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Identification of NETs-related
biomarkers and molecular
clusters in systemic
lupus erythematosus

Haoguang Li, Xiuling Zhang, Jingjing Shang, Xueqin Feng,
Le Yu, Jie Fan, Jie Ren, Rongwei Zhang and Xinwang Duan*

Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang
University, Nanchang, Jiangxi, China
Neutrophil extracellular traps (NETs) is an important process involved in the

pathogenesis of systemic lupus erythematosus (SLE), but the potential

mechanisms of NETs contributing to SLE at the genetic level have not been

clearly investigated. This investigation aimed to explore the molecular

characteristics of NETs-related genes (NRGs) in SLE based on bioinformatics

analysis, and identify associated reliable biomarkers and molecular clusters.

Dataset GSE45291 was acquired from the Gene Expression Omnibus

repository and used as a training set for subsequent analysis. A total of 1006

differentially expressed genes (DEGs) were obtained, most of which were

associated with multiple viral infections. The interaction of DEGs with NRGs

revealed 8 differentially expressed NRGs (DE-NRGs). The correlation and

protein-protein interaction analyses of these DE-NRGs were performed.

Among them, HMGB1, ITGB2, and CREB5 were selected as hub genes by

random forest, support vector machine, and least absolute shrinkage and

selection operator algorithms. The significant diagnostic value for SLE was

confirmed in the training set and three validation sets (GSE81622, GSE61635,

and GSE122459). Additionally, three NETs-related sub-clusters were identified

based on the hub genes’ expression profiles analyzed by unsupervised consensus

cluster assessment. Functional enrichment was performed among the three

NETs subgroups, and the data revealed that cluster 1 highly expressed DEGs were

prevalent in innate immune response pathways while that of cluster 3 were

enriched in adaptive immune response pathways. Moreover, immune infiltration

analysis also revealed that innate immune cells were markedly infiltrated in

cluster 1 while the adaptive immune cells were upregulated in cluster 3. As per

our knowledge, this investigation is the first to explore the molecular

characteristics of NRGs in SLE, identify three potential biomarkers (HMGB1,

ITGB2, and CREB5), and three distinct clusters based on these hub biomarkers.

KEYWORDS
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Introduction

Systemic lupus erythematosus (SLE) is a multisystem

autoimmune disease characterized by the appearance of a variety

of autoantibodies, resulting in a wide range of tissue and organs

damaged (1). It has a higher frequency in females than males, with a

prevalence of 9: 1 (2). Global SLE prevalence in adults is estimated

to range from 30-150/100,000 and an incidence of about 2.2-23.1/

100,000 annually, that is more than five million people suffering this

disease worldwide (3). Despite the increase in the SLE survival rate

over the last several decades (4, 5), it is still linked with early

mortality (6), indicating substantial medical challenges especially

linked with diagnosis and treatment. The clinical presentation of

SLE is highly heterogeneous and there is an increasing number of

atypical cases, which poses challenges in diagnosing the disease.

Moreover, SLE treatment usually involves broad-spectrum

immunosuppressive therapy, the efficacy of which can vary

considerably between individuals and may have significant

adverse effects, particularly when taken for prolonged periods.

Different etiology has resulted in distinct clinical manifestations

and cellular and molecular bases for SLE. Therefore, it is of

immense clinical importance to uncover the underlying

pathogenesis of SLE for its diagnosis and management.

The pathogenesis of SLE is complex and associated with

enhanced dysregulation of innate and adaptive immunity (7).

Neutrophils, the most abundant innate immune cells in humans,

have long been considered as non-specific at the front line of

defense against infections, however, the elucidation of neutrophil

extracellular traps (NETs) has drastically revolutionized our current

knowledge about neutrophil’s activity and their significance during

the immune response. NETs are extracellular networks composed

of chromatin associated with cytosolic and granular proteins that

are released by neutrophils in response to various stimuli, a process

called NETosis (8–10). Recent research has highlighted that NETs

are crucial for the stimulation and advancement of systemic

autoimmune diseases and perform complex inflammatory

responses that cause organ injury (11–14). For example, aberrant

NETs production and/or its decreased clearance, as well as

NETosis-associated molecule alterations, in both animals and

humans suffering from lupus. The NETs secrete extruded nuclear

antigens, these are the source of autoantigens, which also participate

in the breakdown of self-tolerance during lupus. Increased NETs

can also stimulate the release of pro-inflammatory cytokine

interferon-a, produce a direct cytotoxic effect on different renal

cells, and induce capillary necrosis and podocyte loss. Additionally,

NETs can induce endothelial-mesenchymal trans-differentiation

(EndMT), thereby, stimulating activated myofibroblasts and

causing the production of extracellular matrix. Thus, NETs have

also been suggested as a critical contributor to the development of

SLE, and targeting NETs has also been shown to have therapeutic

effects. However, a detailed and integrated investigation of NETs-

associated genes in SLE remains to be conducted.

Because of significant advancements in gene microarray

technology, researchers can now rapidly assess the expression

levels of thousands of genes, which has contributed to increased
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genetic knowledge of the disease etiology. Therefore, this

investigation employs bioinformatics tools to explore the

molecular characteristics of NETs-related genes (NRGs) in SLE

and identify reliable biomarkers and molecular clusters for better

diagnosis and effective management.
Materials and methods

Data source

The GEOquery R package (15) was used to download

microarray datasets relevant to SLE from the Gene Expression

Omnibus (GEO) online database (16). The following filtering

criteria were used: (1) they were all from SLE patients and

healthy controls; (2) the sample size was relatively large, with

more than 20 sample; (3) the test specimens were from humans;

and (4) the tissues used for sequencing were whole blood (WB) or

peripheral blood mononuclear cell (PBMC). Additionally, the data

were available for free download from the GEO database. Based on

the above criteria, four datasets (GSE45291, GSE81622, GSE61635,

and GSE122459) relevant to SLE were finally included in this study.

There were 312 samples in the GSE45291 dataset (GPL13158

platform), of which 292 were of SLE and 20 were of normal WB.

This dataset was utilized as a training set for analysis. The

GSE81622 dataset (GPL10558 platform) included 30 SLE and 25

normal PBMC samples, the GSE61635 dataset (GPL570 platform)

had 99 SLE and 30 normal WB samples, and the GSE122459 dataset

(GPL16791 and GPL18573 platforms) comprised 20 SLE and 6

normal PBMC samples. These three datasets were selected for

validation analysis. Additionally, a total of 69 NRGs were

obtained from a previous study (17) (Supplementary Table S1).

All raw data in our investigation was subjected to normalization

and adjustment for background, and we also cross-referenced all

probe names with their respective gene symbols. Additionally, we

also used the “ComBat” algorithm (18) to address the batch effects

to improve the efficacy of the subsequent analysis.
Identification of differentially
expressed genes

The adjust p-value < 0.05 and fold changes (FC) > 1.5 were used

set as the cut-off criteria to evaluate DEGs between SLE and healthy

controls via the R-program limma package (19), The data acquired

was presented in volcano plot and heatmap with the help of the R-

packages ggplot2 (20) and pheatmap (21), respectively.
Functional annotation and pathway
enrichment of DEGs

To determine DEGs’ role in SLE, clusterProfiler of the R-package

(22) was used for Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses. The Benjamini-
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Hochberg multiple correction approach was used to compensate for

FDR-adjusted (P < 0.05) data. The three categories; cellular component

(CC), molecular function (MF), and biological process (BP) of the GO

analysis were crucial for examining physiological functions (23).

KEGG analysis was performed to investigate potential routes (24).

The ggplot (20) and GOplot (25) R programs were used to plot the

findings of GO and KEGG, respectively.
Gene expression patterns and protein-
protein interaction analyses of differentially
expressed NRGs

Next, the expression patterns of the DE-NRGs were analyzed.

First, the DE-NRGs were obtained through the interaction of DEGs

with NRGs, and their chromosomal locations were revealed and

visualized using Package RCircos (26). Thereafter, using the corrplot

function (R package corrplot) (27) the correlations among the

expression levels of DE-NRGs were confirmed. Furthermore, a PPI

enrichment analysis was performed using the online software

GeneMANIA (https://genemania.org/) (28), and any combined score

> 0.4 interaction was deemed statistically significant. Gene interactions

are represented as a network, where nodes stand in for individual genes

and linkages for whole networks. To further elucidate the biological

features and mechanism of interacting proteins of the DE-NRGs,

functional annotation analysis of inter was performed using another

web tool, Metascape (http://metascape.org/) (29).
Identification of NETs-related hub gene
based on machine learning algorithm

Following three machine learning algorithms were adopted,

support vector machine (SVM), least absolute shrinkage and

selection operator (LASSO), and random forest (RF) to screen hub

genes fromDE-NRGs, usingR packages of glmnet (30), e1071 (31) and

caret (32), and RF (33), respectively. LASSO logistic regression

identified variables by looking for those with the lowest likelihood of

classification mistakes (34). The SVM technique creates a hyperplane

in the characteristic space with the maximum margin for isolating

negative from positive instances (35). RF is a group of independent

decision trees used in an ensemble machine-learning technique to

predict regression or clustering (36). The optimal lambda for LASSO

regression was selected based on 10 resampling iterations of 10-fold

cross-validation. Furthermore, the performances of SVM and RF were

also evaluated based on 10-fold cross-validations. The selection of hub

SLE genes was based on the overlapping genes produced from the

three algorithms.
Construction and validation of a
diagnostic model for SLE

With the R package of rms, multivariate logistic regression analysis

was performed to establish a nomogram model based on the NETs-

related hub genes (37) for the diagnosis of SLE. The “total points” reflect
Frontiers in Immunology 03
the total of the points assigned to the aforementioned predictors,

whereas each predictor has a corresponding point. The receiver

operating characteristic (ROC) curves and area under the curve

(AUC) were obtained from both training and validation sets to

confirm nomograms’ diagnostic value. ROC curves were assessed via

the ROC R package (38). Moreover, the decision curve analysis (DCA)

and calibration curvewere applied to evaluate the accuracy andpractical

applicability of the diagnostic model with the rms R package (37).
Consensus cluster analysis

With the help of the ConsensusClusterPlus R package (39), an

unsupervised hierarchical clustering (50 iterations, resample rate of

80%) was performed on the 292 SLE samples from the training set

based on the expression of the NETs-related hub genes. This

clustering was based on: 1) the gradual and smooth increase of

the cumulative distribution function (CDF) curve. 2) no small

sample size in any group. 3) delta area should have the largest

decrease. 4) after clustering, the intra-group correlation should

increase, while the inter-group correlation should decrease.
Functional distinctions among
the sub-clusters

Afterward, the NETs-related sub-clusters were compared

pairwise, and the highly expressed DEGs were determined

according to statistical criteria (FC > 1.5 and adj.p < 0.05) in each

cluster. Followed by that GO and KEGG enrichment analyses were

carried out to depict their physiological activities and visualized

with the circle (40) and GOplot (25) R packages, respectively.
Evaluating the immune infiltration
of the sub-clusters

To evaluate sub-clusters’ immune infiltration, the R packages of

GSVA (41) and GSEAbase (42) were utilized to quantify the relative

abundance of immune cells and immune-related pathways and then

compared enrichment scores across the sub-clusters, the results of

which were visualized using the ggpubr R package (43).
Statistical analysis

Unless otherwise stated, all investigations and visualization

were carried out via R software (version.4.2.1). P < 0.05 and FC >

1.5 were set as the criteria for statistical importance.
Results

Identification of DEGs

Figure 1 is a detailed flowchart of the research procedure. Based

on significance criteria, a total of 1006 (393 upregulated and 613
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downregulated) SLE-associated DEGs (Supplementary Table S2).

Figures 2A, B depict the volcano plot and heatmap of DEGs.
Functional annotation and pathway
enrichment of DEGs

According to GO-BP analysis, the DEGs were considerably

increased in viral processes, viral life cycle, the response against virus

and type I interferon, regulation of biotic stimulus and innate immune

responses, negative viral process regulation, defense response to virus

and symbiont, and cellular response to type I interferon (Figure 3A).

The findings of the GO-CC analysis were primarily lytic vacuole

membrane, lysosomal membrane, ficolin-1-rich granule lumen, early

endosome, endocytic vesicle, coated vesicle membrane, and clathrin-

coated vesicle, vesicle membrane, and endocytic vesicle (Figure 3B).
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The activity of ubiquitin-protein ligase, ubiquitin-binding, ubiquitin-

protein transferase, ubiquitin-like protein transferase, ubiquitin-like

protein ligase, MHC protein complex binding, immune receptor,

double-stranded RNA binding, and DNA-binding transcription

factor binding were the key outcomes of enrichment analysis in GO-

MF (Figure 3C). The KEGG pathway analysis primarily indicated that

these DEGs were associated with virus-related diseases including

Hepatitis C, Natural killer cell mediated cytotoxicity, Influenza A,

Tuberculosis, Th17 cell differentiation, Leishmaniasis, Human T-cell

leukemia virus 1 infection, Viral life cycle –HIV – 1, Graft-versus-host

disease, and NOD-like receptor signaling pathway (Figure 3D).
Gene expression patterns and PPI network
of DE-NRGs

The interaction of DEGs with NRGs resulted in 8 DE-NRGs

(Figure 4A), and the location of these DE-NRGs on chromosomes

was: ALPL (chr1), CD93 (chr20), CREB5 (chr7), FCGR3B (chr1),

HMGB1 (chr13), ITGB2 (chr21), SLC22A4 (chr5), and VNN3 (chr6)

(Figure 4B). The gene relationship network diagram indicated the

correlation among these DE-NRGs (Figure 4C). Additionally, a DE-

NRGs network was constructed, comprising 20 other genes including

AGER, FCGR2A, IRAK2, SPON2, JAM3, F10, CD1C, GP1BA,

PROC, TLR2, HCK, TLR4, TIRAP, ITGAL, ITGAD, MS4A7,

ICAM3, TBXAS1, TYROBP, and ICAM4 (Figure 4D), which were

mainly involved in PID_INTEGRIN2_PATHWAY (Figure 4E).
Identification of NETs-related hub genes
for SLE

The LASSO, SVM, and RF used DE-NRGs expression levels to

discriminate SLE from healthy controls. In the RF classifier, the

optimal number of trees selected was 44 as it has the lowest error rate

and stability (Figure 5A), to obtain the dimensional importance of the

DE-NRGs. Furthermore, the top 5 genes (HMGB1, ITGB2, CREB5,
FIGURE 1

The study flow chart.
A B

FIGURE 2

Identification of DEGs. (A) Volcano plot: The volcano plot was constructed using the fold change values >1.5 and adjusted P-values < 0.05. (B) The
heatmap of the DEGs and different colors represent the trend of gene expression in different PBMCs. The top 100 genes ranked according to
adjusted p-values as shown in this figure. DEGs differentially expressed genes.
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D
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FIGURE 3

Functional annotation and pathway enrichment of DEGs. (A) Top 10 GO BP pathway; (B) Top 10 GO CC pathway; (C) Top 10 GO MF pathway;
(D) Top 10 KEGG pathway. DEGs, differentially expressed genes; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular
function; KEGG, Kyoto encyclopedia of genes and genomes.
D

A B

E

C

FIGURE 4

Gene expression patterns and PPI network of DE-NRGs. (A) The overlap of genes between DEGs and NRGs. (B) The location of the DE-NRGs on
chromosomes. (C) Correlation matrix of DE-NRGs. (D) PPI network of DE-NRGs and its interacting proteins. (E) GO enrichment analysis of interacting
proteins of DE-NRGs. PPI, protein-protein interaction; DEGs, differentially expressed genes; NRGs, NETs-related genes; GO, gene ontology.
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ALPL, and SLC22A4) based on their importance in

MeanDecreaseGini result (Figure 3B), were selected as candidate

hub genes. In LASSO logistic regression, all the DE-NRGs were

recognized as candidate hub genes according to the optimal lambda =

0.002619094 (Figures 5C, D). The SVM model has the minimum

classification error [minimal root-mean-square error (RMSE) =

0.1377] in the case of four candidate genes; HMGB1, ITGB2,

CREB5, and VNN3 (Figure 5E). Finally, HMGB1, ITGB2, and

CREB5, overlapping genes by the three algorithms, were selected as

hub genes (Figure 5F).
Performance of NETs-related hub genes

Based on the three NETs-related hub Genes, a nomogram

model was constructed to calculate the odds of developing SLE

and to further evaluate their predictive effectiveness (Figure 6A).

The calibration curve (Figure 6B) and DCA (Figure 6C) confirmed

the nomogram’s performance. A combined ROC analysis of the

three hub genes was carried out with an AUC as high as 0.983

(Figure 6D), indicating outstanding diagnostic efficiency.

Furthermore, AUCs of 0.788, 0.930, and 0.901 for CREB5,

HMGB1, and ITGB2 respectively, showed their potency as useful

diagnostic biomarkers (Figures 6E–G). In addition, the three

validation datasets, GSE81622 (Figures 7A–C), GSE61635

(Figures 7D–F), and GSE122459 (Figures 7G–I), were utilized to
Frontiers in Immunology 06
independently assess this model’s performance by ROC curves,

calibration curve, and DCA, and found that it performed well in the

validation sets with AUCs of 0.904, 0.945, and 0.883, respectively.
Identification of NETs-related
sub-clusters in SLE

The CREB5, HMGB1, and ITGB2 expression profiles were used

to group the 292 SLE samples via a consensus clustering algorithm.

The k value of three (k = 3) gave the most stable cluster numbers,

based on the above criteria (Figures 8A–C). As the PCA plot

indicates, gene expression patterns were specific across the sub-

clusters (Figure 8D).
Functional distinctions among
the sub-clusters

A total of 107, 25, and 38 DEGs, highly expressed in cluster1

(Supplementary Table S3), cluster2 (Supplementary Table S4), and

cluster3 (Supplementary Table S5) respectively were identified. As

GO analysis indicates, the cluster 1 highly expressed DEGs were

enriched in cell killing (GO:0001906), neutrophil activation

(GO:0042119), neutrophil-mediated immunity (GO:0002446),

cellular response to type I interferon (GO:0071357), and response
D

A B

E F

C

FIGURE 5

Identification of the hub genes for SLE. A-B. RF to screen candidate hub genes. (A) The influence of the number of decision trees on the error rate.
The x-axis is the number of decision trees and the y-axis is the error rate. Green represents the SLE samples, red represents the non-SLE samples,
and black represents the overall samples. (B) Gini importance measure. The horizontal axis represents the mean decrease Gini, and the vertical axis
represents characteristic NRGs. C-D. LASSO logistic regression to screen candidate hub genes. (C) LASSO coefficient spectrum of eight genes
enrolled and generate a coefficient distribution map for a logarithmic sequence. (D) The 10-fold cross-validation process was repeated 10 times to
select the optimal penalization coefficient lambda. The value of lambda yielded the minimum average binomial deviance that was used to select
features. (E) The RMSE of candidate hub genes combination of the SVM algorithm. The minimum classification error (minimal RMSE = 0.1377) in the
condition of four candidate genes. (F) The Venn diagram shows the overlap of candidate genes among the above three algorithms. SLE, systemic
lupus erythematosus; RF, random forest; NRGs, NETs-related genes; LASSO, least absolute shrinkage, and selection operator; RMSE, root-mean-
square error; SVM, support vector machine.
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to type I interferon (GO:0034340) (Figure 9A), and the cluster 2

highly expressed DEGs were enriched in response to type I

interferon (GO:0034340), response to the virus (GO:0009615),

defense response to symbiont (GO:0140546), negative regulation

of viral genome replication (GO:0045071), and defense response to

the virus (GO:0051607) (Figure 9B), and the DEGs highly expressed

in cluster 3 were enriched in CD4-positive, alpha-beta T cell

cytokine production (GO:0035743), immune response-activating

signal transduction (GO:0002757), immune response-activating cell

surface receptor signaling pathway (GO:0002429), humoral

immune response (GO:0006959), and immune response-

regulating signaling pathway (GO:0002764) (Figure 9C).

The KEGG enrichment analysis revealed that cluster 1 highly

expressed DEGs were mostly prevalent in Hepatitis C, Measles,

Hematopoietic cell lineage, Influenza A, NOD-like receptor signaling

pathway, Epstein-Barr virus infection, Prostate cancer, Amoebiasis,

Osteoclast differentiation, and Insulin resistance (Figure 9D), and that

of cluster 2 were mostly enriched in Hepatitis C, Influenza A,

Necroptosis, Human T-cell leukemia virus 1 infection,
Frontiers in Immunology 07
Phosphatidylinositol signaling system, Epstein-Barr virus infection,

Measles, cGMP-PKG signaling pathway, Neutrophil extracellular trap

formation, and Viral carcinogenesis (Figure 9E). Cluster 3 highly

expressed DEGs were mostly associated with Staphylococcus aureus

infection, Hematopoietic cell lineage, production of intestinal immune

network for IgA, Starch and sucrose metabolism, Human T-cell

leukemia virus 1 infection, Inflammatory bowel disease, Renin-

angiotensin system, Fluid shear stress and atherosclerosis, Asthma,

and Longevity regulating pathway (Figure 9F).
Differentiation of immune infiltration
characteristics among the sub-clusters

The immune infiltration analysis indicated the presence of an

altered immune microenvironment between the sub-clusters

(Figure 9G). Cluster1 exhibited the highest proportions of

macrophages and neutrophils, whereas pDCs, aDCs, and CD8+

T, B, Th1, T helper, Th2, and TIL cells were abundant in Cluster3.
D
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FIGURE 6

The performance of hub genes in the training set. (A) Construction of a nomogram for predicting the occurrence of SLE based on hub genes.
(B) Calibration curve. The y-axis is the actual rate of SLE diagnosis and the x-axis is the predicted risk of SLE. The diagonal dotted line represents a
perfect prediction by an ideal model. The solid line represents the bias−corrected performance of the nomogram, where a closer fit to the diagonal
dotted line represents a better prediction. (C) Decision curve analysis. The blue represents the net benefit of the nomogram in the prediction of SLE
occurrence. The red line represents the assumption that all people have SLE. The black line represents the assumption that all people do not have
SLE. (D) ROC curve of the three hub genes combined diagnosis of SLE. (E) ROC curve of CREB5 gene diagnosis of SLE; (F) ROC curve of HMGB1
gene diagnosis of SLE; (G) ROC curve of ITGB2 gene diagnosis of SLE. SLE, systemic lupus erythematosus; ROC, receiver operating characteristic.
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Discussion

SLE is an autoimmune disorder comprising a complex network of

immune-inflammatory pathologicalmechanisms.TheNETs functions

have been associated with the development and progression of SLE,

however, its potential mechanisms that contribute to SLE at the genetic

level have not been investigated. This investigation explores the

molecular characteristics of NRGs in SLE based on bioinformatics

analyses and machine learning, and identify three reliable biomarkers

and three molecular clusters of SLE.

Here GEO database was utilized to elucidate the gene

expression levels of healthy controls and SLE patients, and 1006

DEGs, including 393 upregulated and 613 downregulated genes

were identified. The DEGs were then annotated using the research

results on function-related enrichment. As results indicate, these

genes were most prevalent in different viral infections and their

associated with the immune response pathways. Previous research

has revealed that pathogens, especially viruses, are important

environmental triggers of SLE (44), which reinforce our results.

Previous studies have highlighted the significance of NETs in the

pathophysiology of SLE (8–10). In order to investigate the

molecular properties of NRGs in SLE, the intersection of DEGs

and NRGs was carried out, and 8 DE-NRGs were subsequently
Frontiers in Immunology 08
obtained. Further analysis of these 8 DE-NRGs revealed that most

of them had significant co−expression tendencies, which indicated

that these genes may work together in the pathogenesis of SLE.

Notably, the PPI analysis revealed that the DE-NRGs interacting

genes were mainly involved in the PID_INTEGRIN2_PATHWAY.

The Beta2-integrins, comprising a common Beta2 (CD18) subunit

complexed with rare subunits (CD11a-d), including LFA-1

(leukocyte function antigen 1, CD11a/CD18), Mac-1 (CD11b/

CD18, aMb2 or complement receptor 3), alphaXbeta2 (CD11c/

CD18) and alphaDbeta2 (CD11d/CD18), have significant activity in

immigration by endothelial and chemotaxis, leukocyte adhesion,

and immune and inflammatory reactions (45). Among them, LFA-1

andMac-1 are the most studied and have been reported to be linked

with SLE pathogenesis (46, 47). For instance, loss of LFA-1 activity

protects against the development of lupus in mouse models whereas

its overexpression causes lupus-like syndrome (48). Furthermore, in

a spontaneous SLE model, the MRL/lpr mice, Mac-1 reduction

causes severe glomerulonephritis that is related to an increase in

neutrophil infiltration in the kidneys (49). However, how these

genes contribute to SLE and its clear mechanisms need to be

discussed with functional studies in the future.

With the rapid advancements of artificial intelligence (AI),

machine learning algorithm, as an important branch, can better
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FIGURE 7

The performance of hub genes in the validation sets. (A–C). GSE81622. (D–F). GSE61635. (G–I). GSE122459.
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discriminate and have higher-dimensional feature data, and has been

widely used for hub gene identification and screening (50). In this

investigation, the predictive performance of three selected machine

learning classifiers (RF, SVM, and LASSO) was integrated based on

DE-NRGs expression profiles. Finally, CREB5, HMGB1, and ITGB2

were selected as hub genes, whose diagnostic values for SLE have been

validated in the training and three validation sets.

CREB5 (CAMP Responsive Element Binding Protein 5),

belongs to the CRE (cAMP response element)-binding protein

family and encodes a transcription activator in eukaryotic cells

(51). CREB5-associated pathways include PI3K-Akt and Toll-like

receptor signaling pathways (52). The PI3K-AKT pathway regulates

various physiological responses and is critical for lymphocyte

development and optimal immune responses (53, 54). In the

lupus MRL/lpr mouse model, it was found that excessive PI3K/

Akt pathway activation leads to the severity of inflammation and

fibros i s in the k idney whi l e i t s inh ib i t ion reduces

glomerulonephritis and prolonged life span (55–57). The toll-like

receptors (TLRs) respond to molecular patterns associated with

microbes such as bacteria and viruses, stimulating innate and

acquired immunity as well as an inflammatory response and

cytokines upregulation (58). Several studies suggest that the

signaling pathway has essential activity in the pathogenesis of
Frontiers in Immunology 09
autoimmune diseases including SLE (59, 60). Therefore, we

speculate that CREB5 may participate in the pathogenesis of SLE

with the involvement of PI3K-Akt and Toll-like receptor signaling

pathways and serve as a potential therapeutic target. However, the

relevance of CREB5 in SLE has not been documented and further

research is required. HMGB1 (High Mobility Group Box 1),

encodes a protein that belongs to the High Mobility Group-box

superfamily and exerts pro-inflammatory effects in SLE through

both innate and adaptive immunity (61, 62). SLE individuals have

aberrant apoptotic debris removal, and apoptotic or necrotic cells

release HMGB1 as a damage-associated molecular pattern

(DAMP), causing tissue and organ damage and dysfunction (61).

HMGB1 has been associated with multiple disease phenotypes in

SLE, including lupus nephritis, neuropsychiatric lupus, and skin

lesions (61, 63). ITGB2 (Integrin Subunit Beta 2) gene encodes an

integrin beta chain (CD18) and combines with multiple different

alpha chains to form different Beta2-integrins (45), as mentioned

earlier. Thus, the NETs hub genes have potential roles in promoting

the occurrence and development of SLE, and some specific

pathways can act as therapeutic targets for controlling SLE.

In addition, unsupervised cluster analysis illustrated different

NETs regulation patterns in SLE patients based on hub gene

expression, and three distinct clusters were identified. Interestingly,
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FIGURE 8

NETs-related molecular clusters identification in SLE. (A) Consensus clustering matrix when k = 3; (B) Consensus clustering CDF for k = 2–9.
(C) Relative change in area under CDF curve for k = 2–9. (D) PCA was used to verify the three distinct subgroups divided by consensus clustering.
SLE, systemic lupus erythematosus; CDF, cumulative distribution function; PCA, principal component analysis.
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functional enrichment was performed among three NETs subgroups,

and the data showed that the DEGs highly expressed in cluster 1 were

enriched in innate immune response pathways, such as neutrophil

activation, neutrophil-mediated immunity, response to type I

interferon, and so on, whereas that of cluster 3 were enriched in

adaptive immune response pathways. Moreover, immune infiltration

analysis also revealed that innate immune cells includingmacrophages

and neutrophils were significantly upregulated in cluster 1, in contrast,

cluster 3, which was dominated by upregulated T and B cells of the

adaptive immunity. It is well known that SLE is characterized by its

clinical and therapy heterogeneity, with a wide range of clinical

manifestations and drug responses reflecting its complex

etiopathogenesis, which means that stratified management planned

accordingly may provide better outcomes. Consequently, the data of

this investigation may provide potential biological insights into the

different clinical phenotypes and a rationale for the stratified therapy

of patients.
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This investigation has several limitations that should be taken

into consideration. Firstly, the study only relies on bioinformatics

analyses, and further experimental validation is needed to confirm

the results. Additionally, the findings were obtained from a

relatively small sample size of SLE patients, and larger cohorts are

necessary to provide more robust and reliable results. Moreover, the

SLE diagnostic model developed in this study requires further

evaluation and external validation before its clinical application

can be considered. Finally, this investigation only focused on gene

expression data, and future studies should also explore epigenetic,

proteomic, and metabolomic alterations in SLE pathogenesis.

In conclusion, this research is the first as per our knowledge to

explore the molecular characteristics of NRGs in SLE, identify three

potential biomarkers, HMGB1, ITGB2, and CREB5, and three

distinct clusters based on these hub biomarkers. These findings

may assist in diagnosing and managing SLE with the ultimate

objective of improving patient outcomes.
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FIGURE 9

Functional enrichment and immune cell infiltration analyses among three NETs subgroups. (A–C). GO enrichment analysis of DEGs highly expressed
in cluster 1 (A), cluster 2 (B), and cluster 3 (C). (D–F). KEGG enrichment analysis of DEGs highly expressed in cluster 1 (D), in cluster 2 (E), and in
cluster 3 (F). (G) Box plot showing the relative abundances of immune cells among three clusters, *P < 0.05, ***P < 0.001. NETs, neutrophil
extracellular traps; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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