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CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune

system, but they enter a hyporeactive T cell state in long-term chronic inflammation,

and how to rescue this depleted state is a key direction of research. Current studies

on CD8+ T cell exhaustion have found that the mechanisms responsible for their

heterogeneity and differential kinetics may be closely related to transcription factors

and epigenetic regulation, which may serve as biomarkers and potential

immunotherapeutic targets to guide treatment. Although the importance of T cell

exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out

that gastric cancer tissues have a better anti-tumor T cell composition compared to

other cancer tissues, which may indicate that gastrointestinal cancers have more

promising prospects for the development of precision-targeted immunotherapy.

Therefore, the present study will focus on the mechanisms involved in the

development of CD8+ T cell exhaustion, and then review the landscapes and

mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical

applications, which will provide a clear vision for the development of

future immunotherapies.
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1 Introduction

T cell exhaustion (TEX) is an effective low-response T cell state during chronic

infection. This hyporeactive state is thought to be due to the inability of pathogens to be

rapidly cleared in chronic inflammation and the continued stimulation of this specific T

cell proliferation, resulting in the upregulation of many immune checkpoints on the surface

of T cells, leading to a reduction in their proliferation and ability to capture pathogens (1,

2). Many studies have been devoted to exploring the mechanisms behind TEX, starting

with attempts to overcome its problems. Researchers have tried to explore how TEX causes

a reduction in T cell effector function and proliferation levels, as well as leading to the

expression of suppressive immune checkpoint receptors and ultimately immune escape of
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the tumor (3, 4). There is evidence that CD8+ T cell infiltration

below 2.2% predicts a fourfold higher risk of disease progression

after cancer surgery (hazard ratio (HR) = 3.84, p < 0.01), but the

proportion of CD8+ T cells does not correlate with other clinical

data, suggesting that the mechanisms that trigger differences in T

cell heterogeneity and kinetics are unclear (5, 6). Therefore, it is

particularly important to identify the molecular determinants that

regulate the number, spatial distribution, and heterogeneity of

CD8+ T cells in tumors, which could help more patients to

benefit from immunotherapy (7).

Current studies on TEX have found that the mechanisms

behind it may be closely related to transcription factors and

epigenetic regulation (8, 9). For example, in a study using a

mouse model of chronic LCMV infection, the transcription factor

TCF-1 was found to promote the function of depleted CD8+ T cells

by promoting the expression of a series of key effector function-

related transcriptional regulators, including Foxo1, Zeb2, Id3, and

Eomes (10). A study identified progressive heritable methylation

programs that limit T cell expansion and clonal diversity during

PD-1 blockade therapy, and when these programs were reversed,

TEX no longer inhibited immune checkpoint blocker (ICB) therapy

(11). These findings suggest that transcription factors and

epigenetic regulation may serve as biomarkers of CD8+ TEX and

potential immunotherapeutic targets, which would provide

precision therapy for tumor immunization patients (12).

The importance of TEX in tumor immunotherapy has been

confirmed by many studies, however, what needs more attention is

that gastrointestinal tumors are perhaps more suitable for deeper work

in this direction than other tumors. For example, a pan-cancer analysis

showed that the presence of a lower percentage of triminal CD8+ Tex

and a higher percentage of CD8+ Trm cells in STAD tissues implies

that the gastric cancer tumor microenvironment has a better

composition of anti-tumor T cells, which would point to the

development of more promising precision-targeted immunotherapies

(3, 6, 9). There are many ongoing studies on CD8+ TEX in

gastrointestinal cancers regarding immune checkpoint inhibition,

CAR T cells, and synergistic therapy with chemotherapy, but many

mechanisms are still unclear (13).

Therefore, this review will describe the origin, function,

detection modalities, and mechanisms involved in CD8+ TEX,

and review TEX in gastrointestinal cancers and related clinical

applications, which will provide a clear and comprehensive vision

for the development of future immunotherapies.
2 CD8+ T cell exhaustion

2.1 Origin and function of CD8+ T cell

CD8+ T cells are cytotoxic T lymphocytes (CTL cells) that are

produced by the body to fight against viruses, tumors, and other

pathogens (14). They produce and express ab-T cell receptors with

CD8 in the thymus and destroy them by recognizing MHC class I

on target cells (15). When the body’s CD8+ T cells or function is

diminished, anti-tumor immune function will decrease and the risk

of tumor growth and cancer metastasis will increase (16).
Frontiers in Immunology 02
CD8+ T cells develop from CD34+ hematopoietic stem cells

located in the bone marrow, which express CD2, CD5, and CD7

before leaving the bone marrow and entering the thymus to become

CD3-expressing lymphoid progenitors, and subsequently undergo a

double negative (DN) (CD8-CD4-) phase and a double positive

(DP) phase (CD8+ CD4+) and finally became single positive (SP)

CD8+ thymocytes. These cells are selected by positive and negative

clones to become CD8+ T-ab cells and are released into the

circulation (5, 17). Antigen-presenting cells such as dendritic cells

(DCs) usually present endogenous antigenic peptides in MHC class

I molecules (18). CD8+ T cells are activated by recognition of

antigenic peptides by CD8+ co-receptors on TCRs and CD8+ T cells

and activated CD8+ T cells can lead to clonal expansion of antigen-

specific CD8+ T cells, which then differentiate into effector or

memory cells(Figure 1) (19).

CD8+ T cells can exert antiviral or antitumor immune effects by

mediating direct or indirect killing responses to target cells (20, 21).

The main pathways of killing are: a) causing apoptosis of target cells

through the release of lysozyme in intercellular contacts; b) acting

on the target cell-expressed receptor Fas via Fas ligand (Fas-L),

leading to apoptosis of target cells through a cysteine-dependent

pathway; and c) indirectly inducing death of peripheral tumor cells

through the secretion of cytokines (22, 23).
2.2 Definition and mechanism of CD8+ TEX

CD8+ TEX has been used to describe the unresponsive, low-

effect state of T cells during tumor progression and is commonly

seen in advanced progressive tumors that exhibit a host-cancer cell

stalemate pattern (12, 24, 25). In the early stages of tumor

development, i.e., before sufficient numbers of cancer cells and

tumor antigens form and/or appear, tumor-reactive CD8+ T cells

may remain in a state of ignorance (26, 27). As cancer progresses,

CD8+ T cells are continuously stimulated by tumor antigens and

enter a late dysfunctional state late (28).Exhausted-like T cells

isolated in progressive tumors will exhibit tumor-infiltrating

lymphocytes (TIL) that are responsive to tumor antigens

expressing multiple inhibitory receptors and failing to produce

effector cytokines or cytotoxic molecules (29–32). The mechanism

that CD8 +T cells cannot eliminate cancer is attributed to factors

such as cancer cells and TME, etc. (33–35).

Mechanisms mediated by cancer cells include loss of MHC

expression, loss of antigen, loss or defect in antigen presentation, or

expression of inhibitory receptor ligands. Loss of MHC class I

expression of PD-L1 or other ICPs has been noted in many cancer

types (36). expression of most components of the MHC I antigen

presentation pathway is nonessential for cell survival and therefore

is usually loss of function in cancer cells, leading to T cell depletion.

transcription factors such as NLRC5, IRF1 and IRF2 are thought to

play an important role in induced MHC I transcription expression

and do not affect cell viability (37, 38). A new study indicates that

post-translational protein modification, SUMOylation, also induces

cancer cells to evade CD8+ T cell-mediated immune surveillance by

inhibiting MHC-I antigen processing and presentation

mechanisms (39).
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Mechanisms mediated by TME include TGFb, IL-10,

and metabolic interaction. Tumor microenvironment (TME) is an

ecological niche that can suppress CD8+ T cell immunometabolism

and cytotoxicity. In a study of malignant breast cancer cells, tumor-

derived extracellular vesicles could transport active TGF-b type II

receptors (TbRII) to CD8+ T cells, thereby activating SMAD3

expression in CD8 T cells, ultimately leading to TEX and

resulting in failure of immunotherapy (40). IL-10 release from

HMOX1 myeloid cells induces TEX in the glioblastoma

microenvironment (41). Cetuximab-based IL-10 fusion protein

has also been shown to prevent dendritic cell-mediated TEX by

regulating the IFN-g pathway (42). Notably the role of lactate

metabolism in the regulation of TEX is controversial. It has been

suggested that lactate increases the stemness of CD8+ T cells and

enhances antitumor immunity (43), while it has been suggested that

tumor-derived lactate inhibits the cytotoxicity of CD8+ T cells (44,

45). Therefore, finding a level of lactate that balances cytotoxic

CD8+ T cells with enhanced antitumor immunity is worth

exploring. The mechanisms of T-cell loss are also influenced by

tumor, treatment modality, and model, and research in this area is

scarce yet necessary.
2.3 Detection of CD8+ TEX

Single-cell transcriptomics is an important tool used to study

the mechanisms of CD8+ TEX in cancer (46). For example, one

study investigated the heterogeneity of high-grade serous ovarian

cancer within its TME by scRNA-seq and found high expression of

the immunosuppressive receptor TIGIT on CD8+ TEX cells. In a

mouse model, the study blocked TIGIT, leading to f slowing of
Frontiers in Immunology 03
ovarian cancer tumor growth (47).These studies could provide new

perspectives for further immunological studies and immunotherapy

of relevant tumors (47, 48).

TEX as a sign-specific cell type needs to be distinguished from

canonical functional T cell subpopulations phenotypically similar to

it [e.g., naïve T cells (TN), effector T cells (TEFF), and memory T

cells (TEME), often with great difficulty, despite the great

functional, transcriptomic, and epigenomic differences in TEX

(49, 50). This is because TEX expresses many markers that are

equally expressed by TEFF and TEME (51). However, TEX has

significant heterogeneity, such as TEX subpopulations with

ancestral-progenitor relationships, or groups with different

degrees of failure or homeostatic potential, which may be directly

associated with disease progression. And TEX has a guiding role in

the use of clinical immunosuppressants, which can be used to

determine the suitability of immunosuppressant use and to

predict the prognosis (32). Therefore, considering TEX

heterogeneity, many studies have used mass spectrometry flow

techniques (CyTOF) to perform high-dimensional number

analysis for accurate assessment of TEX [47].

Although flow cytometry and single-cell transcriptomics have

provided unprecedented insightful solutions to reveal the

mechanisms controlling CD8+ T cell function in cancer, however,

these techniques have failed to capture important spatial-spatial

information, including intercellular interactions and tissue

localization. Many new studies have now identified intra-

tumor immune ecological sites, tertiary lymphoid structures (52),

and tumor -d r a i n ing l ymph node s a s k e y s i t e s o f

intercellular communication (53), and regulation of these sites

plays an important role in the spatial determination of CD8+ T

cell function.
FIGURE 1

Development, activation, and differentiation of CD8+ T cells. This figure maps the changes in surface-specific antigens during CD8+ T cell
development and how they are activated by dendritic cells to differentiate and generate effector CD8+ T cells that attack pathogenic target cells and
eventually cause them to autophagy.
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3 Mechanism of CD8+ TEX

During acute infection, naïve CD8+ T cells are activated and

differentiate into effector CD8+ T cells, including short-lived effector

cells (SLEC) and memory precursor effector cells (MPEC) (54–56).

Effector CD8+ T cells are characterized by extensive reprogramming

of transcriptional network, epigenetic modulation, and metabolism,

and the acquisition of cardinal effector function, including changed

tissue homing, and dramatic numerical expansion (54, 55). After

the clearance of antigens, the majority of effector T cells die, and the

subset-MPEC would then convert into memory CD8+ T cells.

Memory CD8+ T cells could be reactivated easily and rapidly

when encountering the secondary infection, and their

maintenance is independent of antigen stimulation but a stem

cell-like self-renewal dependent on interleukin-7(IL-7) and IL-15

(54). Whereas during chronic infection or cancers, an altered

differentiated state of T cells appears and is termed TEX due to

persistent antigen stimulation. Exhausted CD8+ T cells have various

cardinal features, including progressive loss of effector function,

sustained upregulation of multiple co-inhibitory receptors such as

PD-1, CTLA4, LAG3, and TIM3, downregulation of co-stimulatory

receptors, and altered transcriptional network, epigenetic

modulation, and metabolism compared to functional effector cells

and memory T cells (57). Contrary to memory T cells, exhausted

CD8+ T cells respond poorly to IL-7, and IL-15, and their

persistence are via continuous stimulation of antigens (58–60),

although a minority of them might be persistent without the

continuous antigen stimulation in some contexts (61–63). Of

note, while exhausted T cells are relatively hypofunctional, they

still provide a crucial killing effect against pathogens, which exerts

inseparable roles for host-pathogen balance, hence, another thought

toward TEX has been popular recently that the generation of TEX is

a protection mechanism for hosts to avoid the inflammation

damage due to immune system hyper-activated by persistent

antigen stimulation. Whereas the generation of TEX involves

multiple factors, herein, we manage to review the correlated

studies to describe the mechanism of TEX from the perspective of

transcription factors and epigenetic modulation.
3.1 Transcriptional factors

It has been known that transcription factor T-bet and Eomes are

both essential for the differentiation of effector CD8+ T cells and

memory CD8+ T cells during acute infection, where their roles are

partially overlapping but the expression discrepancies also exist in

effector and memory CD8+ T cells, indicating that they respectively

have unique function in the development process of effector CD8+ T

cells and memory CD8+ T cells (55). In brief, early effector CD8+ T

cells (T-bet+Eomes+) increase the expression of T-bet to turn into

terminally differentiated effectors (T-bet++Eomes+), while memory

CD8+ T cells express a higher level of Eomes (T-bet+Eomes++) (64).

However, if the acute infection progresses into a chronic infection,

terminally differentiated effectors would reduce the expression level

of T-bet but express more Eomes (T-bet+Eomes+++) to execute the

exhaustion program, instead of differentiating into memory CD8+ T
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cells. T-bet and Eomes influenced the fate decision between

memory T cells and exhausted T cells. Exhausted CD8+ cells

expressed less T-bet and more Eomes versus CD8+effectors, and

higher Eomes expression seemed to predispose CD8+ effectors to

become exhausted T cells (T-bet+Eomes+++) rather than memory T

cells (T-bet+Eomes++) when encountering persistent infection.

During chronic LCMV infection, the expression pattern of T-bet

and Eomes is also closely associated with the differentiation within

the heterogenous Exhausted CD8+ T cells, and it seems that T-bet

and Eomes have antagonistic roles for Tex development (65).

Researchers found that two Tex subsets identified according to

the expression levels of T-bet and Eomes, in conjunction with PD-1,

have different residual effector functions although both subsets were

effector impaired versus memory CD8+ T cells. T-betHiEomesLoPD-

1int Tex cells could still proliferate and release medium amounts of

TNFa and IFNg, and they were potential to be reinvigorated with

anti-PD-1/PD-L1 therapy (66). Whereas T-betLoEomesHiPD-1Hi

Tex cells were less potential to proliferate, produced lower

quantities of effector cytokines, and simultaneously expressed

higher levels of other inhibitory receptors except for PD-1 and

CTLA4, including CD160, Lag-3, and Tim-3. It suggested that a

high expression level of T-bet was correlated to a progenitor-like

Tex subset with mild exhaustion performance, high expression of

Eomes was associated with a Tex subset with severe exhaustion

manifestation, and these two transcription factors have an opposite

regulatory effect on the expression of Tex markers including PD-1.

Although exactly how they influenced the fate decision between

memory T cells and exhausted T cells and the development process

of Tex remains poorly understood, more comprehensive events that

appear between T-bet and Eomes and exhaustion program have

recently been revealed by Mclane et al., which exhibited that T-bet

and Eomes competed for the same binding DNA sequences,

including the Pdcd1 (encoding for PD1) (67). A high level of

nuclear T-bet vigorously inhibited Pdcd1 transcription, while a

low level of nuclear T-bet gave rise to Eomes-mediated weaker

repression on Pdcd1 in Tex, and blocking PD-1 signaling in Tex

could upregulate T-bet level, which restored potent inhibition for

Pdcd1 transcription and T-bet associated gene expression of

activation, chemotaxis and homing (67).

In 2016, He et al. found that during chronic infection, a subset of

exhausted CD8+ T cells expressing the chemokine receptor CXCR5

could migrate into B-cell follicles, which was similar to follicular

helper T cells, and the CXCR5+ subset expressed lower amounts of

inhibitory receptors and retained more powerful cytotoxicity

compared with CXCR5- subset (68). This specific CXCR+ subset

was also observed in HIV patients, and its amount was inversely

associated with viral load. Besides, when adoptively transferred into

chronically infected mice, the CXCR+ subset exhibited a synergistic

effect with the anti-PD-L1 treatment to reduce viral load versus

CXCR- subset, which showed a greater therapeutic potential (64). In

succession, another study also reported that in the mice model with

chronic infection of LCMV, the CXCR5+PD-1+ subset expressed

more co-stimulatory molecules including ICOS and CD28 versus the

CXCR5-PD-1+ subset, and the specific subset was able to proliferate,

almost accounting for the whole proliferative burst, in response to

PD-1 signaling blockade (64). Besides, the transcription profiling
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demonstrated that the CXCR5+PD-1+ subset was highly enriched for

the transcription factor TCF-1, indicating an important role of TCF-

1 in the progenitor-like Tex subset (64). Later, multiple studies

demonstrated that the TCF-1+ subset represents the progenitors of

exhausted T cells, which proliferates more TCF-1+ progenitors, or

loses the expression of TCF-1 and differentiates into the terminally

effector subset (32, 69–71). On the one hand, TCF-1 itself functions

as a direct downstream effector of the WNT/b-catenin signaling

pathway that exerts essential roles for stem cell self-renewal, on the

other hand, the depletion of TCF1 indeed could deprive the

proliferative potential and aggravate the exhausted manifestation

of Tex cells in chronic infection or tumors (72–74). Hence, people

gradually recognized that TCF-1 seems to take up a core position to

regulate various transcription factors and further edit the exhaustion

program. Transcriptional profiling suggested that TCF-1 cKO CD8+

T cells exhibited increased TimhighBlimphigh gene expression

signatures but reduced TimlowBlimplow gene expression signatures,

indicating that TCF1 promoted the downregulation of Tim and

Blimp, and expressed lower amounts of mRNA for transcription

factors, including Bcl6, Ikzf2, and Aff3, and surface receptors such as

Ccr7, CXCR5, Il23r, Tnfsf8 (encoding CD30L) and Sell (encoding

CD62L) compared to WT CD8+ T cells (68). Microassays showed

that TCF1 down-regulated Prdm1(Blimp1) and Havcr2 (Tim3),

which might implicate the repression mechanism for Blimp1 and

Tim3 (71). On the contrary, Bcl6, a crucial regulator of follicular

helper T cell differentiation that counteracts Blimp1 activity (75, 76),

was found to be induced by overexpression of TCF1 (68).

Additionally, in the early phase of Tex development, TCF1

repressed the expression of T-bet and ID2 and promoted the

expression of Eomes, c-Myb, and Bcl-2, mediating a transcription

factor transition from Tex precursors to terminally differentiated

Tex (69).

Persistent antigen stimulation is considered necessary for the

execution of the exhaustion program, in other words, TCR activation

is indispensable for the initial maintenance of exhausted CD8+ T cells.

Whereas acute infection also requires TCR activation, hence, regarding

the outcome discrepancies, a different pattern should exist in TCR

activation between acute infection and persistent infection and tumors.

In acute infection, activation of TCR and CD28 on the surface of T cells

generates signaling cascades, which further activates transcription

factor NFAT as well as its partner AP1 to form the NFAT/AP1

complex, and the complex is crucial for the activation of CD8+ T

cells and the acquisition of various effector functions. Hence, NFAT

and AP1 are both elevated during the development of effector cells. In

contrast, in exhausted CD8+ T cells, NFAT (especially NFAT2) is

separately upregulated, while the expression level of AP1 is lower (77),

indicating that NFAT might exert its role independent of AP1 in

exhausted T cells (Figure 2). Consistently, Martinez et al. confirmed

that NFAT proteins triggered the alteration of the transcriptional

network to execute the exhaustion program, and NFAT that was

engineered as sequestered from AP1 protein could strongly induce

exhaustion (78), demonstrating that the individual NFAT exerted

essential roles in the execution of exhaustion program. Engineered

NFAT proteins were also proved to bind to the regulatory sites of

inhibitory receptors, including LAG3, PD-1, and TIM3, thus enforcing

the exhaustion program (74). Of note, in the study of Martinez et al.
Frontiers in Immunology 05
(74), the NFAT proteins were designed as sequestered from AP1

protein, and it was uncertain that individual NFAT induced the above

outcomes by itself or cooperating with other transcription factors,

maybe the modulating axis also existed between NFAT and other

molecules. A recent study showed that, in response to persistent TCR

signaling, NFAT proteins promoted the expression of IRF4 (interferon

regulatory factor 4) and BATF (basic leucine zipper ATF-like

transcription factor), and NFAT proteins could cooperate with IRF4

and BATF (NFAT/IRF4/BATF) to induce the expression of genes

involved in multiple pathways mediating exhaustion, for example,

Pdcd1(PD1),Havcr2(TIM-3), and Ctla4(CTLA-4), whereas the NFAT/

IRF4/BATF complex repressed the expression of Tcf7(TCF-1) which

was necessary for the maintenance of progenitor-like T cells in Tex,

suggesting that NFAT/IRF4/BATF complex promote the development

of terminally differentiated Tex cells through repressing TCF-1 (79).

Additionally, chronic tumor antigen stimulation as well as induced

NFAT activation could give rise to the expression of transcription

factor Tox that is highly expressed in dysfunctional tumor-specific

CD8+ T cells and exhausted CD8+ T cells during chronic infection (80,

81). Tox is a crucial center regulator of exhaustion. Ectopic expression

of Tox in effector T cells induced a transcriptional program associated

with TEX in vitro, and deletion of Tox could rescind the exhaustion

program in tumor-specific CD8+ T cells, for example, Tox-deleted

exhausted CD8+ T cells could not upregulate genes encoding for

inhibitory receptors, including Entpd1, Pdcd1, Tigit, Havcr2 and

Cd244 and reserved high expression level of TCF-1 (37). Similarly,

transcription factor NR4A was also confirmed to be induced by NFAT

in exhausted T cells, and NR4A-deficient CD8+CAR+PD-

1highTIM3high tumor-infiltration T cells exhibited upregulated

cytokine expression and reduced expression of inhibitory receptors

(82). The authors also proved the existence of positive-feedback

regulation in the expression between Tox and NR4A, thus

cooperating to promote CD8+ TEX (77). Therefore, it suggests that

Tox and NR4A are the downstream targets of NFAT and contribute to

TEX to a great extent, which might be potential to serve as therapeutic

targets for cancer control.
3.2 Epigenetic modification

Although terminally differentiated exhausted CD8+ T cells express

higher amounts of PD-1 receptor compared to initial progenitor

exhausted CD8+ T cells, anti-PD-1: PD-L1 treatment almost could

not reinvigorate the terminally differentiated CD8+ subset, suggesting

that the exhaustion program is also fixed by other factors. Focused on

the limitation of anti-PD-1:PD-L1 treatment, with genome-wide

epigenetic profiling technologies, researchers found that Tex acquired

a distinct epigenetic landscape compared to effector T cells and

memory T cells, and only ~10% of the epigenetic landscape was

remodeled after PD-1 blockade, indicating that Tex was a distinct

lineage of CD8+ T cells and the stable epigenetic landscape of Tex

might limit the current immunotherapies (83). Additionally, even in

the absence of antigens, the results remained similar (84–86). A recent

study revealed that using mice models, after transferring the Tex cells

into the infection-freemice, although partial Tex cells that were TCF-1+
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Tex progenitors acquired the transcriptional features of memory T

cells, their recall ability remained compromised versus memory T cells

and their chromatin landscape largely conserved as the exhausted state

(79). Therefore, it suggests that exhaustion could cause persistent and

stubborn epigenetic landscape alteration which is minimally

reinvigorated by PD-1 blockade or removal of antigen.

Although the precise molecular mechanism maintaining the

exhausted chromatin state remains unclear, multiple types of

research showed that in addition to serving as a transcription

factor, TOX also participates in the epigenetic remodeling in both

tumors and chronic viral infection (80, 81, 87). Transcription factor

NR4a has also been reported to drive Tex via orchestrating

epigenetic changes in CD8+ tumor-infiltrating lymphocytes (TIL)

and chimeric antigen receptor (CAR) T cells (82, 88, 89). In

addition, the de novo methyltransferase DNMT3A was also

confirmed to maintain the Tex epigenetic state (11). Ghneim

et al. found that during chronic infection, activated CD8+ T cells
Frontiers in Immunology 06
whose de novo methylation was blocked could still retain effector

functions, and even though during PD-1 blockade, the exhaustion

linked de novo DNA methylation remained preserved.

Corresponding to the differentiated degree of Tex, only the

terminally differentiated Tex TILs with high PD-1 receptors

acquired the exhaustion-linked DNA methylation (85) which

might explain the reason that the PD-1 blockade only revives

those progenitor Tex cells to some degree.
4 TEX in gastrointestinal cancer

Gastrointestinal cancer occurs in gastrointestinal tract and

accessory organs of digestive system, including esophagus cancer,

gastric cancer, colorectal cancer, and others. As gastric cancer and

colorectal cancer are leading causes of cancer death globally, present

review mainly focuses on these two kinds of cancer types (90, 91).
A

B

FIGURE 2

Mechanisms of CD8+ T cell regulation and exhaustion. (A): In acute infection, phosphorylated Lck phosphorylates CD3 and z chains, which then link
ZAP-70. ZAP-70 could phosphorylate LAT, and then LAT would bind PLCg1, which activates PIP(4,5)P2. Subsequently, in one pathway, PIP(4,5)P2
activates DAG/RAS/MAPK and AP1, in another pathway, PIP(4,5)P2 could induce the activation of Calcineurin/Ca+ and NFAT. (B): In the case
between tumor cells and CD8+ T cells, the interaction between PD1 and PDL1 interferes the original powerful immune-activated pathways, which
could induce abnormal NFAT signaling to promote Tex. Continuous TCR activation leads to the activation of calcineurin pathways, which
dephosphorylates the cytoplasmic nuclear factor of activated T cells (NFAT). The cytoplasmic NFAT would then translocate into the nucleus and
promote transcription of BATF, IRF4, Tox, and NRA4. Cytoplasmic BATF and IRF4 proteins could also cooperate with cytoplasmic NFAT protein
(NFAT/IRF4/BATF complex), which then translocates into the nucleus. The nuclear NFAT/IRF4/BATF complex could promote the transcription of
inhibitory receptor genes, including pdcd1(PD-1), Havcr2(TIM-3), and Ctla4(CTLA-4), and repress the gene Tcf7(TCF-1).
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4.1 Gastric cancer

Gastric cancer (GC) is one of the most common malignancies

and the leading cause of cancer-related mortality worldwide (92).

Unfortunately, though proven novel effective anticancer therapies

in several cancers, programmed cell death protein 1 (PD-1)

inhibitor (nivolumab) and anti-PD-L1 antibody (avelumab)

showed limited benefits in improving survival outcomes for GC

patients (93, 94). Hence, a clear understanding of the landscape of

TEX in GC is pivotal to identifying novel targets for improving

clinical management and decision-making. Figure 3 shows the

major mechanisms of T-cell exhaustion in GC.

The advancement and proliferation of single-cell RNA

sequencing (scRNA-seq) technology make it possible to exactly

map the status and differentiation trajectories of exhausted T cells in

the tumor. Recent scRNA-seq research on tumor samples and

adjacent non-tumor samples from nine untreated non-metastatic

GC patients revealed that CD8+ T cells exhibited no significant

increase of exhaustion levels and expressed low levels of exhaustion

markers, including PDCD1, cytotoxic T-lymphocyte antigen 4

(CTLA-4), HAVCR2, LAG-3, and TIGIT (T-cell immunoreceptor

with immunoglobulin and ITIM domains), which may partly

explain the limited benefit of immunotherapy among GC patients

(95). The other scRNA-seq analysis with tumor tissues, adjacent

normal tissue, and matched peripheral blood of ten primary GC

patients revealed that tumor-infiltrating CD8+ T cells reached

exhausted state via two exhaustion trajectories. Tissue-resident

memory T cells differentiate into IL-17CD8+ T cells (Tc17) and

subsequently exhausted T cells with increasing cytolytic scores,

while the blood-derived cytolytic CD8+ T cells turn to the exhausted

population with lower exhaustion scores and decreasing cytolytic
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score, which are attributed to distinct transcription programs. Tc17-

derived exhausted T cells highly express keratin KRT86, while

cytolytic-cell-derived exhausted T cells express high levels of

GZMK. As for transcription factors, PRDM1, TOX2, NR3C1,

CEBPD, ATF3, and EOMES were expressed in cytolytic-cell-

derived exhausted T cells, while BHLHE40, CREM, and RUNX2

were expressed in Tc17-derived exhausted T cells (96). The high

heterogeneity between the two studies may associate with

differences in patient populations. The degree of confidence in the

results is also limited by the limited sample sizes, which requires

further validation in large-scale scRNA-seq cohorts.

Immune checkpoint molecules and regulators exert key roles in

maintaining tolerance, preventing T cell hyperactivation, and

regulating TEX. TIGIT, an immune checkpoint expressed on the

T-cell surface, belongs to the CD28 family and binds to CD155 to

suppress T-cell activation (97). In GC, TIGIT+CD8+ T cells with

functional exhaustion occupy a higher proportion. GC tissue and

cell lines expressing CD155 deprive CD8+ T cells of glucose, and

impair CD8+ T-cell effector functions and IFNg production, which
can be rescued by additional glucose or TIGIT blockade, especially

combined with PD-1 blockade (98). As a novel immune checkpoint,

CD96 mainly binds to CD155 and impact CD8+ TEX phenotype

and immunosuppressive microenvironments, leading to poor

prognosis in GC (99, 100). PD-1 acts as a negative co-stimulatory

receptor and induces TEX via interacting with programmed death

ligand 1 (PD-L1) or PD-L2, which is recognized as the main

mechanism of tumor cells to escape anti-tumor immune reaction

(101). Elevated serum interleukin-8 (sIL-8) prominently originated

from GC-associated fibroblasts upregulates PD-1 expression in

CD8+ T cells via activating JAK2/STAT3 signaling and inhibiting

PD-1 ubiquitination through Fbxo38 down-regulation, leading to
FIGURE 3

Mainly mechanisms of CD8+ T cell exhaustion in gastric cancer. Cancer-associated fibroblasts originate IL-8 to upregulate PD-1 expression in CD8+

T cells. Ectonucleotidases CD39 and CD73 catalyze adenosine that interactives with A2aR to inhibit CD8+ T cells. PD-L1 on tumor cells interacts with
PD-1 to induce T-cell exhaustion. CD96 mainly binds to CD155 and associates with CD8+ T cell exhaustion phenotype. Gastric cancer cells
expressing CD155 deprive CD8+ T cells of glucose and impair CD8+ T cell effector functions, which can be rescued by additional glucose.
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immunosuppressive environments, lymph node metastasis, and

poor prognosis (102). FoxP3+ Tregs in GC tissues can decompose

ATP to adenosine with CD39 and CD73, and then adenosine

interactives with A2aR to induce apoptosis and inhibit immune

response and proliferation of CD8+ T cells (103, 104).

Transcriptional repressor cAMP response element modulator

(CREM) is induced by cAMP signaling pathway and positively

correlated with exhausted marker genes in gastric adenocarcinoma

(105). Dexamethasone suppress the transcription of PD-L1 and

IDO1 via nuclear translocation of GR/STAT3 complex to inhibit

TEX and immune evasion in coculture system, 3D organoid model

and humanized mouse model (106).
4.2 Colorectal cancer

There is growing evidence showing the pivotal roles of naïve,

effector, memory, and exhausted T cells in the progression of

colorectal cancer (CRC) (107). The infiltration level and

exhaustion state of CD8+ T cells in tumor microenvironments

have been recognized as two well-recognized immune escape

mechanisms reflecting the resistance levels to anti-PD1 treatment

(108, 109). Although MSI (microsatellite instable)/MSS

(microsatellite stable) status, TMB (tumor mutational burden),

POLE/POLD1 mutation, and MSI-like gene signature are widely

used as indications of whether CRC a patient should receive

immunotherapy, these features cannot fully explain anti-PD1

resistance and exhibit limited accuracy in predicting the response

to immune checkpoint inhibitor treatment, due to they only directly

or indirectly indicate the potential of high quantity of tumor-

infiltrating CD8+ T cells in tumor samples while ignoring the

exhaustion state of CD8+ T cells (110–112). Therefore, dissecting

the TEX status in the tumor microenvironment seems to occupy a

more important position in predicting the response to

immunotherapy in CRC. Figure 4 shows the major mechanisms

of T cell exhaustion in CRC.

Single-cell analyses observe exhausted T cells in CRC samples

but low or undetectable PD1 expression in eight polyps with

CODEX imaging, suggesting that TEX only appears in CRC

instead of precancerous adenomas (113). The mRNA levels of

several inhibitory immune checkpoints, transcription factors, and

other TEX-related markers are elevated in CRC tumor tissues,

including PD-1, CTLA-4, TIGIT, T cell immunoglobulin, and

mucin domain-containing protein 3 (TIM-3), CD160, CD244,

killer cell lectin-like receptor subfamily G member 1 (KLRG1),

Thymocyte selection-associated high-mobility-group box 2 (TOX2)

and TOX3, gene name for Blimp1 (PRDM1), and Ki-67, while PD-1

and CD160 are downregulated in tumor tissue of advanced stages

(114, 115). Similarly, Yassin et al. have reported that PD-1

expression increases on mucosal T cell subsets of colon and ileum

with the progression of inflammation-induced CRC in the

azoxymethane (AOM)/dextran sulphate sodium (DSS)-treated

mice. Dysplastic aberrant crypt foci in the ascending colon

increases the expression of immune checkpoint and TEX gene

PDCD1 but decreases cytotoxic T cell effector gene expression

and inhibits interferon signaling (116). Yang et al. also reported a
Frontiers in Immunology 08
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transcription factors, including NR4A1, BATF, and VDR. Due to

the persistent stimuli of tumor antigens, tumor-reactive

CD103+CD39+CD8+ T cells in CRC tumor microenvironments

display exhausted phenotypes with high expression of CTLA4,

HAVCR2, LAYN, and TOX (117). In metastatic sites of CRC, the

expression levels of PD-1 and TIM-3 are abundantly upregulated

compared to primary sites along with the elevated number of CD8+

T cells (118). The research combining single-cell mass cytometry

with transcriptome sequencing in 18 patients with MSS CRC

revealed that immunosenescent CD28−CD8+ T cells with

decreasing proliferation dominate the T cell compartment at the

immunosuppressive tumor microenvironment which takes shape

early during CRC development (119). Dynamic network biomarker

applied in a scRNA-seq data set identifies CCT6A as a biomarker for

pre-exhausted T cell subpopulation, which drives TUBA1B

expression to promote CD8+ TEX in CRC. Exhaustion status is

also induced by the receptor-ligand interactions between terminally

differentiated exhausted T cells and pre-exhausted T cells (120).

Similar to GC, higher infiltration levels of exhausted

TIGIT+CD8+ T cells are observed in CRC tumor tissues with low

levels of killer cytokines, including IFN-g, IL-2, and TNF-a, but
higher inhibitory receptors expression, such as PD-1, LAG-3, and

TIM-3. Interestingly, CRC cells can secrete TGF-b1 to promote the

expression of TIGIT, induce TIGIT+CD8+ T cell expansion, and

inhibit CD8+ T cell function (121). The expression level of CD155 is

also positively correlated with lncRNA KCNQ1OT1 in CRC cancer

cells, and knockdown of lncRNA KCNQ1OT1 downregulates

CD155 expression in HCT116 and SW620 cells, thereby

enhancing the immune response of CD8+ T cells (122).

Considered a novel immune checkpoint, the Natural Killer group

protein 2A (NKG2A) interacts with the CD94 chain to form

inhibitory receptors on NK cells and CD8+ T cells (123).

Enriching in CRC tumor tissues, NKG2A CD8+ T cells

characterize as tissue-resident T cells mainly in terminal

exhaustion status with high functional avidity but impaired

proliferative capacity (124). Galectin-9 (Gal-9) can be upregulated

by interferons and interacts with TIM-3 to induce cell death of

terminally exhausted T cells (PD-1TIM-3), but this process can be

interfered by PD-1, which contributes to the persistence of PD-

1TIM-3 T cells (125, 126). Carcinoembryonic antigen cell adhesion

molecule 1 (CEACAM1) co-expresses with TIM-3 on CD8+ T cells

to promote TEX, with TIM-3CEACAM1 CD8+ T cells exhibiting

the most dysfunctional status and least IFN-g production capability

in CRC (127).

Besides, multiple complex mechanisms are also involved in the

exhausted status of CD8+ T cells in CRC. MondoA, a member of

Mondo family transcription factors, and thioredoxin-interacting

protein (TXNIP) participate in regulating glucose metabolism and

redox state (128–130). Inhibition of MondoA–TXNIP axis induces

hyperglycolytic Th17-like regulatory T cells with reduced

immunosuppressive functions, which formulates interleukin 17A

prominent microenvironment, promotes TEX, and drives the

advancement of CRC (131). Cholesterol in the tumor

microenvironment increases endoplasmic reticulum stress and

subsequently activates XBP1 to induce transcription of immune
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checkpoint in CD8+ T cells, contributing to TEX status with

upregulated expression of PD-1, 2B4, TIM-3, and LAG-3 (132).

Ammonia accumulated in the CRC microenvironment inhibits

transsulfuration pathway and induce oxidative stress, paving the

way to impaired T cell proliferation capacity and increased TEX.

Thus, clearing tumor-associated ammonia reboots T cells and

improves anti-PD-L1 efficacy (133). Elevated in CRC cancer cells,

Matrix Gla protein (MGP) increases intracellular free Ca2+ levels,

promotes NF-kB phosphorylation, and activates PD-L1 expression,

leading to CD8+ TEX (134). PTPN2 mediates the generation of the

Tim-3 subpopulation, and loss of Ptpn2 promotes the

differentiation and formation of the Tim-3+CD8+ T cells and

increases Tim-3+CD8+ T cell responses in MC38 cancer models

(135). In MSS CRC, vascular endothelial growth factor-A (VEGF-

A) induces the expression of transcription factor TOX in T cells to

enhance the exhaustion-specific transcription program and drive

TEX (136). Interleukin-4-induced gene 1 (IL4I1) enhances the

translocation of Aryl hydrocarbon receptor (AHR) from the

cytoplasm to nuclear in CD8+ T cells to regulate gene expression

and thereby promote TEX (137). Kynurenine upregulate immune

checkpoint expression and promote TEX in CRC via upregulating

TOX expression, while IDO1 inhibitors and TOX knockdown can

restore the anti-tumor activity of CD8+ T cells (138). Cbl-b, an E3

ubiquitin ligase, is upregulated in PD1+Tim3+ exhausted T cells,

while Cbl-b deficiency leads to reduced endogenous CD8+ TEX

(139). Gut microbiome dysbiosis leads to elevated colon tumor

susceptibility with increased CD8+ IFNg T cells in precancerous

colon lamina propria but decreased CD8+ IFNg T cells in tumor

tissues, suggesting that microbial perturbations hyper stimulate
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CD8+ T cells to promote early TEX (140). CD39+CD8+ T cells

display higher PD-1 expression and partially impaired functions,

which correlates with the initial progression stages of the tumor

(141). Epigenetic mechanisms also participate in the regulation of

T-cell exhaustion. For example, downregulated histone 3 lysine 9

trimethylation and upregulated histone 3 lysine 4 trimethylation are

observed in the promoters of PD-L1 and TOX2 in CRC tumor

tissues (142). High DNA methylation levels in PDCD1 promoter

are related to upregulated NR4A1 and VDR expression in several

CD8+ T cells (117). Other components in the tumor

microenvironment can also influence the exhaustion status of T

cells. Neutrophil extracellular traps promote CD4+ and CD8+ T

cells displaying functional and metabolic exhaustion with multiple

inhibitory receptors (143). CRC-derived cross-presenting cancer-

associated fibroblasts cognately interact with CD8+ T cells to

suppress T cell activation, decrease cytotoxicity, and increase

exhaustion marker expression, which is associated with

upregulated lysosomal protease cathepsin S expression and

boosted capacity to cross-present neoantigen-derived synthetic

long peptides of cancer-associated fibroblasts (144).

Inflammatory bowel disease (IBD), including Crohn’s disease

(CD) and ulcerative colitis (UD), causes intestinal inflammation

and mucosal dysplasia, which triggers the development of IBD-

related CRC (145, 146). CD39+ and CD39+PD-1+ CD8+ T cells

accumulate in the intestinal tissue during inflammation in CD, and

the exhaustion of CD39-expressing CD8+ T cells is related to

attenuation and remission of disease activity, which agrees with

the report that TEX informs the clinical differences in adult onset

IBD (147, 148). Detailed roles of TEX in IBD deserve further
FIGURE 4

Mainly mechanisms of CD8+ T cell exhaustion in colorectal cancer. PD-1 protects exhausted T cells from Gal-9-induced cell death. CEACAM1 co-
expresses with TIM-3 to promote T-cell exhaustion. Neutrophil extracellular traps can promote T cell exhaustion. Inhibition of the MondoA–TXNIP
axis induces hyperglycolytic regulatory T cells to produce IL-17A and promotes T cell exhaustion. Cholesterol increases endoplasmic reticulum
stress and activates XBP1 to induce transcription of immune checkpoints. Ammonia induces oxidative stress and T-cell exhaustion. MGP activates
PD-L1 expression in cancer cells. Cancer cells can secrete TGF-b1 to inhibit T cell function. CD155 expression positively correlates with lncRNA
KCNQ1OT1. Cancer-associated fibroblasts upregulate lysosomal protease cathepsin S expression and boost the capacity to cross-present synthetic
long peptides, promoting T cell exhaustion.
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exploration of the in-depth mechanisms, which may explain the

likely promoting role of TEX in the course of IBD-related CRC.

With bioinformatics tools, researchers have identified multiple

dysregulated molecules related to TEX and prognosis in GC or CRC

tissues, such as CLDN10, C3AR1, ANTXR1, ANXA1, and PDPN

(149–153). However, their exact regulatory mechanisms in T cell

exhaustion remain for further validation and investigation.
5 Immune checkpoint inhibitors and
further direction

PD-1, the key coinhibitory receptor on activated T cells,

interacts with overexpressed PD-L1 on cancer cells, tumor-

infiltrating lymphocytes, and stroma cells to inhibit T cell

proliferation and function (154). CTLA-4, an inhibitory receptor

primarily expressed by T cells, binds to CD80/CD86 on antigen-

presenting cells resulting in impaired T cell functions (155). Since

ipilimumab became the world-first approved immune checkpoint

inhibitor (ICI) by the Food and Drug Administration, ICIs, mainly

including monoclonal antibodies targeting PD-1, PD-L1, and

CTLA-4, have been widely used and exhibited significant clinical

activity in a spectrum of malignancies, including GC and CRC (156,

157). Tables 1, 2 list the latest representative clinical trials of ICIs in

GC and CRC, respectively. A meta-analysis revealed that ICIs

improve overall survival (OS) and progression free survival (PFS)

for gastric/gastroesophageal junction cancer patients regardless to

combined positive score (187). ICIs also exhibit high durable
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response rates and improved survival outcomes metastatic CRC

patients with deficient mismatch repair or high microsatellite

instability (188). However, although ICI is a promising method

for GC and CRC, restricted effectiveness rate and common drug

resistance limit its clinical application (157, 188, 189). What is

worse, hyperactivated T cells induced by ICI can lead to multiple

kinds of immune-related adverse events (irAEs), such as cutaneous

toxicities, neurologic complications, ICI-associated myocarditis,

and ICI-induced type 1 diabetes (190–195). Even so, treatment-

related adverse events with ICI are less frequent and severe than

chemotherapy (196). Xu et al. have summarized several biomarkers

such as circulating blood cells, serum pro-inflammatory cytokines,

co-expression antigens, and tumor burden as risk factors for ICIs-

associated toxicities, which may help perform a timely process for

ICIs-related toxicities in clinical practice (197). Moreover, ICIs

combined with other interventions that are cytotoxic to tumor

cells, chemotherapy for example, might enhance ICIs activity and

improve clinical outcomes in GC and CRC. In a phase III clinical

trial , patients with advanced GC, GEJ, or esophageal

adenocarcinoma received nivolumab in combination with

chemotherapy (capecitabine and oxaliplatin or leucovorin,

fluorouracil, and oxaliplatin) had a longer OS, PFS, and an

acceptable safety profile than did patients receiving chemotherapy

alone (198). This synergy seems to be more pronounced in CRC.

The efficacy of PD-1/PD-L1 inhibitors is unsatisfactory in mismatch

repair proficient CRC, but patients receiving pembrolizumab

combined with maraviroc exhibited prolonged disease

stabilizations, limited clinical activity, improved treatment

efficacy, and longer overall survival than expected (173, 199, 200).
TABLE 1 Overview of the latest representative clinical trials of ICIs in gastric cancer.

Agent Target Phase Conditions Study design NCT
number Ref.

Nivolumab +
Andecaliximab

PD-1 /
MMP9

Ib gastric or GEJ adenocarcinoma
Andecaliximab monotherapy vs.
Combination therapy of
andecaliximab and nivolumab

NCT02862535 (158)

Nivolumab PD-1 III
HER2-negative, unresectable advanced or recurrent
gastric or GEJ cancer

Nivolumab plus chemotherapy versus
placebo plus chemotherapy

NCT02746796 (159)

Pembrolizumab +
eprenetapopt
(APR-246)

PD-1/
p53

Ib gastric or GEJ adenocarcinoma and other solid tumors Pembrolizumab and eprenetapopt NCT04383938 (160)

Pembrolizumab PD-1 II
localized MSI/dMMR carcinomas suitable for curative
surgery, including gastric, colon, endometrium, and
other digestive cancers

Pembrolizumab NCT04795661 (161)

Pembrolizumab PD-1 IIb advanced gastric or GEJ cancer
Pembrolizumab plus S-1 and
oxaliplatin (SOX) or S-1 and cisplatin
(SP)

NCT03382600 (162)

Pembrolizumab PD-1 III advanced gastric or GEJ cancer
Pembrolizumab vs. standard-dose
paclitaxel

NCT02370498 (163)

Pembrolizumab PD-1 III advanced gastric or GEJ cancer Pembrolizumab vs. Paclitaxel NCT03019588 (164)

Spartalizumab PD-1 II resectable gastric or GEJ adenocarcinoma
Spartalizumab in combination with
the FLOT regimen (fluorouracil,
leucovorin, oxaliplatin, and docetaxel)

NCT04736485 (165)

Camrelizumab PD-1 II gastric or GEJ adenocarcinoma Camrelizumab, apatinib, and S-1 NCT04345783 (166)

(Continued)
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TABLE 1 Continued

Agent Target Phase Conditions Study design NCT
number Ref.

SHR-1701
PD-L1/
TGFb

I advanced gastric cancer and other solid tumors SHR-1701 NCT03710265 (167)

Durvalumab +
Tremelimumab

PD-L1/
CTLA-4

Ib/II chemotherapy-refractory gastric cancer or GEJ cancer
Durvalumab plus tremelimumab or
durvalumab or tremelimumab
monotherapy

NCT02340975 (168)
F
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CTLA-4, cytotoxic T lymphocyte-associated antigen-4; GEJ, gastroesophageal junction; MMP9, Matrix metalloproteinase 9; MSI/dMMR, microsatellite instability/deficient mismatch repair; PD-
1, programmed death protein 1; S-1, tegafur–gimeracil–oteracil potassium.
TABLE 2 Overview of the latest representative clinical trials of ICIs in colorectal cancer.

Agent Target Phase Conditions Study design NCT
number Ref.

Sintilimab PD-1 Ib
DNA mismatch repair‐deficient/microsatellite
instability‐high rectal cancer

Sintilimab and hypofractionated
radiotherapy

NCT04636008 (169)

Dostarlimab PD-1 II
mismatch repair-deficient stage II or III rectal
adenocarcinoma

Dostarlimab followed by standard
chemoradiotherapy and surgery

NCT04165772 (170)

Toripalimab PD-1 II microsatellite instability colorectal cancer
Toripalimab with or without the COX-2
inhibitor celecoxib

NCT03926338 (171)

Cetrelimab PD-1 I/II
microsatellite instability-high and DNA mismatch
repair-deficient colorectal cancer and other advanced
solid tumors

Cetrelimab NCT02908906 (172)

Pembrolizumab PD-1 I mismatch repair proficient colorectal cancer
Pembrolizumab and maraviroc followed
by pembrolizumab monotherapy

NCT03274804 (173)

Pembrolizumab PD-1 Ib
microsatellite stable colorectal cancer and other solid
tumors

Ziv-aflibercept plus pembrolizumab NCT02298959 (174)

Pembrolizumab PD-1 II chemotherapy-refractory metastatic colorectal cancer
Pembrolizumab combined with
azacitidine

NCT02260440 (175)

Pembrolizumab PD-1 II advanced anal squamous cell carcinoma Pembrolizumab NCT02628067 (176)

Pembrolizumab PD-1 III
microsatellite instability-high or mismatch repair-
deficient metastatic colorectal cancer

Pembrolizumab vs. Chemotherapy NCT02563002 (177)

Nivolumab PD-1 I/Ib mismatch repair proficient colorectal cancer Nivolumab combined with regorafenib NCT03712943 (178)

Toripalimab PD-1 II locally advanced (T3-4/N +) rectal cancer
Short-course radiotherapy combined
with chemotherapy and Toripalimab

NCT04518280 (179)

Retifanlimab PD-1 II
Locally advanced or metastatic squamous carcinoma
of the anal canal

Retifanlimab NCT03597295 (180)

Durvalumab PD-L1 II microsatellite stable metastatic colorectal cancer Durvalumab and trametinib NCT03428126 (181)

Atezolizumab PD-L1 II metastatic colorectal cancer
FOLFOXIRI plus bevacizumab with or
without atezolizumab

NCT03721653 (182)

Avelumab PD-L1 II metastatic colorectal cancer
FOLFOX plus bevacizumab with or
without avelumab

NCT03050814 (183)

Ipilimumab +
Nivolumab

CTLA-
4/PD-1

II
microsatellite instability/mismatch repair-deficient
metastatic colorectal cancer

Ipilimumab plus nivolumab NCT03350126 (184)

Tremelimumab
+ Durvalumab

CTLA-
4/PD-
L1

I resectable colorectal cancer liver-only metastases
Tremelimumab and durvalumab
preoperatively followed by durvalumab
postoperatively

NCT02754856 (185)

Tremelimumab
+ Durvalumab

CTLA-
4/PD-
L1

II colon or rectum adenocarcinoma Tremelimumab plus durvalumab NCT02870920 (186)
CTLA-4, cytotoxic T lymphocyte-associated antigen-4; COX, cyclooxygenases; PD-1, programmed death protein 1.
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Nonetheless, the improved clinical benefits of combination therapy

with ICIs and chemotherapy appear to lie in the multiple chances of

response to a single agent, rather than the additive or synergistic

effects of the drugs (201). Huang et al. have reported the correlation

between clinical response of PD-1 blockade and the scale of

reinvigorated circulating exhausted CD8+ T cells that are

associated with the pretreatment tumor burden (202). These facts

may suggest that chemotherapy reduces tumor burden to decrease

antigenic load, thereby remitting TEX and improving the activity of

ICIs (Figure 5). In a nutshell, ICI has an excellent clinical

application prospect, especially combining with radiotherapy,

chemotherapy, molecular target agents or other ICIs. However,

considering the current limitations of ICI, novel treatment strategy

and productive biomarkers for anti-tumor efficacy or toxicities of

ICI need to be developed to maximize its efficacy, and deciphering

the molecular mechanisms of TEX is likely to provide a rational

avenue to reverse TEX and improve anti-tumor T cell activity. As

described in the previous section, a variety of immune checkpoints,

cytokines, and small molecule compounds are involved in the

induction and persistence of TEX in GC and CRC. This suggests

that targeting these molecules might alter the immunosuppressive

microenvironment and activate exhausted tumor-reactive T cells,

therefore, have therapeutic potential.
6 Conclusion

The funct ional s ta tes o f CD8+ T ce l l s in tumor

microenvironments have received much attention due to their

vital roles in the efficacy of immunotherapies. With the

applications of scRNA-seq, exhausted CD8+ T cells are identified
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with multiple interconnected subpopulations with discernible

heterogeneity (115). Nonetheless, the present results of scRNA-

seq research might not be representative of the general population

due to limited sample sizes and the high heterogeneity of patients,

which requires further validation in large-scale cohorts. Researchers

have also revealed numerous alters in tumor microenvironments

promote the exhaustion status of T cells in GC and CRC, such as

metabolite changes and cell communications. However, available

research on the potential roles of TEX in IBD and IBD-related CRC

is quite limited. As an inflammation-induced carcinogenesis, IBD-

related CRC have different molecular pathogenesis compared with

sporadic CRC that arises from adenoma (203). Thus, further

exploration is needed to explore the detailed roles and

mechanisms of TEX in the progression from IBD to CRC. As for

anti-cancer immunotherapy, though often seen as a barrier to

effective therapy, TEX is also an inevitable process that protects T

cells from overstimulation-related cell death in the persistence of

tumor antigens (13). Clinical trials have reported better effects of the

combination of chemotherapy and inhibitory receptors blockade

than monotherapy (198). Therefore, attenuating the progression of

TEX seems a more promising cancer treatment modality than

restoring exhausted T cells. As the current immunotherapies with

ICIs are not fully satisfactory, novel treatment strategies are needed.

In addition to PD-1/PD-L1 and CTLA-4, other immune

checkpoints have been discovered and their functions are under

investigation, which raises a fundamental question of what targets

are most suited for individualizing immunotherapy among different

patients. Multiple factors and cells regulating TEX in the tumor

microenvironment provides a broader perspective on how to inhibit

and reverse TEX and may serve as a promising avenue of synergy

with anti-cancer immunotherapy.
FIGURE 5

Mainly mechanisms of chemotherapy enhanced immune checkpoint inhibitor activity. Chemotherapy reduces antigen load by reducing tumor
burden, thereby reducing T cell exhaustion and increasing the activity of immune checkpoint inhibitors.
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