMB. GSDMB promotes the activation of caspase-4 by binding

to the CRAD domain of caspase-4, which may be another pathway

of pyroptosis (61). Granzyme A (GzmA) can cleave GSDMB

expressed in gastrointestinal epithelial tumors and lead to the

pyroptosis of target tumor cells (62). Under hypoxia,

programmed cell death 1 ligand 1 (PD-L1) and phosphorylation

signal transducer and activator of transcription 3 (p-STAT3) work

together to control the transcription and cleavage of GSDMC,

which ultimately results in a switch from TNF-activated caspase-

8-mediated apoptosis to pyroptosis (63). GSDMC can be used as an

additional predictive factor for hepatocellular carcinoma (64).

Furthermore, the expression levels of mouse GSDMC are

positively correlated with the metastatic ability of B16 melanoma

cell lines (65). However, knockdown of GSMDC attenuates the

proliferation of colorectal cancer cell lines (66). Thus, whether
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GSMDC acts as a pro-tumor regulator or an anti-tumor regulator in

tumor development remains to be verified by more experiments and

trials. The mechanism of pyroptosis, which is mediated by GSDMD

as a star molecule, is evident. GSDMD can mediate pyroptosis by

two primary methods. Canonical inflammasome-triggered

pyroptosis is caused by caspase-1 cleavage of GSDMD, while

noncanonical inflammasome-triggered pyroptosis is caused by

caspase-11 (or caspase-4 or 5) cleavage of GSDMD (67). In

addition, transforming growth factor (TGF)-b-activated kinase 1

inhibition has been reported to activate caspase-8 by ligating and

oligomerizing cell surface death receptors, which in turn causes

GSDMD-dependent pyroptosis (68). Macrophages, dendritic cells,

and neutrophils, which are also known as hyperactivated cells, are

able to endure inflammasome-activated cleavage of GSDMD

without membrane rupture and pyroptosis in some circumstances

(69). In a granzyme-mediated pathway, chimeric antigen receptor

(CAR) T cells release GzmB, which can cleave GSDME directly or

indirectly by activating caspase-3, which results in pyroptosis (70),

thereby enhancing the capacity of CAR T cells to kill target cells

(71). GSDME-induced pyroptosis of cochlear hair cells can lead to

hearing impairment. Furthermore, PJVK is highly similar to

GSDME, and the gene is detected in neurons of the inner ear and

auditory system, which has been reported to be associated with

deafness (72).
3.2 Canonical and noncanonical
signaling pathways of inflammasome
activation to drive pyroptosis

In the canonical pathway, TLR4 is responsible for recognizing

MAMPs and DAMPs, activating nuclear factor kappa-B (NF-kB),
inducing the downstream MyD88/NF-kB signaling pathway, and

causing macrophages to produce pro-IL-1b and pro-IL-18 (Figure 1)

(73). In response to the activation of intracellular threat signals, NLRs

or PYHIN bind to procaspase-1 and ASC, causing inflammasome

formation and activating caspase-1. Activated caspase-1 promotes the

transcription and expression of the inflammatory factors IL-1b and

IL-18, which are then released into the extracellular space to recruit

inflammatory cells and expand the inflammatory response (74).

Furthermore, GSDMD is cleaved by activated caspase-1, which

results in the removal of the inhibitory C-terminal domain and

release of the active N-terminal domain. The N-terminal domain of

GSDMD is a p30 fragment that is capable of forming pores in the cell

membrane (75), thereby causing membrane perforation, cell rupture,

and inflammatory reactions (Figure 1).

In the noncanonical pathway, intracellular LPS activates human

caspase-4 or 5 or mouse caspase-11. The activated caspases

subsequently catalyze the cleavage of GSDMD and initiate

pyroptosis to enhance intracellular K+ exocytosis (76). Additionally,

activated caspases 4, 5, and 11 cleave pannexin-1, induce ATP release,

activate P2X purine receptor 7 (P2X7) to form P2X7 pores in the cell

membrane, promote Ca2+ and Na+ influx, and then coordinate with

the two-pore domain K channel (TWIK2), which mediates K+ efflux

(77), thus triggering P2x7-related pyroptotic cell death (78). The

efflux of K+ and ATP activates the assembly of the NLRP3
Frontiers in Immunology 05
inflammasome and activates caspase-1, which leads to the secretion

of IL-1b and IL-18 (Figure 1).
4 Inflammasomes and pyroptosis
in AILDs

4.1 Inflammasomes and pyroptosis in AIH

AIH is a group of conditions in which the body’s immune

system attacks its own liver cells, leading to chronic liver damage

(79). Previous studies have suggested that AIH involves T cells (in a

T cell receptor independent manner) and activation of natural killer

T (NKT) cells mediated by cytokines (80). NKT cells in AIH mouse

models express costimulant OX40 and high levels of caspase-1 (81).

OX40 can reduce the immunosuppressive activity of T cells (Tregs),

thereby further amplifying the T cell activation effect (82).

Activation of caspase-1 leads to maturation and secretion of IL-

1b and GSDMD-mediated pyroptosis (83). A recent study found

that inflammasome-mediated pyroptosis and massive cytokine

production affect the inflammatory response in AIH and the

degree of inflammation in liver injury, which is thought to be one

of the key events in AIH progression (84).

4.1.1 NLRP3 inflammasome-mediated
pyroptosis in AIH can be counteracted
by IL-1 receptor antagonists

Concanavalin A (ConA)-induced hepatitis, as a mature

experimental model for immune-mediated liver injury, can mimic

human AIH to a certain extent (85). In ConA-induced hepatitis, the

expression of the NLRP3 inflammasome and the levels of activated

caspase-1, IL-1b, and lactate dehydrogenase are elevated in the

blood. Staining for dead cells and western blot analysis revealed that

pyroptosis was the primary mode of death for ConA-induced

mouse hepatocytes (86). Furthermore, the NLRP3 inflammasome

and its downstream products were shown to be highly expressed in

hepatocytes and, to a lesser extent, in immature hepatocytes (19).

However, research has shown that recombinant human IL-1

receptor antagonists (rhil-1RAs) can suppress NLRP3

inflammasome activation and IL-1b production (87). The NLRP3

inflammasome can be activated by MAMPs and DAMPs, and

mitochondria-derived ROS (mtROS) are thought to be critical

factors that promote this activation (88, 89). An rhIl-1RA was

demonstrated to significantly reduce pyroptosis by lowering ROS

levels in ConA-induced mice and the production of NLRP3, active

caspase-1, and IL-1b in hepatocytes (Figure 2) (90). These results

suggest that rhil-1RA has the ability to eliminate ROS, reduce

NLRP3 inflammasome generation, prevent pyroptosis, and

compete with IL-1b to lower the severi ty of ConA-

induced hepatitis.

4.1.2 Inhibitory effect of BMSC-derived exosomes
on NLRP3

Endocytic miRNAs are single-stranded non-coding RNAs that

range in length from 19 to 24 nucleotides and regulate NLRP3
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inflammasome formation (91). Various miRNAs, including miR-

223, miR-22, and miR-7, can control NLRP3 mRNA expression

(92). In particular, miR-223 binds to the 3′-untranslated region (3′
UTR) of the NLRP3 mRNA and blocks protein translation at this

point (93). Both miR-22 and miR-7 have been shown to modulate

NLRP3 activation during inflammation, which may have beneficial

effects (94). miR-223 is highly expressed in bone marrow

mesenchymal stem cells (BMSCs). Bmsc-derived exosomes

effectively reversed S100- or LPS/ATP-induced AIH and

hepatocyte damage in a mouse model and also downregulated the

expression of NLRP3 and reduce caspase-1 levels (Figure 2) (95). A

possible explanation is that exosomal miR-223 from BMSCs

inhibits NLRP3 inflammasome activation.

4.1.3 Protective effects of GSDMD in AIH
GSDMD plays the role of the executioner in pyroptosis as a

substrate for caspase-1 and caspase-11, both of which are necessary

to mediate pyroptotic cell death. The role of GSDMD in the many

pathological forms of liver disease has been the subject of debate. It
Frontiers in Immunology 06
has been revealed that the N-terminal domain of GSDMD is

responsible for some of the negative consequences observed in

metabolic liver illnesses, such as NAFLD. Some studies have found

that inhibition of GSDMD protects mice from this type of liver

disease (96). In contrast, GSDMD deficiency was found to cause

more portal vein and lobular inflammation, a wider hepatic

conjunctival necrotic area, higher serum transaminase levels, and

more extensive hepatocyte apoptosis after ConA induction (86). In

addition, liver injury was aggravated in GSDMD-deficient mice and

was accompanied by intestinal barrier destruction. GSDMD-

deficient mice showed significantly increased expression of Lps-

binding protein, which is known to be an indicator of LPS exposure,

and upregulated expression of TLR4 and CD14 (97). Owing to

increased intestinal permeability, bacterial LPS can be carried to the

liver via the portal vein, wherein it can bind to TLR4 on the surface

of hepatic Kupffer cells and trigger an immunological response in

the liver (98). The mechanism may be related to the fact that

GSDMD knockdown inhibits pyroptosis but promotes apoptosis,

indicating the tampering effect of GSDMD between different types
FIGURE 2

In ConA-induced mice, mtROS can activate the NLRP3 inflammasome. Activated caspase-1 cleaves GSDMD and releases an active GSDMD N-
terminal domain, which forms pores in the cell membrane and triggers pyroptosis. Activated caspase-1 also cleaves pro-IL-1b to IL-1b. An rhil-1ra
can eliminate mtROS, reduce NLRP3 inflammasome activation and pyroptosis, suppress the expression of IL-1b, and alleviate ConA-induced
hepatitis. Dimethyl fumarate can reduce mitochondrial damage and the production of mtROS. It can also enhance the PKA signaling pathway and
increase the phosphorylation of NLRP3 on Ser/Thr at PKA-specific sites, thereby inhibiting the activation of NLRP3 inflammasome. Bmsc-derived
exosomes bind to the 3′UTR of the Nlrp3 mrna through exosomal miR-223, which interferes with protein translation and inhibits NLRP3
inflammasome activation, thereby reversing hepatocyte injury in the S100- or LPS/ATP-induced mouse AIH model.
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of cell death (99). The role of GSDMD in AIH is significant and

complex and worthy of further study.
4.2 Inflammasomes and pyroptosis in PBC

The pathophysiology of PBC is multifactorial and involves the

immune system, aberrant bile salt production, impaired biliary

transport, and programmed cell death of cholangiocytes (100).

Innate immune cells and adaptive immune cells together causes

damage to the PBC small bile duct (101). Innate immunity focuses

on damage to self-reactive CD4 T cells, CD8 T cells, and Tregs. CD8

T cells mainly infiltrate the portal vein and damage small bile duct of

the recipient mice, which present typical PBC symptoms. Tregs are

functionally deficient, which impairs their immunosuppressive

function (102). In PBC, the B-cell activator BAFF is significantly

correlated with the cholestatic enzyme level, bilirubin content, AMA

titer, and disease stage (103). Recently, the activation of inflammatory

bodies in innate immunity has been identified as an important factor

in the progression of liver inflammation (104). In peripheral blood of

patients with PBC, monocytes are more sensitive to external stimuli.

Under the stimulation of MAMPs, TLRs mediate the maturation and

secretion of pro-inflammatory cytokines, including IL-1 and IL-18,

and activate inflammasome-mediated pyroptosis, which leads to the

release of inflammatory factors outside the cell and expands the

inflammatory response (105).

4.2.1 Activation of the NLRP3 inflammasome by
galectin-3 (Gal3) drives autoimmune cholestatic
liver injury

The pleiotropic lectin Gal3 is an important regulator of

inflammatory signaling in hepatic macrophages and contains C-

and N-terminals (106). Gal3 expression is upregulated during

differentiation of human monocytes to macrophages under

physiological conditions and in macrophages and stellate cells

involved in liver disease under pathological conditions (107). It is

well established that DAMPs are capable of activating the NLRP3

inflammasome, and Gal3 is considered a DAMP molecule (108).

The activation of the inflammasome is induced by the interaction of

the N-terminal domain of Gal3 with NLRP3. Gal3 plays a

significant role in the activation of inflammasomes, thereby

leading to the development of PBC (109).

In a dominant-negative transforming growth factor-b receptor

type II (dnTGF-bRII) mouse model of spontaneous PBC formation

(107), recombinant Gal3 boosted NLRP3 inflammasome activation

and was significantly expressed in dendritic cells and macrophages.

Nitrosation stress is another potential mechanism of chronic liver

damage, and the build-up of nitrosated tyrosine has been linked to

bile duct injury in PBC (110). IL-1b can induce nitrosation stress;

therefore, the Gal3/NLRP3 inflammasome/IL-1b signal

transduction pathway may be an important pathway involved in

the pathogenesis of the disease (Figure 3). In addition, IL-1b can

activate macrophages to produce IL-17 and promote liver fibrosis

(111). IL-17 is widely expressed in portal regions, with evident

inflammatory cell infiltration in liver tissues of patients with AIH
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(112), PBC (113), and overlap syndrome (114), and it is considered

a significant proinflammatory and profibrotic agent in the liver

(115, 116). Accordingly, hepatic macrophage activation of Gal3/

NLRP3 inflammasome/IL-17 signaling may be an additional

significant pathogenic mechanism of PBC fibrosis (117). A

previous study showed that Gal3 depletion in dnTGF-bRII mice

decreases IL-1b and IL-17 generation and alleviates bile duct

inflammation (118). In a mouse model of PBC caused by

infection with Novosphingobium aromaticivorans, Gal3-deficient

animals did not develop PBC following surgery (119). Weak

activation of the NLRP3 inflammasome may be the cause, thus

leading to underdeveloped dendritic and other immune cells. In

conclusion, early proinflammatory damage in PBC is dependent on

Gal3-mediated NLRP3 inflammasome activation. To treat PBC and

other chronic cholestatic liver illnesses, blocking signal transduction

pathways with Gal3 or NLRP3 inhibitors might be an option.

Studies have shown that Gal3 mediates noncanonical pyroptosis

by facilitating LPS-induced oligomerization and activation of

caspases-4 and 11 as well as the cleavage of GSDMD in cells (120).

Cholestasis in PBC is known to result in an impaired intestinal

barrier, increased intestinal permeability, and transfer of MAMPs,

such as LPS and microbial RNA, to the liver via the interhepatic

circulation (121). This key mechanism for fighting bacterial infections

may provide opportunities for new therapeutic interventions.

However, it is still unknown whether gut microorganisms can

cause pyroptosis through the hepatointestinal circulation in PBC.

4.2.2 Bile acids act on the hepatic immune
system, biliary tract, and gut microbiota through
the interhepatic circulation

Free fatty acids and endotoxins may flow into the portal

circulation and hepatic sinusoids as a result of dysfunction of the

intestinal epithelial barrier, which may then result in liver damage

and inflammation (122, 123). Endotoxins have been shown to

enhance the sensitivity of hepatocytes to cell death in response to

bile acid challenge (124). Increased exposure to hepatic endotoxins is

caused by the promotion of intestinal leakage by macrophages and

changes in the gut microbiota after activation of inflammasomes

during cholestasis (125). In bile duct ligation (BDL) mice, toxic bile

acids further activate NLRP3 inflammasome assembly and cause

Kupffer cells to develop the M1 phenotype, leading to the production

of proinflammatory cytokines, including IL-6, TNF, and IL-1b, which
aggravate liver fibrosis and damage (126) (Figure 3).

Changes in circulating bile acids have been found to be closely

related to disease progression, and patients with PBC show bile acid-

related intestinal dysregulation (127). Through the interhepatic

circulation of bile acids, the liver can impact intestinal homeostasis

and absorption by changing the quantity of the gut microbiota and

the permeability of the intestinal mucosa (128). Some potentially

helpful bacteria, such as Ruminococcus bromii, were found to be

lacking in the gut microbiota of patients with PBC, whereas

pathogens such as Proteobacteria, Enterobacteriaceae, Streptococcus,

and Klebsiella were found to be abundant (129). Among

ursodeoxycholic acid nonresponders, fecal bacteria show a lower

relative abundance (130). Patients with advanced fibrotic PBC have
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higher levels of acetate as well as short-chain fatty acids in their feces.

Therefore, decreased bacterial abundance in the feces may be used to

predict the prognosis of patients with PBC.

4.2.3 Induction of pyroptosis by
apoptosis protease activating factor 1
(APAF-1)/Caspase-11/GSDME

Pyroptosis induction by GSDMD and GSDME was detected in

liver tissues of BDL mice (131). In BDL mice, caspase-1 is activated

by bile acids and cleaves GSDMD to generate the N-terminal p30

fragment required for pore formation during cell lysis. Surprisingly,

bile acids activated caspase-11, although not in the same way as LPS
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did. Bile acids cannot break GSDMD to produce the p30 fragment;

instead, the caspase-3 moiety cleaves GSDMD to an inactive p43

fragment. In human hepatocellular carcinoma (HepG2) cells and

BDL mice, bile acids induce persistent mitochondrial permeability

transition (MPT), a state of loss of the mitochondrial inner

membrane integrity, allowing free permeation of small solutes

(132). Upon MPT stimulation, ATP is released into the cytoplasm

to combine APAF-1 and caspase-11 into an APAF-1/caspase-11

pyroptosome at a ratio of 7:2, and then caspase-3 is activated to

cleave GSDME and trigger GSDME-dependent pyroptosis. Under

MPT conditions following bile acid stimulation, APAF-1 was found

to selectively recruit and activate caspase-4 (Figure 3) (133).
FIGURE 3

Gal3 activates the NLRP3 inflammasome and caspase-1 in dnTGF-bRII mice or PBC mice infected with Novosphingobium aromaticivorans, which
can stimulate the release of IL-1b and GSDMD cleavage to induce pyroptosis. Nitrosation stress caused by IL-1b can exacerbate liver damage.
Additionally, IL-1b can cause macrophages to generate IL-17 and promote liver fibrosis. Bile acids can cause NLRP3 inflammasome activation and
caspase-1 cleavage of GSDMD in BDL mice, which results in pyroptosis. The intestinal microecology and permeability are also impacted by bile
acids, which can cause MAMPs to enter the interhepatic circulation through the enterohepatic axis, increasing the exposure of the liver to
endotoxins. Toxic bile acids further activate NLRP3 inflammasome assembly and cause Kupffer cells to develop the M1 phenotype, leading to the
production of proinflammatory cytokines, including IL-6, TNF, and IL-1b, which support liver fibrosis and damage. MCC950 can directly prevent the
activation of the NLRP3 inflammasome. Furthermore, MCC950 can cause macrophage polarization to the M2 phenotype, which activates Tregs to
release IL-10 and TGF-b. These factors can boost immune suppression and minimize liver damage. In addition, bile acids can trigger the MPT state
and the release of ATP into the cytoplasm, which promotes the fusion of APAF-1 and caspase-11 to form an APAF-1/caspase-11 pyroptosome.
Caspase-3 is then triggered to cleave GSDME, which leads to the formation of GSDME pores, thereby exacerbating liver damage and leading to
pyroptosis. Bongkrekic acid can prevent the ANT-mediated MPT, thus preventing GSDME-dependent pyroptosis.
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However, in Apaf-1 knockdown human HepG2 cells, bile acids

were unable to activate GSDME-dependent pyroptosis. Thus,

inhibiting APAF-1 inflammasome might be effective therapeutic

approaches for preventing inflammation-induced liver damage.

Recent studies have reported that doxorubicin and a moderate

concentration of choleric acid (50 mM) facilitate mitochondrial

outer membrane permeabilization and initiate apoptosis by

accelerating the assembly of an Apaf-1/caspase-9 apoptosome

(134). In contrast, a high concentration of bile acid (200 mM)

promotes Apaf-1/caspase-11 pyroptosome production and MPT-

triggered pyroptosis. Therefore, the crosstalk between various types

of cell death remains very complex and controversial.
4.3 Inflammasomes and Pyroptosis in PSC

PSC represents a robust cellular response in the epithelium of

the bile duct, and it results in persistent inflammation and fibrosis

that leads to intrahepatic or extrahepatic bile duct stenosis and

cholestasis. PSC is intimately linked to UC. Approximately 70% of

patients with PSC have inflammatory bowel disease (IBD), and 87%

of these individuals also have UC (135). Recruitment of gut-derived

memory T cells to the liver in regulatory immunity is thought to be

a driver of PSC liver inflammation (136). CD8 T cells in enteric-

associated lymphoid tissue induce immune-mediated cholangitis in

mice (137). Liver CD8 T lymphocytes promote PSC biliary tract

injury and fibrosis in mice, and their proliferation is controlled by

liver Tregs, which are regulated by IL-2 signaling pathways (138).

An increased frequency of T cells secreting interferon (IFN)-g was
found in the colon of PSC-UC patients compared with UC (139).

IFN-g in PSC mouse models altered the phenotype of CD8 T

lymphocytes and NK cells in the liver, resulting in increased

cytotoxicity (140). Mounting evidence from epidemiological and

clinical research has shown that infection influences the

development of PSC (141). Innate immunity after infection can

be caused by a variety of mechanisms, including DAMPs and

MAMPs, which are bound by PRRs, and these mechanisms

induce the secretion of inflammatory cytokines, activate

inflammasome and pyroptosis, and induce a range of immuno-

inflammatory responses and programmed cell death (142).

4.3.1 Gut–Liver Axis and Microbiota in PSC
IBD and PSC are closely connected, particularly in the

populations of northern Europe, where up to 80% of patients

with PSC also have IBD (143). The gastrointestinal tract

communicates with the liver via portal circulation. Nutrients,

antigens, hormones, and other substances all serve as signals.

AILDs are associated with the microbiota composition through

aberrant immune system activation, primarily via the gut–liver axis

(144). Innate immune activation of bile duct cells is strongly

associated with IBD, and abnormal amounts of LPS accumulate

in bile duct cells in patients with PSC compared to other cholestatic

diseases (145). Increased intestinal permeability leads to the flow of

MAMPs into the systemic circulation and stimulates inflammation.

MAMPs originating in the gastrointestinal tract, such as LPSs or
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microbial RNA, can enter the portal circulation and travel to the

liver, causing hepatic inflammation and fibrosis in the liver (121).

Multiple studies have found that persons with PSC have an

altered gut microbiota, which is marked by a decline in microbial

diversity and a rise in the quantity of potential pathogens (146).

Stool samples from patients with PSC are rich in the genus

Veillonella and show increased relative abundances of

Enterococcus, Streptococcus, and Lactobacillus (147). Another

unique finding is a marked reduction in bifidobacteria, which is

associated with a failure to alleviate liver inflammation. Previous

studies have identified Enterococcus faecalis as a potentially

pathogenic bacterium that grows significantly in the bile duct of

patients with PSC (148). According to research on patients with

PSC, a higher level of circulating vascular adhesion protein 1

enhances the adherence of gut-derived lymphocytes to hepatic

endothelial cells, which is related to poor outcomes in PSC

patients (147). These findings shed light on the significance of the

microbiota in the gut in relation to PSC.

4.3.2 Dysregulation of intestinal microbiota
promotes liver disease progression through nlrp3
in multi-drug resistant gene 2 (Mdr2−/−) mice

A frequently employed model for human PSC is the Mdr2−/−

mouse. This model features that mimic human PSC pathology,

including biliary damage, inflammation, and hepatic fibrosis (149).

Immunohistochemistry analyses of the liver of Mdr2−/− mice

indicated a large increase in NLRP3-positive cells and showed

that cholestatic liver damage in Mdr2−/− mice was caused by

considerable inflammatory activation (150). Mdr2-related

cholestasis could induce dysregulation of the intestinal

microbiota, and toxic bile acids enter the portal vein to activate

the NLRP3 inflammasome and aggravate liver injury (Figure 4)

(151). Changes in the plasma bile acid profiles in patients with PSC

have been documented and clinically associated with hepatic

decompensation. In addition, Mdr2−/− animals exhibit intestinal

barrier failure as well as enhanced bacterial translocation, which

boosts the activation of the NLRP3 inflammasome within the gut–

liver axis (143). According to these findings, intestinal dysregulation

caused by cholestasis is believed to have a direct influence on the

course of liver disease. Mdr2−/− mice have higher levels of the

caspase-11 mRNA than normal mice (152). Caspase-11 can cleave

GSDMD, and it represents a key molecule involved in pyroptosis

and may provide opportunities for new therapeutic interventions.

However, experimental studies have not verified typical and atypical

pyroptosis in PSC.

4.3.3 Bidirectional role of NLRP3 in PSC
Bile acids and other regulatory molecules have been shown to

induce the activation of the NLRP3 inflammasome (153). This

causes the secretion of IL-1b, thus leading to transinflammatory

liver injury and playing a role in reactive cholangiocyte

inflammation in patients with PSC (154). In PSC mouse models

fed with 3, 5-dioxy-carboxyl, 1, 4-dihydrogen collidine (DDC) and

in human PSC, NLRP3 inflammasomes are increased in reactive

bile duct cells, leading to IL-18 secretion and epithelial functional
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barriers of bile duct cells, thereby affecting the development of bile

duct disease (155). However, experimental studies have reported

contradictory results, indicating that bile acids induce NLRP3

expression and NLRP3-deficient mice show cholestatic liver

injury and aggravation of fibrosis (156). Similarly, it has been

suggested that NLRP3 inflammasome activation has a certain

protective effect in a PSC mouse model. Moreover, cholangitis

caused by NLRP3 deficiency had a more severe clinical nature, as

shown by the bile duct damage, larger inflammatory lesions, and

elevated levels of IL-6 and CXCL10 (157). Furthermore, NLRP3

depletion resulted in a hyper-IL-17 response, which was manifested

as IL-17-independent exacerbation of the disease (84). Interestingly,

NLRP3 plays different roles in the course of illness between acute

and chronic cholestatic liver damage. A reduction in IL-18

expression was observed in the acute stage of injury in mice

lacking NLRP3, although an increase in apoptosis was noted.

However, wild-type mice showed increased IL-18 levels in the

acute phase and decreased IL-18 levels in the chronic phase (158).

These results indicated a dual function for the NLRP3

inflammasome in cholestatic liver damage. During acute
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cholestatic liver damage, the NLRP3 inflammasome may have a

protective function by blocking some of the pathways that lead to

cell death. On the other hand, during persistent cholestatic liver

damage, the NLRP3 inflammasome is engaged in the process of

cholestasis-induced liver injury and fibrogenesis (159). A growing

body of data suggests that crosstalk occurs between various types of

cell death (160). However, existing evidence explaining the

involvement of NLRP3 in PSC remains extremely convoluted

and contentious.
4.4 Inflammasomes and pyroptosis
in IgG4-SC

Clinically, the progressive chronic liver illness known as IgG4-

SC is quite similar to PSC. IgG4-SC is also a common complication

of multifocal biliary strictures and IBD, and therefore, it may be

misdiagnosed in some cases (161). In contrast to PSC, IgG4-SC is a

multisystem fibroinflammatory disease that is defined by substantial

lymphoplasmacytic infiltration of IgG4-positive cells and increased
FIGURE 4

In Mdr2−/− mice, bile acids can activate the NLRP3 inflammasome and caspase-1 to cleave pro-IL-1b to IL-1b, promoting an inflammatory response
and liver injury. Bile acids also damage the intestinal mucosal barrier and increase intestinal permeability, which can cause MAMPs to enter the
interhepatic circulation through the enterohepatic axis, increasing the exposure of the liver to endotoxins. Toxic bile acids further activate NLRP3
inflammasome assembly and promote the maturation and secretion of IL-1b, thereby expanding the inflammatory response and aggravating liver
injury. In turn, the liver can affect intestinal homeostasis through the interhepatic circulation of bile acids.
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serum levels of IgG4 (162). Both the serum IgG4/IgG1 ratio and

IgG4/IgG RNA ratio can be used to differentiate between the two

conditions (163). Plasma ablator amplification makes it possible to

recognize IgG4-SC with normal levels of IgG4. Compared with

patients with PSC, those with IgG4-SC have a lower risk of cirrhosis,

cholangiocarcinoma, and colorectal cancer. Steroids are currently

the primary treatment option for IgG4-SC, but individuals with

IgG4-SC who are resistant to steroids and immunosuppressants can

benefit from rituximab (anti-CD20). Rituximab is a monoclonal

antibody depletion therapy that targets the B-cell CD20

antigen (164).

4.4.1 Differences in host–microbe interactions
between IgG4-SC and PSC

IgG4-SC and PSC show both commonalities and differences in

host–microbe interactions, which may be pertinent to the etiology

of these illnesses and underscore the uniqueness of IgG4-SC (165).

Intestinal secondary bile acids were decreased in both IgG4-SC and

PSC mice. Reduced bacterial diversity and elevated numbers of

potential pathogens, including Veillonella, Enterococcus, and

Clostridium, have been observed in the gut microbiota of

individuals with PSC (130, 166). There are potential links

between microbial or metabolic features in PSC and cholestatic

parameters, while disease-related genera and metabolites in IgG4-

SC tend to be associated with transaminases of hepatocyte injury.

According to the results of recent studies, liver inflammation of

IgG4-SC may be responsible for the marked reduction in Blautia

and elevation of succinate (167). However, further research is

required to determine the function of inflammasomes in

hepatocyte pyroptosis in IgG4-SC.

4.4.2 Regulatory immune responses in IgG4-SC
A previous study found that the antigens IgG4-SC in patients

with peripheral blood and tissue oligoclonal support the B-cell

antigen-mediated reaction, and this environment is induced in

genetically susceptible individuals with preexisting IgG4 switch B

cells, which increase rapidly (168). Once regulatory immune

responses are activated, memory Tregs are induced in the blood

and infiltrate the affected tissue (169). Inflammation in IgG4-SC is
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stimulated by a mixture of cytokines that are derived from T

cofactor 2, such as IL-4 and IL-13, or from Tregs, such as IL-10

and TGF-b (170).

TLRs and NLRs on monocytes and basophils, which are

involved in innate immunity, are related to IgG4-SC lesions. The

B-cell activator BAFF and IL-13 enhance IgG4 responses, which

indicates that there is a crosstalk between the innate and adaptive

immune systems (171). In addition, CCL23 and CCL25

chemokines, which are considered important biomarkers of the

gut–liver axis (172, 173), are expressed in IgG4-SC-involved tissues.

To fully understand the function of NLR family inflammasome-

mediated hepatocyte pyroptosis in IgG4-SC, additional research

is required.
5 Inflammasome-targeting
therapies for AILDs

Numerous experimental studies on AILDs have demonstrated

the function of the inflammasome in the fibrosis and liver injury

caused by persistent inflammation (174). The results demonstrate

that inhibiting the inflammasome and pyroptosis secretion might

be effective therapeutic approaches of preventing inflammation-

induced liver damage (175, 176). According to the latest data from

preclinical experimental studies, we summarize the most up-to-date

developments in inflammasome- and pyroptosis-targeted

medicines for AILDs (Table 1).
5.1 NLRP3 inhibitors

Dimethyl fumarate, a potential mitochondrial protective agent

identified based on a screening of FDA-approved drug libraries, has

been found to reduce serum inflammatory cytokine levels and

relieve liver injury (177). Recent studies have shown that in

addition to reducing mitochondrial damage and mtROS

production, dimethyl fumarate can also regulate protein kinase A

(PKA) signaling and inhibit NLRP3 inflammasome assembly,

thereby alleviating ConA-induced liver injury in AIH (Figure 2)
TABLE 1 Potential Therapeutic Agents for autoimmune liver disease.

Targeting disease Therapeutic agent Targeting molecule Species Reference

AIH Dimethyl fumarate NLRP3 inhibitor Mouse (177, 178)

Cucurbitacin E NLRP3 inhibitor Mouse (179)

PBC

MCC950 NLRP3 inhibitor Mouse (158, 180–184)

Paeoniflorin NLRP3 inhibitor Mouse (185–187)

Bongkrekic acid APAF-1 inhibitor
Mouse;

HepG2 cells (131, 188)

Schisandra phenol B
APAF-1 inhibitor;
NLRP3 inhibitor Mouse (189–191)

PSC

IDN-7314 NLRP3 inhibitor Mouse (152, 192)

Geniposidic acid NLRP3 inhibitor Mouse (193, 194)
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(178). The mechanism may involve the boosting of PKA signaling

by dimethyl fumarate and increasing the phosphorylation of

NLRP3 on Ser/Thr residues at PKA-specific sites to decrease the

activation of the NLRP3 inflammasome. PKA pathway inhibitors

(H89 and MLL-12330A) could counteract the protective effect of

dimethyl fumarate on liver injury.

Cucurbitacin E glucoside has a significant hepatoprotective

effect against ConA-induced AIH (179). The mechanism involves

the upregulation of Sirtuin 1 (SIRT1), nuclear factor (erythroid-

derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1) to reduce

oxidative stress and the blocking of NF-kB/NLRP3 signaling to

prevent NLRP3 inflammasome-mediated pyroptosis.

The diarylsulfonylurea compound MCC950, which is

considered the most powerful and specific inhibitor of NLRP3

(180, 181), can reduce the fibrotic phenotype and reduce the

expression of caspase-1 and IL-1b in the liver after chronic

cholestatic liver injury (158). Additionally, MCC950 can switch

macrophage differentiation to the M2 phenotype and reduce the

liver injury severity in the PBC mouse model, which leads to an

increase in the activity of immunosuppressive Tregs and results in

the production of IL-10 and TGF-b (Figure 3) (182). By inhibiting

autoreactive T cells, Tregs lead to the development of active

tolerance to autoantigens and inhibit the occurrence of

autoimmune diseases (183). At the same time, Tregs are a factor

that hinders the removal of pathogens, which prolongs the course of

chronic infection (184).

Paeoniflorin could reduce cholestatic inflammation and liver

fibrosis in the PBCmouse model by eliminating mtROS through the

SIRT1/forkhead box O1 (FOXO1)/superoxide dismutase 2 (SOD2)

signaling pathway, and thereby alleviate mitochondrial damage and

inhibit NLRP3 inflammasome activation (185–187).

Recent experimental studies have shown that a pan-cysteine

protease inhibitor (IDN-7314) has the ability to stop NLRP3

inflammasome activation in Mdr2−/− mice (152), minimize liver

injury, and reverse the serum bile acid profile as well as the features

of the cholic acid-related microbiota (Figure 4) (192).

a-naphthalene isothiocyanate-induced cholestasis is known as

the standard experimental model for PSC (193). Recent studies have

found that the geniposidic acid in Oldenlandia diffusa Roxb can

covalently bind to NLRP3 and inhibit the activation of NLRP3

inflammyome, thereby reducing a-naphthalene isothiocyanate

induced cholestatic liver injury (194).
5.2 Apaf-1 inhibitors

Bongkrekic acid, which is a specific inhibitor of the

mitochondrial endomembrane adenine nucleotide translocator

(ANT), can strongly protect cells against bile acid-induced MPT

and GSDME-dependent pyroptosis in a PBC mouse model and

HepG2 cells (131). The underlying mechanism is that Bongkrekic

acid can inhibit ANT-mediated MPT formation and APAF-1

assembly in BDL mice, thereby inhibiting APAF-1/caspase-11/

GSDME-mediated pyroptosis (Figure 3). Such findings support

the theory that ANT-mediated MPT may be responsible for bile

acid-induced pyroptosis. ANT is a critical facilitator of the bile acid-
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induced MPT and the following APAF-1 assembly, which promotes

rapid ATP release from mitochondria to the cytoplasm (188).

Schisandra phenol B is a bioactive substance isolated from

Schisandra chinensis, which has protective effect against liver

injury. Recent studies have found that schisandra phenol B could

alleviate lithocholic acid-induced cholestatic liver injury through

pregnane X receptor (PXR) (189). PXR can reportedly directly bind

to FOXO1 and regulate its target to inhibit its activity (190), while

FOXO1 can regulate the transcription of APAF-1, thereby

inhibiting APAF-1/GSDME-mediated pyroptosis, considering the

promoter of APAF-1 contains FOXO1 and FOXO3 binding sites. In

addition, PXR can interact with NF-kB to inhibit NLRP3

inflammasome activation (191), thereby inhibiting NLRP3

inflammasome-mediated pyroptosis.
6 Discussion

Based on the latest experimental data, similarities and differences

are observed in the proinflammatory mechanism and pyroptosis

pathway among AIH, PBC and PSC. The proinflammatory pathway

shared by the three diseases is the activation of NLRP3 inflammasome,

which cleaves caspase-1 and promotes IL-1b secretion, thereby

expanding the inflammatory response. In addition, PBC and PSC are

mainly associated with gut microbiota microecology through aberrant

immune system activation in the gut-liver axis. The gut–liver axis is a

two-way communication pathway, and bile acids play an important

role as mediators in the pathway (148). Through interhepatic

circulation, bile acids can alter the quantity of the gut microbiota

and impair intestinal barrier function through portal veins and bile

ducts, leading to increased intestinal permeability (147, 195). As a

result, MAMPs originating from the gut, such as lipopolysaccharides or

microbial RNA, can enter the portal circulation and reach the liver,

activating NLRP3 inflammasome and aggravating liver inflammation

and fibrosis. Moreover, MAMPs and bile acids from the intestine in

PBC can promote Kupffer cells to exhibit theM1 phenotype, secrete IL-

6, TNF, and IL-1b, and aggravate liver injury and liver fibrosis. A

comparison of the pyroptosis pathways of the three diseases showed

that the typical pyroptosis pattern mediated by the NLRP3

inflammasome is predominant in AIH hepatocytes. However, two

pyroptosis pathways are observed in PBC, and they are induced by bile

acids, NLRP3/caspase-1/GSDMD, and APAF-1/caspase-11/GSDME

(131). Interestingly, caspase-11 can be activated by bile acids, but it

cannot cleave GSDMD to GSDMD-N, while caspase-11 can activate

caspase-3 to cleave GSDME to induce pyroptosis. The mRNA level of

caspase-11 increased in a PSC mouse model (152). Caspase-11 is a key

molecule in pyroptosis; therefore, targeting caspase-11 may provide

opportunities for new therapeutic interventions. However, no

experimental study has verified typical and atypical pyroptosis in PSC.

IgG4-SC and PSC show both commonalities and differences in

host–microbe interactions, which may be pertinent to the etiology

of the illnesses and underscore the uniqueness of IgG4-SC (165).

Intestinal secondary bile acids decreased in both IgG4-SC and PSC

mice. Potential links are observed between microbial or metabolic

features in PSC and cholestatic parameters, while disease-related

genera and metabolites in IgG4-SC tend to be associated with
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transaminases of hepatocyte injury. However, further research is

required to determine the function of inflammasomes in hepatocyte

pyroptosis in IgG4-SC.

In addition, further experimental research on the

inflammasome and pyroptosis in relation to intestinal microbiota

and the gut–liver axis is required. As a potential key molecule in the

gut–liver axis, NLRP6 is not only highly expressed in intestinal

epithelial cells (45) but also specifically expressed in liver

parenchymal cells (195). In alcoholic liver disease, the gut

microbiota and its components, including LPS and dsDNA (196),

activate the TLR4/MyD88–ROS pathway in the portal circulation,

thereby triggering NLRP6 inflammasome-mediated pyroptosis

(196). Intestinal microecology is known to be strongly correlated

with the occurrence of AILDs (197). However, there have been no

relevant experimental studies to verify the mechanism of the

NLRP6 inflammasome in AILDs.

One prominent regulator of the innate immune response is the

inflammasome (35). As a double-edged sword, NLRP3 may protect

PSC during acute cholestatic liver injury by blocking other cell death

pathways and aggravate liver injury and fibrosis during chronic

cholestatic liver injury by inducing pyroptosis and promoting the

release of inflammatory factors (158). In a PBC mouse model,

moderate concentration of cholic acid (50 mM) activated caspase-9

to induce apoptosis, while high concentrations of bile acid (200 mM)

activated caspase-11 induced pyroptosis (131). Overall, the available

data suggest that inflammasome activation in AILDs primarily plays

a proinflammatory and hepatoinjury-promoting role. However, the

crosstalk between various types of cell death remains very complex

and controversial (35).

At present, the drug treatments of AILDs mainly include

immunoregulatory therapy, such as glucocorticoids and

immunosuppressants. Immunosuppressive glucocorticoids, such as

prednisone, are often used to reduce inflammation, but side effects

can be severe. Steroids can weaken bones and cause vision problems,

such as glaucoma (198). Azathioprine and 6-mercaptopurine reduce

white blood cell counts and reduce resistance to infection. PBC and

PSC are treated with ursodeoxycholic acid, the drug of choice for

cholestatic liver disease (199, 200). However, based on the response

criteria, this treatment fails in approximately 25% to 50% of patients

(201). Therefore, a large proportion of patients still do not have

adequate treatment, and understanding the mechanisms of the

proinflammatory pathway in AILDs and potential new therapeutic

approaches is critical. Experimental studies on AILDs have

repeatedly demonstrated that the inflammasome is essential for

the development of liver fibrosis and damage as a result of chronic
Frontiers in Immunology 13
inflammation (202). According to the latest available dta, dimethyl

fumarate, cucurbitacin E, paeoniflorin, MCC950, IDN-7314, and

geniposidic acid could inhibit the activation of NLRP3

inflammasome and the secretion of IL-1b, while bongkrekic acid

and schisandra phenol B could inhibit the activation of APAF-1 and

GSDME-dependent pyroptosis, thereby alleviating liver

inflammatory damage in AILDs mouse models. However, few

studies have focused on inflammasome-targeted therapy for

AILDs. It is necessary to find and validate novel biological

markers for inflammasome- and pyroptosis-associated signaling

pathways and medicines for autoimmune liver illnesses through

clinical trials and preclinical experimental investigations.
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