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Diabetes mellitus induces a
novel inflammatory network
involving cancer progression:
Insights from bioinformatic
analysis and in vitro validation
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Yaqiong Liu7, Zheyu Zhang1,5, Roujie Huang8,
Xin Cheng1,5 and Weijun Peng 1,5*
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Immunology, the Second Xiangya Hospital of Central South University, Changsha, China, 5National
Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,Central South
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Central South University, Changsha, Hunan, China, 7Centre for Research in Medical Devices, National
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Background: Patients with diabetes mellitus (DM) have a higher incidence of

malignant tumors than people without diabetes, but the underlying molecular

mechanisms are still unclear.

Methods: To investigate the link between DM and cancer, we screened publicly

available databases for diabetes and cancer-related genes (DCRGs) and

constructed a diabetes-based cancer-associated inflammation network

(DCIN). We integrated seven DCRGs into the DCIN and analyzed their role in

different tumors from various perspectives. We also investigated drug sensitivity

and single-cell sequencing data in colon adenocarcinoma as an example. In

addition, we performed in vitro experiments to verify the expression of DCRGs

and the arachidonic acid metabolic pathway.

Results: Seven identified DCRGs, including PPARG,MMP9,CTNNB1, TNF, TGFB1,

PTGS2, and HIF1A, were integrated to construct a DCIN. The bioinformatics

analysis showed that the expression of the seven DCRGs in different tumors was

significantly different, which had varied effects on diverse perspectives. Single-

cell sequencing analyzed in colon cancer showed that the activity of the DCRGs

was highest in Macrophage and the lowest in B cells among all cell types in

adenoma and carcinoma tissue. In vitro experiments showed that the DCRGs

verified by western bolt and PEG2 verified by ELISA were all highly expressed in

COAD epithelial cells stimulated by high glucose.
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Conclusion: This study, for the first time, constructed a DCIN, which provides

novel insights into the underlying mechanism of how DM increases tumor

occurrence and development. Although further research is required, our

results offer clues for new potential therapeutic strategies to prevent and treat

malignant tumors.
KEYWORDS
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Introduction

Cancer is one of the major diseases threatening people’s health

worldwide (1), and 8-18% of patients with cancer also have diabetes

as a coexisting illness (2). Diabetes Mellitus (DM) is associated with

higher cancer risk, peaking approximately eight years after

diagnosis (3). Epidemiological findings have shown up to a two-

fold increase in the risks of colorectum, liver, and pancreas cancers

among patients with DM (4). In addition, the incidence of oral

cancer in patients with DM is also significantly increased (5, 6).

Between 1988-1994 and 2010-2015, cancer mortality rates dropped

in the United States but remained about 30% higher in adults with

DM compared to those without DM (7), suggesting that effective

control of DM could decrease the healthcare burden and improve

the quality of life (8). Additionally, it has been reported that

managing hyperglycemia and insulin resistance in patients with

DM who are also suffering from cancer may improve their overall

quality of life. Given the substantial medical burden of these

diseases worldwide, understanding the association between cancer

and DM might be essential to public health (9, 10).

Preliminary investigations to understand the mechanisms

underlying the relat ionship between DM and cancer

demonstrated the involvement of apoptotic and proliferation

pathways (10, 11). They showed the involvement of factors such

as hyperglycemia, hyperinsulinemia, insulin-like growth factor 1

(IGF-1), oxidative stress, and sex hormones. The association

between DM and cancer may be causal (resulting from

hyperinsulinemia or hyperglycemia) or confounding (resulting

from common risk factors such as obesity) (12). Despite the

prevalence of cancer and DM, the extent to which DM affects

cancer remains unclear. Investigating the correlation between DM

and cancer will contribute to a better understanding of cancer’s

pathogenesis, as well as provide a better reference for individualized

treatment of diabetic tumors.

Emerging evidence suggests that chronic inflammation is a

crucial link between DM and cancer (13). Diabetes mellitus is

associated with inflammation-related insulin secretory defects

(14). Chronic inflammation, characterized by high levels of

oxidative stress and reactive oxygen species (ROS), activation of

pro-inflammatory pathways, and abnormal adipokine production,

may develop a microenvironment that promotes tumor cell growth,
02
facilitates metastasis, increases angiogenesis, and impairs natural

killer cells and macrophages (15). Cross-talk between cancer and

DM is also influenced by oxidative stress. Hyperglycemia could

increase the production of superoxides (16). Additionally, insulin

could stimulate the production of ROS (17). Strong evidence

suggests that oxidative stress influences the expression of several

genes and signal transduction pathways that play an essential role in

tumorigenesis (18). As a result of cytokine-dependent activation of

nuclear factor (NF)-kB pathways, ROS interferes with cell

proliferation and apoptosis (19).

Studies show that NF-kB is hyperactivated in colorectal cancer,

breast cancer, blood neoplasms, and pancreatic cancer cell lines.

Inflammation facilitates tumor development, progression, and

treatment resistance. In contrast, acute inflammatory responses

often stimulate dendritic cells (DCs) to mature and present

antigens, resulting in anti-tumor immune responses (20) (21).

To explore the interaction between DM and cancer, we screened

seven diabetes and cancer-related genes (DCRGs) using public

databases and constructed a diabetes-based cancer-associated

inflammation network (DCIN). We analyzed the role of the seven

DCRGs in cancer from different perspectives. Drug sensitivity and

single-cell sequencing data were analyzed using colon

adenocarcinoma (COAD). The expression of DCRGs and the

arachidonic acid metabolic pathway was further verified in vitro.

Therefore, for the first time, our study constructed a diabetes-based

cancer-associated inflammation network, offering novel insights

into the underlying mechanism of DM increasing tumor

occurrence and development. Although further research is still

required, our results hint toward potential therapeutic strategies

in preventing and treating malignant tumors.
Materials and methods

Screening for genes associated with DM
and various cancers

Epidemiological findings have shown a two-fold increase in the

risks of colorectum, liver, and pancreas cancers among patients with

DM (4). Therefore, DisGeNET (https://www.disgenet.org/) was

used to explore genes related to DM, as well as pancreatic, liver,
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and colon cancers (22). These genes were filtered using a correlation

score greater than 0.1 (r > 0.1). The intersection of genes related to

these four diseases was taken from DisGeNET. Similarly,

GeneCards (https://www.genecards.org/) was also used to search

for genes associated with DM, pancreatic cancer, liver cancer, and

colon cancer. These genes were filtered using a correlation score

greater than 1 (r > 1). The intersection of genes related to these four

diseases was taken from GeneCards. The “ggplot2” software

package was used to visualize the intersection in Venn diagrams.
Data downloading and preprocessing

Gene expression profiles, phenotypic information, and survival

data of 33 TCGA tumor samples and adjacent tissues (11057

samples in total) were downloaded from the UCSC Xena database

(http://xena.ucsc.edu/). The gene expression profiles were set in

Fragments Per Kilobase Per Million (FPKM) and HTseq-counts

format. Demographic, tumor information, and follow-up data were

also extracted from the database for all patients. Subsequently, the

expression profiles of PPARG, MMP9, CTNNB1, TNF, TGFB1,

PTGS2, and HIF1A were extracted from 33 types of TCGA tumor

and adjacent tissue samples for further analysis.
Differential and co-expression analysis

The expression of the seven DCRGs between tumor and normal

tissues was assessed using the Wilcox test and visualized using

“ggplot2” for all the TCGA tumor types analyzed. The differential

expression of the seven DCRGs between tumor and normal tissues

across cancers was presented as a log2 fold change in the heatmap.

Co-expression between these seven DGRGs at the transcriptional

level was analyzed by the “corrplot” software package. In addition,

the STRING database (https://string-db.org/) was used to construct

a protein-protein interaction (PPI) network among these genes. The

interactions between DCRGs were obtained from the string

database, and a medium confidence level (0.40) was chosen to

construct the protein-protein interaction network.
Clinical correlation analysis

Kaplan-Meier plots of DCRGs were generated using the R

package to analyze the differences in overall survival outcomes

between patients with high and low expression of the seven DCRGs.

The phenotype and survival data of 33 TCGA cancer types obtained

from the UCSC Xena database were analyzed. These DCRGs were

divided into high and low-expression groups according to the

median expression level for survival analysis. The software

packages “Survival” and “SurvMiner” were used to plot survival

curves. The “ggplot2” software package created a heatmap to

represent clinical correlations; the heatmap of clinical correlations

(overall survival) for DCRGs displayed only the statistically

significant tumor types (∗∗ P<0.001; ∗∗ P<0.01; ∗ P<0.05). Red
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squares indicate high gene expression associated with poor

prognosis, while blue squares indicate low gene expression

associated with poor prognosis. In addition, the hazard ratios of

DCRGs in each TCGA tumor type were obtained using the Cox

proportional hazards regression. The Cox proportional hazards

model was constructed using “survival” and “Forestplot” software

packages to determine the pan-cancer relationship of the seven

DCRGs with overall survival. Furthermore, the expression of these

seven DCRGs was evaluated in patients with COAD with different

stages. P < 0.05 were considered significant.
Gene set variation analysis of DCRGs

In order to investigate the potential pathways of these DCRGs,

we performed GSVA analysis on the pathways of the seven DCRGs

across cancers. Gene sets for GSVA were obtained from the

MSigDB database (c2. Cp. Kegg. V7.1. Symbols. gmt). Firstly, the

“GSVA” software package was used to generate GSVA scores for

pan-cancer expression profiles of all seven genes. Then, the “limma”

software package was used to analyze the differences between pan-

cancer tumors and paracancerous tissues. The pathways with | t-

value of GSVA score | > 2 were considered significant. Finally, the

“ggplot2” software package was used to visualize the differences,

and R software was used to count the significant pathways across

various types of cancers.
Relationship between DCRGs expression
and tumor immune cell infiltration

To better understand the relationship between DCRGs and

immune cells, the association between the gene expression levels of

the seven DCRGs and the infiltration levels of 22 immune-related

cells was estimated. CIBERSORT (https://cibersort.stanford.edu/)

was used to estimate the extent of immune cell infiltration across

cancer samples. Finally, “ggplot2”, “ggpubr”, and “ggExtra”

software packages were used to assess the correlation between the

levels of the seven DCRGs and each immune cell infiltration in

cancer (P < 0.05 was considered significant).
Immune subtype analysis

Tumor immune microenvironment (TIME) has therapeutic

and prognostic significance in anti-tumor therapy. Studies have

identified six immune subtypes of tumor types based on five

representative immune signatures, which include wound healing

(C1), IFN-g dominant (C2), inflammatory (C3), lymphocyte

depleted (C4), immunologically quiet (C5), and TGF-b dominant

(C6) (22). Differential expression analysis was performed using the

Kruskal test to understand the mRNA expression levels of DCRGs

in the six different immune subtypes of tumor types. Furthermore,

the mRNA expression levels of the seven DCRGs were analyzed

in COAD.
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Stemness indices and TIME across cancers

We assessed Stemness indices and ESTIMATE scores

(Estimation of STormal and Immune cells in MAlignant

Tumor tissues using Expression data) in pan-cancer (23). The

ESTIMATE score is calculated based on gene expression

characteristics and can reflect tumor purity with good

prediction accuracy. Therefore, Spearman correlation

analysis was performed between the expression levels of the

seven DCRGs genes and matrix scores by “Estimate” and

“limma” packages.

In order to further analyze the association between DCRGs and

pan-cancer stemness features, the stemness index of tumor samples

was calculated using a one-class logistic regression (OCLR)

algorithm. Subsequently, the Spearman correlation analysis was

performed based on gene expression and stemness score (24). Here,

two types of dryness indices were obtained: DNA methylation-

based stemness score (DNAss) and mRNA expression-based

stemness score (RNAss).
Mutations in the seven DCRGs
across cancers

The samples for pan-cancer analysis of whole genomes

(ICGC/TCGA, Nature 2020) were obtained from cBioPortal

(http://www.cbioportal.org/). Based on previous studies, a

CNV value of 2 was considered as amplification and a value of

-2 was considered as deep deletion. The CNV ratios of DCRGs

for each tumor type were calculated for each tumor type (25).

In addition, the overall cellular landscape of changes in

the OncoPrint plot was generated using the R software

package “ComplexHeatmap”.
Correlation of the expression levels of the
seven DCRGs with TMB and MSI

Tumor mutation burden (TMB) is a quantifiable biomarker of

immune response that reflects the number of mutations in tumor

cells (26). Microsatellite instability (MSI) is caused by major

molecular response (MMR) deficiency and is associated with the

prognosis of patients (27). TMB and MSI are intrinsically related

to immune checkpoint inhibitor sensitivity. The correlation

between the expression levels of the seven DCRGs with TMB

and MSI was investigated. A Perl script was used to calculate the

TMB score, corrected by the total length of exons. MSI scores were

determined for all samples based on somatic mutation data

downloaded from TCGA. Spearman correlation coefficients were

used to analyze the relationship of DCRGs expression with TMB

and MSI. The result was displayed as a heatmap generated by the

“ggplot2” software package.
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Correlation analysis between the seven
DCRGs and immune checkpoint-related
genes in COAD

Due to the high frequency of mutations of the seven genes in

COAD, it was selected for further analysis. R software was used to

analyze the correlation between the seven DCRGs and 46 immune

checkpoint-related genes in COAD. The result was also visualized

as a heatmap by the “ggplot2” software package.
Pan-cancer drug sensitivity analysis

CellMiner is a web-based tool containing genomic and

pharmacological information for investigators to utilize transcript

and drug response data from the NCI-60 cell line set compiled by

the National Cancer Institute. RNA-seq spectrum data of the seven

DCRGs and their pharmacological activity were collected from the

CellMiner database (https://discover.nci.nih.gov/cellminer/). The

“Impute” software package was used to preprocess the raw data.

The correlation between the transcriptional expression of the seven

DCRGs and compound sensitivity was investigated using Pearson

correlation analysis. When the P was less than 0.05 and the

correlation coefficient was greater than 0.3, the relevant

DCRGs were considered sensitive to the corresponding

chemotherapeutic drugs.
Validation of DCRGs in single-cell
transcriptome sequencing data

To validate the function of the seven DCRGs in colon cancer,

single-cell sequencing data of colon cancer were analyzed. The

GSE161277 dataset was downloaded from the Gene Expression

Omnibus (GEO) database, and the raw data for each sample was

processed using the “Seurat” software package in R (28). Genes

expressed by fewer than three cells in the sample, genes with fewer

than 200 expressed genes, and mitochondrial gene content that

exceeded 25% of the total unique molecular identifier (UMI) count

were excluded. The data were standardized using the default

method, and the most variable genes were identified and selected

using the FindVariableFeatures method. These genes were then

centered and scaled before performing a principal component

analysis to identify clusters of cells. Stromal and immune cells

were annotated based on specific markers from previous studies.

The activity of DCRGs was calculated in the single-cell dataset

using the AUCell software package, and the scores were visualized

using ggplot2 to create UMAP plots and boxplots. Additionally,

Kruskal-Wallis tests were conducted between the adenoma, blood,

carcinoma, normal, and para-cancer groups using the ggpur

software package. The AUCell scores were considered to be

different between groups when the P-value was less than 0.05.

“Gene set variation analysis was performed using the GSVA
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software” package on the cell type with the highest activity of

DCRGs to investigate differentially activated metabolic pathways.

The subpopulation of cells with the highest AUC values for all

DCRGs was also analyzed using a pseudo-time sequence, and cells

were sorted based on subpopulation markers obtained from the

previous analysis. The relationship between overall cellular

expression changes was evaluated, and a single-cell pseudo-time

trajectory was generated using the monocle software package in R.

Finally, the mean expression of the seven DCRGs was calculated,

and the expression values of the DCRGs for each developmental

stage were obtained.
Cell culture

The SW480 cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM, GENVIEW, GD3103) supplemented with 10%

fetal bovine serum (FBS) and 1% penicillin/streptomycin (PS). The

NCM460 cells were grown in 1640 medium (GENVIEW, GR3101)

with 10% FBS and 1% PS (NCM Biotech, C100C5). Cells were

grown at 37 °C in an atmosphere of 5% CO2 and 95% relative

humidity, and the medium was changed every 2 days. The NCM460

cells were grown in 1640 medium (GENVIEW, GR3101) with 10%

FBS and 1% PS (NCM Biotech, C100C5). Cells were grown at 37 °C

in an atmosphere of 5% CO2 and 95% relative humidity, and the

medium was changed every 2 days. When cells reached

approximately 90% confluency, they were detached using 0.1%

trypsin-ethylenediaminetetraacetic acid (NCM Biotech, C100C1)

and seeded in a 6-well plate. Subsequently, the cells were cultured

with high glucose (HG, 50 mmol/l) or normal glucose (NG, 5.5

mmol/l) for 2 days at 37°C.
Western blot analysis

The total proteins of SW480 and NCM460 cells were prepared

using RIPA buffer containing protease and phosphatase inhibitors.

A BCA protein assay kit was used to measure protein

concentrations. 20 µg proteins were loaded per lane, separated by

electrophoresis, and then transferred to polyvinylidene fluoride

(PVDF) membranes (C3117, Millipore). The membrane was

blocked and then incubated for 1 h with b-actin (1:100000;

ABclonal, AC026), PPAR gamma (1:5000; Proteintech, 16643-1-

AP), MMP9 (1:1000; Proteintech, 10375-2-AP), TNF alpha (1:3000;

Proteintech, 60291-1-IG), TGF beta1 (1:2000; Proteintech, 21898-

1-AP), COX2 (1: 500; Proteintech, 27308-1-AP), HIF1A (1:2500;

Proteintech, 20960-1-AP) and Beta-catenin (1:10000; Proteintech,

51067-2-AP). Immunoblot analysis was performed with

horseradish peroxidase (HRP)-conjugated anti-mouse antibodies

or anti-rabbit antibodies (1:5000; ZSGB-BIO, ZB-5301, and ZB-

5305) and developed with the ECL kit (Beyotime Biotechnology,

P0018FM). The level of b-actin was used as a loading control, and

the ratios of the gray value of the target protein bands to the gray

value of the corresponding internal control bands were defined as

the expression level of the target protein.
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Enzyme-linked immunosorbent assay

After treatment in accordance with the conditions described

above, the concentration of Leukotriene B4 (LT-B4), Leukotriene

C4 (LT-C4), and Prostaglandin E2 (PG-E2) was tested using an

enzyme-linked immunosorbent assay (ELISA) kit. These ELISA kits

included Human Leukotriene B4, LT-B4 ELISA Kit (CSB-

E08033h), Human Prostaglandin E2, PG-E2 ELISA Kit (CSB-

E07965h), and Leukotriene C4 Assay Kit (H556-1). In brief, cells

were seeded into 6-well plates, followed by incubation for 2 days at

37°C. Then, the cultivating supernatant was collected, and the

presence of these factors was determined by ELISA following the

manufacturer’s protocols.
Results

Differential expression analysis and
co-expression analysis of DCRGs

First, we used DisGeNET to identify gene sets related to DM,

pancreatic cancer, liver cancer, and colon cancer (r > 0.1) and

obtained nine intersection genes. Then we used GeneCards to

search for DM, pancreatic cancer, liver cancer, and colon cancer-

related genes (r > 1) and obtained 59 intersection genes. Finally, by

taking the intersection of the nine genes from DisGeNET and 59

genes from GeneCards, we identified seven DCRGs: PPARG,

MMP9, CTNNB1, TNF, TGFB1, PTGS2, HIF1A (Figures 1A–C).

The expression of DCRGs varied among different tumors. MMP9

showed high expression in all tumors except THYM, TNF displayed

high expression in most tumors, and PTGS2 exhibited low

expression in most tumors. Meanwhile, the DCRGs exhibited no

statistical differences in MESO and UVEM (Figures 2A–H,

Supplementary Figure S1). Interestingly, the correlation analysis

revealed a correlation between HIF1A and PTGS2 (r=0.36), TGFB1

and HIF1A (r=0.3), MMP9 and TGFB1 (r=0.38), TNF and MMP9

(r=0.3, Figure 2I). Meanwhile, the seven DCRGs were used to

constitute a protein-protein interaction network (Figure 2J). As

each DCRG was associated with inflammation, we defined the

network as DCIN.
Clinical correlation analysis

To investigate the association between expression levels and the

prognosis of the seven DCRGs, we performed an overall survival

analysis of 33 cancers. Patients were divided into high-expressing

and low-expressing groups according to the median gene expression

levels. High and low expressions of the seven DCRGs were

associated with overal l survival in mult ip le cancers

(Supplementary Figure S2, Figure 3). The Kaplan-Meier survival

analysis revealed that patients with KIRC, READ, and UVM who

had high CTNNB1 levels had better overall survival (OS) rates

(P<0.001, P=0.024, and P=0.002, respectively). However, patients

with ACC, HNSC, and LGG who had high CTNNB1 were associated
frontiersin.org
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with poor OS (P=0.004, P=0.046, and P=0.0179, respectively).

Similarly, patients with SKCM who had high HIF1A levels had

better survival rates (P=0.026), but patients with LIHC, MESO, and

PCPG who had high HIF1A were associated with poor OS (P=0.004,

P=0.03, and P=0.045, respectively). Additionally, patients with

DLBC who had high levels of MMP9 had better survival rates

(P=0.017), while high MMP9 in patients with ACC, BLCA, KIRC,

and LIHC was associated with poor OS (P=0.003, p=0.03, P=0.001,

and P=0.009, respectively). Furthermore, patients with BLAC,

BRCA, KIRC, READ, and UVM who had high PPARG levels had

longer OS rates (P=0.001, P=0.04, P<0.001, P=0.003, and P=0.003,

respectively). However, high PPARG in patients with HNSC, LGG,

LIHC, PAAD, and PCPG were associated with poor OS (P=0.043,

P=0.041, P=0.014, P=0.023, and P=0.004, respectively). Patients with

COAD and PCPG who had high PTGS2 expression had longer OS

rates (P=0.028 and P=0.003, respectively), whereas high PTGS2

expression in patients with TGCT and UVM was associated with

poor OS (P=0.043 and P=0.004 respectively). Similarly, patients with

SKCM who had high levels of TGFB1 had longer survival rates

(P=0.008), while high TGFB1 in patients with LAML, LGG, MESO,

and STAD was associated with poor OS (P=0.003, P=0.03, P< 0.001,

and P=0.027 respectively). Lastly, patients with SKCM and SARC

who had high TNF expression had longer OS rates (P=0.003 and

P=0.013, respectively), whereas high TNF expression in THYM

patients was associated with poor OS (P=0.018).
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Moreover, we used Cox proportional hazard regression to

examine the prognostic effects of the DCRGs across 33 TCGA

tumors (Figure 3). The results showed that CTNNB1 was a

protective factor for KIRC (P<0.001), READ (P=0.014), and

UVM (P<0.001) and a risk factor for ACC (P=0.007), and LGG

(P=0.003). HIF1A was a protective factor for SKCM (P=0.003) and

a risk factor for LIHC (P=0.006) and MESO (p=0.04). MMP9 was a

protective factor for SKCM (P=0.009), UCEC (P=0.04) and a risk

factor for ACC (P<0.001), BICA (P=0.048), KIRC (P<0.001), LGG

(P<0.001), UVM (P<0.001), GBM (P=0.03) and LIHC (P=0.01).

PPARG was a protective factor for BLCA (P=0.01), KIRC (P<0.001),

and UVM (P=0.005) and a risk factor for HNSC (P=0.004), LGG

(P<0.001), LIHC (P=0.009), and PAAD (P=0.003). PTGS2 was a

protective factor for PCPG (P=0.04) and a risk factor for ACC

(P<0.001), CESC (P=0.01), PAAD (P=0.007), and UVM (P<0.001).

TGFB1 was a protective factor for SKCM (P=0.009) and a risk factor

for HNSC (P=0.03), KIRC (P=0.001), KIRP (P<0.001), LAML

(P<0.001), LIHC (P=0.03), LGG (P=0.003), MESO (P<0.001),

SKCM (P=0.01), TGCT (P=0.047), and STAD (P=0.03). TNF was

a protective factor for SARC (P=0.007) and SKCM (P<0.001) and a

risk factor for CESC (P=0.004), UVM (P=0.006), and THYM

(P=0.003). Notably, the prognostic effects of DCRGs varied across

different tumors, with high expression levels of the same DCRG

being associated with either a protective or a risk factor for OS in

different cancer types.
A B

C

FIGURE 1

Screening for differential DCRGs. (A) Venn diagram showing nine intersection genes of five diseases, T2DM, pancreatic cancer, liver cancer, and
colon cancer, based on DisGeNET (r > 0.1). (B) The 59 intersection genes of the five diseases based on GeneCards (r > 0.1). (C) The seven DCRGs
obtained by the intersection of DisGeNET and GeneCards.
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Gene set variation analysis of DCRGs
across cancers

To investigate the involvement of these seven DCRGs in cancer-

related pathways and the pathways related to DM and
Frontiers in Immunology 07
carcinogenesis, we performed gene set variation analysis (GSVA)

on the DCRGs across cancers. We considered pathways with | t

value of GSVA score | > 2 between tumor and control samples as

significant. Among them, the metabolism-related pathways, such as

PPAR, mTOR, VEGF, and arachidonic acid signaling pathways,
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FIGURE 2

Differential expression analysis. (A–G) The box plots showing differential expression of the seven DCRGs in normal and tumor tissues (∗∗∗ P < 0:001;
∗∗ P < 0.01; ∗ P < 0.05). (H) The heatmap showing the transcriptional level of the seven DCRGs between normal and tumor tissues in various
cancers. The gradient colors represent the log Fold Change (logFC) value. (I) The heatmap shows the pairwise correlation of the seven DCRGs.
(J) The protein-protein interaction network of the seven DCRGs.
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appeared multiple times in various cancers. Additionally, type I and

type II DM also appeared in various cancer pathways

(Supplementary Figure S2), indicating that these seven DCRGs

are closely related to DM and metabolism.
Immune cell infiltration analyses of DCRGs
across cancers

We next examined the association between the seven DCRGs

and the infiltration levels of 22 immune-related cells. Our data

showed that in most cancers, the level of immune cell infiltration

was significantly correlated with the expression of the DCRGs (|r| ≥

0.5, P < 0.01). Among them, MMP9 was associated with

macrophage M0 in 12 tumor types, PTGS2 was associated with

six immune cell types among six tumor types, and TNF with seven

immune cell types in five tumor types (Supplementary Figure S3).
Immune subtype analysis

The mRNA expression of the seven DCRGs were analyzed

using the Kruskal test in six immune subtypes across 33 TCGA

tumor types. Results showed that the expression of these seven

DCRGs varied significantly across C1-C6 subtypes in different
Frontiers in Immunology 08
cancer types (P<0.001). Specifically, CTNNB1 exhibited the

highest expression level in the C1-C6 immune subtypes

(Figure 4A). Similarly, the seven DCRGs were differentially

expressed in the C1-C6 immune subtypes of COAD (P<0.05),

with CTNNB1 exhibiting the highest expression compared to the

other six DCRGs. (Figure 4B). Moreover, we found that C6 was the

immune isoform with the highest expression level in the remaining

DCRGs, except for CTNNB1.
Stemness indices and tumor
microenvironment

The matrix fraction of the TCGA cancer samples was calculated

by applying the ESTIMATE algorithm. Spearman correlation

analysis was used to describe the correlation between the

expression levels of the DCRGs and the pan-cancer matrix score.

We found that the expression of MMP9, TGFB1, and TNF was

positively correlated with immune and stromal scores (P < 0.05, r >

0.5, Supplementary Figures S4A, B). To analyze the correlation

between the DCRGs and pan-cancer stemness characteristics, we

calculated the stemness index of the TCGA tumor samples using a

Class I logistic regression (OCLR) algorithm. Subsequently,

spearman correlation analysis was performed based on gene

expression and stemness score. Two types of dryness indices were

calculated: DNA methylation-based stemness score (DNAss) and

mRNA expression-based stemness score (RNAss). The correlation

between the two stemness indexes and the expression levels of the
A

B

FIGURE 4

Expression pattern of the seven DCRGs in six different immune
subtypes. (A) Transcriptional expression of the seven DCRGs in C1-
C6 immune subtypes across all TCGA cancers. (B) Box plots
showing the expression level of the DCRGs in the immune subtypes
in COAD (∗∗∗ P < 0.001; ∗∗ P < 0.01; ∗ P < 0.05).
A

B

FIGURE 3

Survival analysis of the seven DCRGs across cancers. (A) The
heatmap of clinical correlation analysis (overall survival) of DCRGs
(∗∗∗ P < 0:001; ∗∗ P < 0.01; ∗ P < 0.05). Only tumor types with
statistical significance are shown. The red square indicates high
gene expression is associated with a worse prognosis; the blue
square indicates low gene expression is associated with a worse
prognosis. (B) Cox proportional hazard analyses illustrate the hazard
ratios (HRs) of the seven DCRGs in 33 TCGA tumors. DCRGs with
HR > 1 were regarded as risk factors, while DCRGs with HR < 1 were
regarded as protective factors.
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seven DCRGs varied in the TCGA tumors. DNAss exhibited a

strong correlation between OV and TGFB1, THYM and PTGS2,

and TCGT and CTNNB1. RNAss demonstrated that TGFB1 was

negatively correlated with many cancer types, while CTNNB1 was

negatively correlated with THYM (Supplementary Figures S4C, D).
Mutations in the seven DCRGs
across cancers

To better understand the genomic alterations of DCRGs in

tumors, we analyzed copy number variation (CNV) data of 2,922

samples from the Pan-cancer analysis of whole genomes (ICGC/

TCGA, Nature 2020) and depicted the resulting CNV landscape.

Our findings indicated that PTGS2 and MMP9 had a higher CNV

frequency at 10%, followed by TNF and TGFB1 at 6% and 5%,

respectively (Figure 5A). Amplifications were the most common

CNV types observed for DCRGs. We then described the somatic

changes in each DCRG for each tumor to determine the situation

across different tumor types with varying mutation patterns.

Notably, DCRGs showed a high mutation frequency in

colorectal cancer and melanoma, with CTNNB1 having the

highest mutation frequency in hepatobiliary cancer (23.7%) and

uterine endometrioid carcinoma (20.8%) (Figure 5B). In

colorectal cancer, HIF1A, MMP9, and PTGS2 had the highest

mutation frequency at 5.8%, 7.7%, and 5.8%, respectively, while in

melanoma, PPARG and TGFB1 had the highest mutation

frequency at 4.7% and 1.9%, respectively. Additionally, CTNNB1

had the highest deep deletion rate across pan-cancer at 5%,

followed by TGFB1 at 3.6% in head and neck cancer and 2.2%

in non-small cell lung cancer, and TNF and PPARG in pancreatic

cancer with rates of 3.6% and 1.3%, respectively, (Figure 5C). The

deep deletion rate of other DCRGs in cancers was less than 1%.

PTGS2 and MMP9 had the highest amplification rates, with

DCRGs amplified in bladder cancer, esophagogastric cancer,

ovarian cancer, head and neck cancer, and breast cancer

(Figure 5D). Notably, MMP9 had a staggering amplification

frequency of 40.4% in colorectal cancer and 33.7% in

esophagogastric cancer, while PTGS2 had an amplification rate

of 34.1% in breast cancer.
Association of the DRCGs with the
immunomodulators, TMB and MSI

We then investigated whether the expression levels of the seven

DCRGs correlated with TMB and MSI, both of which are

intrinsically related to immune checkpoint inhibitor sensitivity.

The results showed that, except for KICH, READ, CHOL, TGCT,

and LAML, the TMB of the remaining 28 tumors was correlated

with the expression of at least one of the seven DCRGs

(Supplementary Figure S5A). Meanwhile, except for CHOL, OV,

UCS, and LAML, the MSI of the other 29 cancers was correlated

with the expression of at least one of the seven DCRGs

(Supplementary Figure S5B).
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Seven DCRGs predict the response to
cancer immunotherapy

Due to the high frequency of mutations of the seven DCRGs in

COAD, they were selected for further analysis. We analyzed the

association of the seven DCRGs with multiple cancers and 46

immune checkpoint-related genes in COAD. All 46 immune

checkpoint-related genes were associated with at least one of the

seven DCRGs. Among them, CD274 (PD-L1) was correlated with

six genes except for MMP9 (Supplementary Figure S5C).
Drug sensitivity analysis across cancers

To analyze the potential effect of the DCRGs on drug response,

we performed a Pearson correlation analysis between the

transcriptional expression of the seven DCRGs in the NCI-60 cell

line and the drug activity of 263 anti-tumor drugs retrieved from the

CellMiner database. Scatterplots (Supplementary Figure S6) sorted

by value exhibited significant correlations between drug sensitivity

and gene expression. Notably, Nelarabine and TNF showed a high

correlation (|r|=0.747). Together, our results showed that multiple

drugs were sensitive to the seven DCRGs (p<0.001, |r|>0.4).
Validation of DCRGs in single-cell data set
of colon cancer

For the evaluation of DCRG activity in single cells of colon

cancer, 12 single-cell samples were included, consisting of four

adenoma, one blood, four carcinoma, one para-cancer, and three

normal tissues (28). Six cell types were identified according to the

previous studies (Figure 6A). Figure 6B shows the top 10 marker

genes for each cell type (Figure 6B). The AUCell analysis showed

that macrophages had the highest AUC values for the DCRGs in

carcinoma and adenoma, while the lowest values were observed in

epithelial cells in para-cancer tissues (Figure 6C, Supplementary

Figure S7C). In fact, the AUC values of DCRGs differed between

adenoma, blood, carcinoma, normal, and para-cancer groups in B

cells, epithelial cells, fibroblasts, and macrophages (P<0.05).

Moreover, GSVA results indicated that the arachidonic acid

metabolism pathway was upregulated (t > 2) in the adenoma and

carcinoma tissues compared to the normal tissue. (Supplementary

Figures S7A, 6B). Furthermore, pseudo-time sequence analysis was

performed to confirm the developmental stages of the macrophage

subpopulations. Figure 6D illustrates the cell differentiation

timeline, where deeper colors represent earlier developmental

stages. The results show that the seven clusters can be roughly

divided into seven differentiation states (Figures 6E–G). Among

these, clusters 4, 1, and 6 were in the early developmental stage,

while cluster 2 was in the late developmental stage. The mean

expression of DCRGs was higher in cluster 1 and highest in cluster

2, indicating that DCRGs have higher average expression values in

the early and late stages of macrophage development, potentially

linked to macrophage differentiation.
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Verification of the seven DCRGs and
arachidonic acid pathway in vitro

To verify the expression of the DCRGs and arachidonic acid

metabolic pathways in tumors, we stimulated colon cancer and

normal intestinal epithelial cells with high glucose and physiological
Frontiers in Immunology 10
glucose levels, respectively. All seven DCRGs were significantly

elevated in the colon cancer epithelial cells under a high glucose

environment (Figures 7A–H). However, in normal intestinal

epithelial cells, there was no significant difference in the

expression of the DCRGs under a normal or high glucose

environment (Figures 7I–P). These results suggest that high
A
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FIGURE 5

Alterations in the DCRGs in cancer based on pan-cancer analysis of whole genomes. (A) Copy number variation (CNV) landscape of DCRGs in
various tumors. Each row represents a gene, and each column represents a patient. The CNV frequency of DCRGs is shown. The figure only
represents patients with DCRG alterations. The mutation rate of each gene is shown in the labels on the right. (B–D) Frequency distribution of
mutation (B), deep deletion (C), and amplification (D) in different cancer types. The numbers in the figure represent the specific mutation rate, and
the color intensity is proportional to the frequency.
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glucose stimulation can lead to increased expression of the seven

DCRGs in colon cancer epithelium, while it does not affect their

expression in normal colon epithelial cells.

For the arachidonic acid pathway, the expression of PEG2 in

colon cancer epithelial cells was significantly increased under high

glucose, while LTC4 levels were unaltered compared to the controls.

PEG2 was not significantly different in normal intestinal epithelial

cells, while LTC4 expression was significantly higher under high

glucose stimulation. Moreover, LTB4 did not exhibit significant

differences in either colon cancer or normal intestinal epithelial cells

(Figures 7Q–S).
Discussion

Numerous studies have shown that DM can promote the

occurrence and development of tumors through inflammation. In

this study, through bioinformatics analysis, we screened seven

DCRGs, including PPARG, MMP9, CTNNB1, TNF, TGFB1,

PTGS2, and HIF1A, and established a DCIN to comprehensively

understand the diabetes-inflammation-cancer interaction

(Figure 8). In addition, we found that the level of immune

infiltration, immune subtypes, tumor microenvironment,

mutation, the correlation with TMB and MSI, and the sensitivity

of immune checkpoint-related drugs differed in this DCIN.

Furthermore, the expression of DCRGs and the arachidonic acid

metabolic pathway was verified in vitro. Together, we defined a
Frontiers in Immunology 11
DCIN and illustrated the potential mechanism through which

diabetes may influence cancer.

The DCIN is composed of seven DCRGs with established

internal connections, supporting the notion of its existence.

Among DCIN, tumor necrosis factor (TNF) is a pro-

inflammatory cytokine produced and secreted by cytotoxic

lymphocytes upon tumor target recognit ion. Matr ix

metalloproteinases 9 (MMP9), a member of the MMP family, has

been widely studied in various cancers due to its critical role in the

breakdown and reconstruction of the extracellular matrix during

colorectal cancer (CRC) invasion and metastasis (29, 30). Both the

tumor cells and surrounding stromal cells can synthesize MMPs

(31). TNF-a upregulates MMP9 expression via c-Src, MAPKs, and

NF-kB pathways (32). Moreover, MMP9 regulates the vascular

endothelial growth factor (VEGF) signaling axis by cleaving

membrane-bound VEGF, resulting in increased bioavailability of

its receptor, VEGFR2 (33). Our results showed that TNF was highly

expressed in almost all tumors, confirming its carcinogenicity,

whereas MMP9 was highly expressed in all tumors except THYM,

suggesting its potential utility as a therapeutic target for

various tumors.

b-Catenin (CTNNB1) is a multifunctional protein involved in

transcription and cell adhesion (34) that affects tumors in two ways.

On the one hand, CTNNB1 promotes tumor development and

progression through Survivin, which inhibits apoptosis, promotes

cell cycle progression, and enhances angiogenesis (35). On the other

hand, CTNNB1 knockdown inhibits the Wnt/b-catenin signaling
A B
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FIGURE 6

Analysis of single-cell RNA sequencing of COAD. (A) UMAP plot of the cell clusters of GSE161277. (B) Top 10 marker genes among the eight cell
clusters. (C) AUC scores of the DCRGs among each cell type. (D) The cell differentiation timeline, where deeper colors represent earlier
developmental stages. (E) The distribution of different clusters of macrophages in the cell trajectory curve. (F) The distribution of different states of
macrophages on the cell trajectory curve. (G) Distribution of the average expression of DCRGs on the cell trajectory curve. ** P < 0.01,*** P < 0.001.
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pathway and downregulates the expression of downstream genes,

including axin 2, lymphoid enhancer-binding factor 1 (LEF1), and

cyclin D1, thereby inhibiting tumor proliferation (36). In our study,

CTNNB1 was highly expressed in all the tumors except CESC, OV,

UCEC, and UCS, confirming its carcinogenicity.

HIF-1a is part of the Hypoxia-inducible factor-1 (HIF-1) family

(37), which is a key factor regulating cell adaptation to hypoxia (38).

HIF1 can induce the expression of several pro-angiogenic factors,

including vascular endothelial growth factor (VEGF) and VEGF

receptors, FLT-1 and FLK-1. Among all these pro-angiogenic
Frontiers in Immunology 12
factors, VEGF-A, a potent endothelial mitogen, is a notable

protein since it is highly expressed in many human tumors (39,

40). However, during the later stages of tumor development, TGFb1
functions as a tumor promoter by inducing the epithelial-

mesenchymal transition (EMT) in cancer cells, resulting in

increased invasion and metastasis (41). Meanwhile, PTGS2, also

known as COX-2, contributes to angiogenesis (42). COX-2

overexpression in colon cancer cells leads to the production of

prostaglandins and the induction of pro-angiogenic factors such as

vascular endothelial growth factor (VEGF) and basic fibroblast
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FIGURE 7

Verification of the seven DCRGs and arachidonic acid pathway in COAD. (A–H) Western blots of the seven DCRGs in the SW480 cells treated with
NG or HG. (I–P) Western blots of the seven DCRGs in the NCM460 cells treated with NG or HG. (Q–S) ELISA of PCGE2, LTC4, and LTB4 in the
SW480 and NCM460 cells treated with NG or HG. * P < 0.05 compared to controls. HG, high glucose; NG, normal glucose.
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growth factor (bFGF), stimulating endothelial cell migration and

tube formation (43, 44). In our study, the high and low expression

levels of TGFb1 in different tumors exhibited significant differences,

which also reflected the dual role of TGFb1. Peroxisome

proliferator-activated receptors (PPARs) comprise three isotypes:

PPARa, PPARg, and PPARd. The PPARG gene encodes PPARg
(45). The anti-tumor functions of PPARa and PPARg are currently
inconclusive and controversial (46). Downregulation of PPARg
could inhibit the proliferation of T24 cells, which might be caused

by cell cycle arrest in the G0/G1 phase (47). PPARG has been

demonstrated to have anti-neoplastic effects by arresting the cell

cycle, causing terminal differentiation, and inhibiting inflammation

(48). Here, over-expression of PPARG was a protective factor for

five tumors and a risk factor for another five. It also confirmed that

the role of PPARG varies in the different cancer types. Moreover, we

found that high glucose stimulation can lead to increased

expression of the seven DCRGs in colon cancer epithelium in

vitro, while it does not affect their expression in normal colon

epithelial cells. These results suggest that DM may promote the

occurrence and development of tumors through DCIN. Together

with the previous studies, our established DCIN revealed the

internal relationship of each DCRG. We also verified the

expression of DCRGs in vitro.

Meanwhile, to further verify the interaction between DCRGs, we

analyzed them from different perspectives. The GSVA analysis

showed that DCRGs were closely related to the arachidonic acid

metabolic pathway. Arachidonic acid, specifically its metabolites, has

attracted much attention in cancer biology, especially in

inflammation (49). The importance of arachidonic acid in biology

lies in the fact that it can be metabolized by three different enzyme

systems, cyclooxygenases (COXs, also referred to as PGG/H

synthases), lipoxygenases (LOXs), and cytochrome P450 (CYP)

enzymes (w-hydroxylases and epoxygenases) to generate an

impressive spectrum of biologically active fatty acid mediators (50).
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The signaling of cyclooxygenase 2-prostaglandin E2-prostaglandin

E2 receptors (COX-2-PGE2-EPs) is the central inflammatory

pathway involved in carcinogenesis (51). COX is the primary

enzyme in the synthesis of eicosanoids and exists in two isoforms:

COX-1, which is ubiquitously expressed (52), and COX-2, which is

expressed predominantly in inflammatory cells and upregulated in

chronic and acute inflammations (53). Prostaglandins derived from

COX-2 contribute to cancer progression and metastasis (54). The

COX-2 expression is stimulated by different growth factors,

cytokines, and prostaglandins, which are associated with

inflammatory responses and have been shown as prognostic factors

for malignancy (55). Furthermore, upregulation of COX-2 and PGE2

has been identified in many human cancers and precancerous lesions,

and COX-inhibitory drugs have shown protective effects in colorectal

cancer (56, 57). In addition to colorectal cancer, nonsteroidal anti-

inflammatory drugs (NSAIDs) have also been associated with a

reduced risk of breast, esophageal, stomach, bladder, ovary, and

lung cancers (58, 59). We showed that the expression of PEG2 in

colon cancer epithelial cells was significantly increased under high

glucose compared to the control. In contrast, PEG2 had no significant

difference in normal intestinal epithelial cells. These results suggest

that DM may promote cancer occurrence and development through

the arachidonic acid metabolic pathway.

In the immune infiltration analysis of the seven DCRGs and 26

immune cells, we found thatMMP9 was associated with 12 tumors,

PTGS2 was associated with 7 tumors, and TNF was associated with

5 tumors. There was a positive correlation between MMP9 and all

the immune cells. These results suggest that DCRGs may influence

tumor development and prognosis through the immune cells. Our

genetic analysis showed a high frequency of copy number variations

of DCRGs, and the prognosis of the mutational group was lower

than the non-alterative group, indicating that mutations could affect

the occurrence and development of tumors. According to research,

breast cancer has been linked to mutations in MMP9 (60).

Additionally, it may promote the invasion and metastasis of

bladder cancer (61). PPARG mutations are closely associated with

digestive tract cancers (colon, stomach, esophagus, and pancreas),

melanoma, breast cancer, prostate cancer, and bladder cancer (62).

The role of these seven DCRGs mutations in different tumors needs

further investigation. Moreover, our analysis suggested that the

TMB and MSI are correlated with the expression of the seven

DCRGs in most tumors. In TNYM, a positive correlation was

observed between the expression of all DCRGs and both TMB

and MSI. However, in all DCRGs except THYM, a negative

correlation was observed between TMB/MSI and TNF expression,

indicating that the treatment strategies for TNYM may differ from

other cancers at the level of immune checkpoints. In addition, drug

sensitivity analysis suggested that the seven DCRGs potentially

affected tumor drug response. Among them, Nelarabine was

highly correlated with TNF , which has guiding clinical

significance for the selection of anti-tumor therapy. Our analysis

of immune subtypes revealed that DCRGs, in addition to CTNNB1,

exhibited a strong association with the C6 immune subtype. The C6

is the immune subtype characterized by TGF-b dominance, which

suggests that DCRs might be closely associated with the B-
FIGURE 8

The mechanistic diagram of diabetes-based cancer-associated
inflammation network (DCIN). The legend is included in the upper
right corner of the image. The double-framed line in the upper part
of the picture represents the cell membrane, and the double-
framed line in the middle circle represents the nucleus. The orange
gene represents the DCRGS screened out in this study, while the
gray gene represents an important biological factor.
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transforming growth factor. This finding is consistent with our

previous results.

To further investigate the role of the seven DCRGs in colon

cancer cells, single-cell sequencing data of colon cancer were

analyzed. As a result, the activity of the seven DCRGs, estimated by

the AUC value of each cell, was highest in macrophages. A previous

study has reported that macrophages can promote pro-tumor

inflammation by secreting pro-inflammatory cytokines.

Macrophages can induce immune responses and support tumor

growth and survival of malignant cells (63). Macrophages also play

diverse roles in cancer development, ranging from anti-tumor activity

at early stages of progression to tumor promotion in the most

commonly established cancers (64). For DM, it has previously been

suggested that hyperglycemia could enhance cancer immune evasion

by increasing O-GlcNAcylation to induce alternative macrophage

polarization (65). Thus, macrophages play a crucial role in the

development of DM and cancer. MMP9 is secreted by

macrophages and acts on PAR1 of PDAC cells to induce epithelial-

to-mesenchymal transition. This macrophage-induced mesenchymal

transition supports the tumor-promoting effect of macrophage influx,

explaining the dual contribution of these immune cells to tumor

growth (66). Studies have shown that TNF-a regulates diabetic

macrophage function through the histone acetyltransferase MOF

(67). Therefore, based on the single-cell and our experimental

validation results, we concluded that the seven DCRGs were

associated with immune inflammation, especially macrophages.

This study proposes the novel concept of DCIN, but it still has

some limitations that need to be addressed. Firstly, the study only

includes samples from China, which may limit the generalizability of

the prediction model to other populations. Secondly, the results of

this study have not been verified by other independent databases.

However, we have followed up the results with our molecular biology

experiments to make the results more convincing. Finally, the

analysis in this study focused on the correlation between the

DCRGs; however, biostatistical correlations alone cannot elucidate

direct interactions and regulatory mechanisms. Therefore, our future

experiments aim to verify the interaction of various molecules in the

DCIN and elucidate the potential mechanisms of molecular action

on tumors.
Conclusion

In this study, we constructed a DCIN for the first time (see

Figure 8), which has provided valuable insights into the potential

mechanisms by which T2DM may contribute to tumor occurrence

and development. While additional research is needed to confirm our

findings, our study results have also offered promising leads for the

development of new therapeutic strategies aimed at preventing and

treating malignant tumors.
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SUPPLEMENTARY FIGURE 1

The gene set variation analysis (GSVA) pathways of the seven DCRGs. The

length of the bar represents the t value, the blue bar represents t > 2, and the
green bar represents t< -2

SUPPLEMENTARY FIGURE 2

The survival analysis of the seven DCRGs across cancers. Kaplan-Meier plots of
DCRGs across cancers show the differential survival outcomes of high- and

low-expressing DCRGs (P < 0.05).

SUPPLEMENTARY FIGURE 3

The correlation between immune cell infiltration and the seven DCRGs across
cancers. The correlation coefficient R and the P-values are presented in the

upper left corner of each panel. Only results for P<0.5 are shown.
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SUPPLEMENTARY FIGURE 4

Correlation analysis of the DCRGs with the stemness indices and
microenvironment scores. (A, B) Heatmap showing the correlation of the

seven DCGRs’ expression with immune and stromal scores. (C, D) Heatmaps

showing the correlation of the DCRGs’ expression with stemness indices
(DNAss and RNAss) in diabetes-inflammation-cancer-network TCGA cancer

types. DNAss: DNA methylation-based stemness score, RNAss: RNA-based
stemness score. Red points represent a positive correlation, while blue points

represent a negative correlation.

SUPPLEMENTARY FIGURE 5

Correlations of the seven DCRGs with the immunomodulators, TMB and MSI.
(A)Correlations between expression of the seven DCRGs and tumormutation

burden (TMB) across cancers. (B) Correlations between expression of the
Frontiers in Immunology 15
seven DCRGs and microsatellite instability (MSI) across cancers. (C)
Correlations between expression of the seven DCRGs and the

immunomodulators in COAD.

SUPPLEMENTARY FIGURE 6

Drug response analysis. The correlation between drug sensitivity and the

DCRGs across different cancers from the TCGA database. The scatter plots

are ranked by p-values.

SUPPLEMENTARY FIGURE 7

(A) Gene set variation analysis of metabolic pathway in macrophages

between normal and adenoma tissues. (B) Gene set variation analysis of
metabolic pathway in macrophages between normal and carcinoma tissues.

(C) UMAP plot of the AUC score of each cell type.
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Glossary

ACC Adrenocortical carcinoma

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical squamous cell, carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DCIN diabetes-based cancer-associated inflammation network

DCRGs diabetes and cancer-related genes

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

DM diabetes mellitus

ESCA esophageal carcinoma

GBM glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma;

LAML acute myeloid leukemia

LGG brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

OV ovarian serous cystadenocarcinoma;

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PRAD prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

TGCT testicular germ cell tumors

THCA Thyroid carcinoma

THYM thymoma

UCEC uterine corpus endometrial carcinoma;

UCS uterine carcinosarcoma

UVM uveal melanoma.
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