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In adipose tissue, macrophages are the most abundant immune cells with high

heterogeneity and plasticity. Depending on environmental cues and molecular

mediators, adipose tissue macrophages (ATMs) can be polarized into pro- or

anti-inflammatory cells. In the state of obesity, ATMs switch from the M2

polarized state to the M1 state, which contributes to chronic inflammation,

thereby promoting the pathogenic progression of obesity and other metabolic

diseases. Recent studies show that multiple ATM subpopulations cluster

separately from the M1 or M2 polarized state. Various factors are related to

ATM polarization, including cytokines, hormones, metabolites and transcription

factors. Here, we discuss our current understanding of the potential regulatory

mechanisms underlying ATM polarization induced by autocrine and paracrine

factors. A better understanding of how ATMs polarize may provide new

therapeutic strategies for obesity-related diseases.
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1 Introduction

Obesity has become a major public health problem because it increases the risk of many

diseases (e.g., type 2 diabetes mellitus, hypertension, osteoarthritis and several cancers) (1).

Obesity is characterized by accumulation of adipose tissue (AT), which leads to infiltration

of immune cells and chronic low-grade inflammation (2, 3). Being a major portion of AT

immune cells, adipose tissue macrophages (ATMs) are key for healthy adipose homeostasis

but can also contribute to the pathogenic progression of obesity and other metabolic

diseases (4). ATMs can be polarized into distinct phenotypes under different physiological

or pathological conditions. In addition to the pro-inflammatory M1 phenotype and anti-

inflammatory M2 phenotype (5), several novel ATM subpopulations (e.g., MMe, Mox and

LAMs) have been discovered in recent years (6–8). Polarization of ATMs are regulated by

organokines and related signaling pathways. In this article, we summarize the

characteristics and functions of different ATM subpopulations. In addition, we also
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highlight the regulatory pathways and mechanisms of ATM

polarization, providing novel insights for the treatment of

obesity-diseases.
2 Polarization and function of ATMs

Many studies have classified macrophages according to the M1/

M2 system, which is revealed by the secretory profile of cytokines and

interleukins (9). Previous studies have described a ‘‘mixed’’ M1/M2

phenotype for ATMs that can be activated into a switching phenotype

(10, 11). ATMs are mainly polarized towards the pro-inflammatory

M1 phenotype in the obesity state, conversely, in the lean state, ATMs

are polarized towards the anti-inflammatoryM2 phenotype (5, 12). As

technologies have advanced, accumulated evidence has suggested that

ATM polarization is more variable than the M1 or M2 state. Distinct

ATM subpopulations express specific markers and have unique

transcriptional profiles and functions (as summarized in Table 1).
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2.1 Classical activated macrophages (M1)

Obese AT is recognized as a low-grade, chronic inflammation

condition accompanied by accumulation of ATMs and a

phenotypic switch (2, 3). Obese adipocytes secrete various

chemokines and adipokines (e.g., MCP-1, CXCL12 and Leptin),

which recruit and switch macrophages from the M2 state to the M1

state (5). ATMs are recognized as cells that co-express F4/80 and

CD11b in mice or CD68 and CD11b in human (2, 15). Moreover,

CD11c is used as phenotypic markers of M1-ATMs, which produce

pro-inflammatory mediators like IL-1b, TNF-a and nitric oxide

(NO), acting as main effectors of inflammatory signals, impaired

adipocyte function and insulin sensitivity (13, 14). Ablation of

CD11c positive cells alleviated inflammation and improved

insulin sensitivity in obese mice (16). The significance of M1-

ATMs is also supported in human studies where CD11c positive

ATMs has been associated with glucose intolerance and metabolic

syndrome (15).
TABLE 1 Adipose tissue macrophages (ATMs) subpopulations.

M1 M2 MMe Mox LAM

Markers Human Mouse Human Mouse Human/mouse Mouse Human/mouse

CD68,
CD11c,
CD86

F4/80,
CD11b,
CD11c

CD68,
CD206,
CD163

F4/80,
CD11b,
CD301,
CD206

ABCA1,
CD36,
PLIN2

HO-1,
Txnrd1,
Srnx-1

CD9,
CD36,
TREM2

Functions Production of
reactive oxygen
species for
bacterial killing

Promotion of
preadipocyte
survival, tissue
healing, resolution
of inflammation

Eliminate dead
adipocyte debris

Response to oxidized phospholipids
(OxPLs) by upregulating Nrf2-dependent
antioxidant enzymes

Counteract inflammation and adipocyte
hypertrophy

Secreted
factors

Galectin-3,
resistin; IL-1; IL-
18; IL-6; TNF-a

IL-10,
IL-1RA,
TGF-b,
Protectin

IL-6,
TNF-a,
IL-1b (NOX2-
dependent)

Induced by IFN-g, TLR4,
Saturated FFA,
Aldosterone,
LTB4, Ceramides,
Type I interferons,
PAMP/DAMP,
LPS

Prostaglandin D2,
IL-4,
Meteorin-like,
Adiponectin,
IL-10, IL-13, T
regulatory cells,
Eosinophils,
FAHFA,
AMPK

High levels of
glucose, insulin,
and palmitate

Oxidized phospholipids, Nrf2 Trem2

Metabolic
effects

Promote IR,
Decrease UCP1

Promote insulin
sensitivity,
Increase UCP1,
Promote
mitochondrial
health

Suppression of regular energy
metabolism

Preventing adipocyte hypertrophy and
loss of systemic lipid homeostasis under
obese conditions

Dominant
polarization

Obese
adipose tissue

Lean
adipose tissue

Obese
adipose tissue

Lean
adipose tissue

Obese
adipose tissue

References (13, 14) (13, 14) (6) (7) (12)
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2.2 Alternatively activated macrophages
(M2)

Unlike pro-inflammatory M1-ATMs, M2-ATMs attenuate

inflammation to maintain adipose homeostasis (5). In the lean

state, the dominant ATMs are considered as resident macrophages

which express markers of M2 macrophages (e.g., CD206, CD301

and CD163) (2, 5). M2-ATMs are further divided into three major

subtypes: M2a, M2b and M2c (17), which express specific markers

and have unique functions. M2a-TAMs are characterized by high

surface expression of IL-R and FIZZ1, and secrete TGF-?, IGF and

fibronectin to contribute to tissue repair (18, 19). M2b-TAMs

express high levels of IL-10, CCL1 and TNFSF14, and low levels

of IL-12, exhibiting anti-inflammatory and immune-regulated

effects (20). M2c-TAMs expressing multiple markers like CD14

and TLR1, have high expression of IL-10, TGF-? and Mer receptor

tyrosine kinase, and are considered as anti-inflammatory and

phagocytic macrophages (17).
2.3 Metabolically activated macrophages

ATMs have a particular metabolically activated phenotype

called “MMe”, which exhibit a mixture of M1 and M2

characteristics. The MMe phenotype, which can be identified by

their surface markers CD36, ABCA1, and PLIN2, is stimulated by

high levels of glucose, insulin, and palmitate (6). MMemacrophages

not only promote insulin resistance (IR) via producing

inflammatory cytokines, but also clear away dead adipocyte

through lysosomal exocytosis, which protect AT from the

deleterious effects of excess free fatty acids (FFAs) (21). Therefore,

MMe macrophages perform both detrimental and beneficial

functions during obesity.
2.4 Oxidized macrophages

Recently, a novel macrophage phenotype has been identified,

known as Mox, mainly stimulated by oxidized lipids (7). High

expression of Txnrd-1, Srnx-1 and HO-1 distinguishes Mox from

the M1 or M2 phenotype. Compared with M1- and M2-TAMs,

Mox macrophages exhibit restricted bioenergetics and more

antioxidant production. Recent study has shown that Mox

macrophages are the predominant ATMs in lean AT, while more

energetic macrophages like M1- or M2-TAMs predominate during

the development of obesity (7).
2.5 Lipid-associated macrophages

Recently, a novel ATM subpopulation defined as lipid-

associated macrophages (LAMs) were discovered surrounding

apoptotic adipocytes of obese AT (8). LAMs express highly

conserved genes, including CD9, CD36, and the lipid receptor

Trem2. LAMs utilize Trem2 as an extracellular lipid sensor and
Frontiers in Immunology 03
perform protective functions to combat adipocyte inflammation,

hypertrophy, and metabolic dysfunction (22). In addition, LAMs

express many immunosuppression-related genes such as Lgals1/3,

suggesting that they may be involved in regulating inflammatory

response induced by lipid accumulation (8).
3 Organokines: Integrators of ATM
polarization

Accumulating evidences suggest that AT, liver, skeletal muscle

and gut function as endocrine organs, producing various

organokines (adipokines, hepatokines, myokines and gut

cytokines) that are capable of recruiting macrophages or

switching ATM phenotypes.
3.1 Adipokines

3.1.1 Pro-inflammatory adipokines
3.1.1.1 Leptin

AT secretes a variety of hormones/cytokines, which are called

adipokines. Leptin, the first classical adipokine, is initially

considered as a satiety signal that regulates body weight by

reducing food intake and increasing energy expenditure (23, 24).

Mice with leptin deficiency (ob/ob) or leptin receptor deficiency

(db/db) develop morbid obesity due to hyperphagia (23, 25).

However, due to leptin resistance, most forms of obesity of

animals and human are associated with higher leptin levels rather

than leptin deficiency (26).

In addition to its role in energy balance, leptin also functions as

an immunomodulatory cytokine, inducing immunologic alterations

in different cell types, including ATMs. The immunoregulatory

effects of leptin were first assessed in ob/ob mice. Macrophages from

ob/ob mice have impaired phagocytic activity and pro-

inflammatory cytokine production, and exogenous leptin

treatment improves the above defects (27). Leptin treatment in

ob/ob mice also ameliorates IR while up-regulating the expression

of M2 markers (e.g., Fizz-1, Arg-1 and Mgl-1) (28). Similarly, in

vitro leptin treatment, CD14 human macrophages up-regulates

typical M2 markers, while being able to increase the expression of

M1 markers (e.g., IL-6, IL-1?, and MCP-1) (29). These studies

suggest that leptin could be a contributor to the distinct ATMs

phenotype. Besides, leptin induces the expression of vascular cell

adhesion molecules, which can increase macrophage infiltration

into AT (30). Leptin also stimulates macrophage proliferation in a

dose-dependent manner (31), meaning obesity-associated

hyperleptinemia can increase the proliferation of ATMs. Hence,

increased leptin levels in the obese AT are, in part, responsible for

accumulation and activation of ATMs.

3.1.1.2 Resistin

The name ‘resistin’ is coined from the original observation

that it induces IR and has been proposed to link obesity and

diabetes (32). Resistin is a 12.5-kDa peptide hormone, which is
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predominantly expressed in white adipocytes in rodents whereas in

humans its main source is peripheral blood mononuclear cells

(PBMCs) and macrophages (33). In mice, circulating resistin

levels are positively correlated to obesity and IR, and resistin-

treated mice or resistin-overexpressing transgenic mice exhibit

glucose intolerance and IR (34). Conversely, resistin knockout or

resistin neutralization with antibodies improves insulin sensitivity

in diet-induced obese mice (32). However, in humans, the link

between increased resistin levels and obesity/IR remains under

debate and needs more epidemiological studies (34).

In obese conditions, there is an increase in adipocytes and

ATMs leading to increased resistin expression. Resistin induces the

expression of chemokines (e.g., CCL2 and CXCL1) as well as

adhesion molecules (e.g., ICAM-1 and VCAM-1) to promote

monocytes infiltration into a variety of tissues and organs

including AT (35). M0 macrophages originated from monocytes

can further differentiate into distinct ATM subsets, including LAMs

(8), M1 and M2 macrophages (36), under varying circumstances.

Resistin originated from adipose resident macrophages stimulates

the expression of pro-inflammatory cytokines like IL-6, IL-12 and

TNF-a (37), indicating that resistin might promote an M1-like

phenotype in ATMs. Thus, resistin works by autocrine, paracrine

and endocrine modes, and affects the accumulation and

polarization of macrophages in AT.

3.1.1.3 WISP1

Wingless‐type (Wnt)-inducible signaling pathway protein-1

(WISP1), a matricellular protein, is a novel adipokine associated

with inflammation in obesity (38–40). WISP1 levels in plasma and

subcutaneous AT are elevated in obese subjects and are positively

correlated with systemic inflammation and IR (38). WISP1 plays a

pro‐inflammatory role in AT inflammation. Stimulation of

macrophages with WISP1 induces the secretion of pro-

inflammatory cytokines (e.g., TNF-a and IL-6) and promotes M1

macrophage polarization (38). However, in adipocytes, WISP1

neither induces cytokine expression nor affects insulin signaling

(38). This suggests that WISP1 contributes to AT inflammation and

IR by regulating macrophages rather than adipocytes.

3.1.2 Anti-inflammatory adipokines
3.1.2.1 Adiponectin

As the best-known and most abundant adipokine in circulation,

adiponectin is exclusively secreted from adipocytes (41). Unlike

pro-inflammatory adipokines, which have a positive trend in

conditions of obesity, adiponectin levels are reduced in obesity

and are up-regulated after weight loss (42, 43). Many evidences

proved that adiponectin shows protective activity in obesity and IR

(44, 45).

Adiponectin acts as anti-inflammatory factor and plays

important roles in the accumulation and polarization of ATMs.

Adiponectin has been reported to promote calreticulin receptor-

dependent clearance of apoptotic adipocytes (46). Since apoptosis of

adipocytes is a key initial event that contributes to macrophage

infiltration into AT (47), the inhibition of adipocyte apoptosis using

adiponectin can suppress the infiltration of ATMs. Furthermore,
Frontiers in Immunology 04
adiponectin induces anti-inflammatory M2 macrophage

proliferation in AT by the activation of AKT signaling (48), while

suppresses pro-inflammatory M1 macrophage proliferation via

inhibiting NF-kB signaling (49). Additionally, adiponectin

induces the M1 to M2 macrophage polarization switch in AT.

Macrophages from adiponectin deficient mice display increased M1

markers and decreased M2 markers, while systemic administration

of adenovirus expressing adiponectin results in an increased

expression of M2 markers in AT (50). Overall, adiponectin

regulates the infiltration, proliferation, and polarization of ATMs,

which accounts for its anti-inflammatory properties.
3.2 Hepatokines

3.2.1 Fetuin-A
Fetuin-A is a fatty acid-binding glycoprotein that is primarily

expressed in the liver (51). Circulating Fetuin-A levels are higher in

human subjects with obesity, type 2 diabetes mellitus (T2DM) and

nonalcoholic fatty liver disease (NAFLD) (52). In obese AT, fatty

acid-binding Fetuin-A acts as an endogenous ligand of TLR4 to

promote inflammation and IR (53). By binding to the extracellular

domain of TLR4, Fetuin-A activates NF-kB signaling to induce pro-

inflammatory cytokines release and promote M1 macrophages

polarization (53, 54). Moreover, Fetuin-A also serves as a

chemoattractant, inducing the infiltration of macrophages into

AT (55).

3.2.2 GDF-15
Growth differentiation factor 15 (GDF-15), a distant member of

the TGF-b superfamily, is highly expressed in the liver (56) and AT

(57). GDF-15 has been shown to be a stress responsive cytokine

associated with obesity and diabetes (58). GDF-15 exerts its known

anti-inflammatory properties against obesity by regulating at least

in part the activation of ATMs. GDF-15 transgenic mice fed a HFD

exhibit reduced NLRP3 inflammasome activity and lower levels of

macrophage infiltration into AT (59).Recently, a study suggests that

GDF-15 plays a role in the polarization of ATMs. GDF-15

expression in macrophages is induced by IL-4, which promotes

M2 polarization of ATMs via the upregulation of oxidative

metabolism (60).
3.3 Myokines

3.3.1 Irisin/FNDC5
Irisin, a 12 kDa peptide, is a novel myokine that is cleaved from

fibronectin type III domain protein 5 (FNDC5) (61). In obese

subjects, circulating irisin levels are reduced and are related with

insulin sensitivity (62). Irisin has been reported to ameliorate

adipose inflammation via up-regulating anti-inflammatory

cytokine (e.g. , adiponectin) and down-regulating pro-

inflammatory cytokine (e.g., leptin and IL-6) (63). FNDC5

overexpression attenuates adipose tissue inflammation in HFD-

induced obese mice by inhibiting macrophage recruitment and M1
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phenotype polarization (64).Therefore, irisin’s anti-inflammatory

effect in AT includes reducing production of pro-inflammatory

cytokines, suppressing macrophage proliferation and infiltration,

and inducing M2 macrophage polarization.

3.3.2 Myostatin
Myostatin (MSTN), also termed as growth differentiation factor

8, is primarily produced by skeletal muscle, and negatively regulates

skeletal muscle mass. A recent study has reported that serum

myostatin levels are positively correlated with adipose

inflammation, obesity and IR (65). Inhibition of myostatin in

mice suppresses HFD-induced infiltration of macrophages and

reduces the expression of pro-inflammatory cytokines in AT (66).

In addition, myostatin inhibition increases irisin production and

induces M2 macrophage polarization in AT, thus suppressing

inflammation (66).
3.4 Gut cytokines

3.4.1 GLP-1
GLP-1 is a hormone secreted by intestinal L-cells and is

associated with obesity-related inflammation. GLP-1 alleviates

macrophage infiltration in AT of ob/ob mice and reduces M1-

polarized specific mRNA expression (67). Another study has shown

that GLP-1/GLP-1R signaling in macrophages suppresses M1

polarization and triggers M2 polarization (68).In light of these

findings, we speculate that GLP-1 alleviates obesity-related
Frontiers in Immunology 05
inflammation via inhibiting macrophage recruitment and

promoting M2 macrophage polarization in AT.
3.4.2 Ghrelin
Ghrelin is a gastrointestinal cytokine that increases appetite and

promotes obesity (69). A number of studies have described that

ghrelin has strong anti-inflammatory properties, however, the

effects of ghrelin in macrophages are complex. In vitro model,

ghrelin inhibits LPS-induced production of pro-inflammatory

cytokines in macrophages (70). Ghrelin’s function is mediated by

its receptors GHSR. In vivo work has demonstrated that GHSR

knockout or administration of Des-acyl ghrelin (functions as

ghrelin antagonist), in obese mice, reduces macrophage

infiltration, promotes macrophage polarization to M2 in AT, thus

suppressing adipose inflammation (71, 72). These data suggest that

Ghrelin/GHSR axis can act as a pro-inflammatory mediator in AT.
3.4.3 Other organokines
Studies have demonstrated that several other organokines,

including adipokines (pro-inflammatory: Chemerin, PGRN and

LCN2; anti-inflammatory: Omentin, Spexin, and Sfrp5),

Hepatokines (pro-inflammatory: RBP4 and DPP4; anti-

inflammatory: FGF21), Myokines (pro-inflammatory: IL-6; anti-

inflammatory: DEL-1) and insulin are important players in

regulation of the recruitment or polarization of macrophages in

AT, and thus promote inflammation associated with obesity and

metabolic disease (73, 74) (Figure 1).
FIGURE 1

Regulatory mechanisms of ATM polarization. Adipose tissue, liver, skeletal muscle, gut and pancreas secrete various organokines, which are
increased or decreased, initiating multiple downstream signaling pathways, thus affecting ATM polarization.
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4 Regulatory pathways of ATM
polarization

The past decades have revealed several key regulatory pathways

of ATM polarization.
4.1 PI3K/Akt signaling pathway

The PI3K singling cascade is a central metabolic regulator,

which is activated by metabolic stimuli including insulin, glucose,

FFAs and various organokines. ATMs are exposed to increased

levels of these stimuli in the obese state and adopts metabolism-

dependent phenotypes. Numerous studies have implicated that

PI3K/AKT singling plays an inhibitory role in TLRs-mediated

inflammation and contributes to M2 macrophage polarization

(75). Obesity is associated with increased circulating LPS, which

initiates adipose inflammation and macrophage activation by

activating TLR4 (76), suggesting PI3K/AKT singling can regulate

ATM polarization. Indeed, a recent study has demonstrated that

macrophage-intrinsic PI3K signaling promotes a beneficial ATM

population characterized by lipid uptake (77). It is worth noting

that Akt isoforms differentially contributes to macrophage

polarization, with AKT1 ablation induing M1 activation and

AKT2 ablation resulting in M2 phenotype activation (78).

However, how individual Akt isoforms are activated by PI3Ks in

the context of macrophages polarization remains to be elucidated.
4.2 C-Jun N-terminal kinase signaling
pathway

Mixed-lineage kinase 3 (MLK3) deficiency attenuates JNK

activation, reduces ATM accumulation and M1 activation in

HFD-fed mice (79). In macrophages, PPARg is efficiently

phosphorylated by JNK (80). PPARg knockout in murine myeloid

cells induces M1 activation of ATMs, obesity and IR (81). Acute

exercise improves insulin signaling in the White AT, at least in part

by inducing macrophage polarization to M2 via down-regulating

phospho-JNK (82). These studies have demonstrated that JNK

signaling plays a pivotal role in both ATM accumulation

and polarization.
4.3 JAK/STAT signaling pathway

IFNg is the best known inducer of JAK-STAT signaling (83). In

recent studies, deletion of either TRIM29 or TRIM18 increases the

release of IFNg that enhances inflammatory cytokine production

and induces M1 macrophage polarization through activating

STAT1 (84–86). SOCS proteins act as feedback inhibitors of the

JAK/STAT signaling. Myeloid SOCS3 knockout mice exhibit

prolonged activation of JAK/STAT signaling and increased
Frontiers in Immunology 06
expression of pro-inflammatory cytokines in macrophages (87).

In contrast to STAT1, STAT6 promotes M2 macrophage

polarization. Activation of STAT6 by IL-4 attenuates adipose

inflammation by inducing proliferation of local ATMs and

polarization of M2 phenotype (88).
5 Conclusion

The infiltration and polarization of macrophages in adipose

tissue are beginning to be recognized as pivotal instigators of

metabolic dysfunction and obesity. In response to over-nutrition,

endocrine organs change metabolic phenotypes, release distinct

secretome profiles, and shift adipose homeostasis into one that

promotes macrophage invasion and polarization, and supports

downstream chronic inflammation and IR.

Several endocrine organs are involved in regulation of ATM

polarization, including adipose tissue, gut, liver, skeletal muscle and

pancreas. Various organokines derived from these endocrine organs

bind to their respective receptors to initiate multiple downstream

signaling pathways (e.g., PI3K/AKT, JNK, and JAK/STAT), which

regulate ATM polarization via different transcriptional regulators

(e.g., PPARg, STAT, C/EBP and IRFs) (Figure 1).

It’s worth noting that the increase in the M1/M2 ratio of ATMs

during obesity cannot be explained simply by the transformation from

M2- to M1-phenotype macrophages but rather by the infiltration of

circulating monocytes to AT followed by differentiating into M1 and

M2 macrophages (36, 89). Mouse ATMs can be generated from

circulating monocytes classified as Ly6C+ and Ly6C− that are

generally thought to preferentially differentiate into M1 and M2

macrophages, respectively (17). Human CD14+ CD16− and CD14+

CD16+ monocytes are considered to resemble mouse Ly6C+

inflammatory monocytes, while CD14dim CD16+ monocytes

resemble Ly6C− anti‐inflammatory monocytes (17, 90). In human

obese AT, pro-inflammatory macrophages have been described as

CD14+CD16+ cells with high levels of M1 markers (91). Polarization

of inflammatorymonocytes has been implicated in the pathogenesis of

obesity-related diseases including T2DM and atherosclerosis (92, 93),

thus underlying mechanisms and approaches for resolving monocyte

polarization conducive to disease regression need to be established.

Despite the great achievements made over the past few decades, a

lot of questions on regulatory mechanisms of ATM polarization and

its physiological and pathological functions are yet to be answered.

Another limitation in the field is that current ATM-markers are

ubiquitously expressed in macrophages in different tissues but not

specifically in ATMs. More specific markers need to be identified,

which will greatly facilitate our understanding on ATMs in health

andmetabolic diseases. Our understanding of the complexity of ATM

subpopulations is inadequate since macrophages are highly plastic

and heterogeneous cell populations. New technologies, including

single-cell analysis, computational biology and bioinformatics, are

being incorporated in this field and are expected to hopefully help

address those challenges. With increasing understanding of

regulatory mechanisms of ATM polarization, novel insights and
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treatment strategies should emerge in the prevention of obesity-

related diseases.
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