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Effects of dietary tryptophan on
the antioxidant capacity and
immune response associated
with TOR and TLRs/MyD88/
NF-kB signaling pathways in
northern snakehead, Channa
argus (Cantor, 1842)

Xin Zhang, Anran Wang, Enhui Chang, Bei Han, Jie Xu, Yu Fu,
Xiaojing Dong and Shuyan Miao*

Aquaculture Nutrition and Feed Laboratory, College of Animal Science and Technology, Yangzhou
University, Yangzhou, China
Introduction: Dietary tryptophan (Trp) has been shown to influence fish feed

intake, growth, immunity and inflammatory responses. The purpose of this study

was to investigate the effect and mechanism of Trp on immune system of

juvenile northern snakehead (Channa argus Cantor, 1842).

Methods: A total of 540 fish (10.21 ± 0.11 g) were fed six experimental diets

containing graded levels of Trp at 1.9, 3.0, 3.9, 4.8, 5.9 and 6.8 g/kg diet for 70

days, respectively.

Results and Discussion: The results showed that supplementation of 1.9-4.8 g/

kg Trp in diets had no effect on the hepatosomatic index (HSI) and renal index

(RI), while dietary 3.9 and 4.8 g/kg Trp significantly increased spleen index (SI) of

fish. Dietary 3.9, 4.8, 5.9 and 6.8 g/kg Trp enhanced the total hemocyte count

(THC), the activities of total antioxidant capacity (T-AOC) and superoxide

dismutase (SOD). Malondinaldehyde (MDA) levels in the blood were

significantly decreased by consuming 3.9 and 4.8 g/kg Trp. Fish fed with 3.0

and 3.9 g/kg Trp diets up-regulated interleukin 6 (il-6) and interleukin 8 (il-8)

mRNA levels. The expression of tumor necrosis factor a (tnf-a) was highest in fish

fed with 3.0 g/kg Trp diet, and the expression of interleukin 1b (il-1b) was highest

in fish fed with 3.9 g/kg Trp diet. Dietary 4.8, 5.9 and 6.8 g/kg Trp significantly

decreased il-6 and tnf-a mRNA levels in the intestine. Moreover, Trp

supplementation was also beneficial to the mRNA expression of interleukin 22

(il-22). Additionally, the mRNA expression levels of target of rapamycin (tor), toll-

like receptor-2 (tlr2), toll-like receptor-4 (tlr4), toll-like receptor-5 (tlr5) and

myeloid differentiation primary response 88 (myd88) of intestine were

significantly up-regulated in fish fed 1.9, 3.0 and 3.9 g/kg Trp diets, and down-
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regulated in fish fed 4.8, 5.9 and 6.8 g/kg Trp diets. Dietary 4.8 and 5.9 g/kg Trp

significantly increased the expression of inhibitor of nuclear factor kappa B kinase

beta subunit (ikkb) and decreased the expression of inhibitor of kappa B (ikba),
but inhibited nuclear transcription factor kappa B (nf-kb) mRNA level.

Collectively, these results indicated that dietary 4.8 g/kg Trp could improve

antioxidant capacity and alleviate intestinal inflammation associated with TOR

and TLRs/MyD88/NF-kB signaling pathways.
KEYWORDS

tryptophan, antioxidant capacity, TOR signaling pathway, TLRs/MyD88/NF-kB signaling
pathway, northern snakehead Channa argus
1 Introduction

Amino acids play a significant role in regulating growth,

immunity and intestinal health of animals (1, 2). As the lowest

concentration of essential amino acids in most common protein

sources (3), dietary tryptophan (Trp) has been found to influence

the feed intake, growth, immunity and inflammatory responses of

fish (4–12), while the regulatory mechanisms need to be

further studied.

When fish are subjected to oxidative stress, the content of reactive

oxygen species (ROS) in fish increases (13, 14), which can attack

macromolecules such as proteins and nucleic acids in the organism,

leading to oxidative damage (15). In addition, the lipid peroxidation

of ROS with polyunsaturated fatty acids (PUFA) in the cell

membrane, and the end products of peroxidation, such as

malondialdehyde (MDA), have toxic effects on cells (16, 17). Total

antioxidant capacity (T-AOC), superoxide dismutase (SOD) and

catalase (CAT) are important components of the antioxidant

defense system in fish, which can remove excess ROS in the body,

and maintain normal physiological and life activities (16, 18).

Supplementation of amino acids in the diet has improved

antioxidant capacity and reduced oxidative stress in several fish

(19–21). Study has been demonstrated that dietary Trp improved

the activity of plasma antioxidant enzymes in juvenile blunt snout

bream (Megalobrama amblycephala) (22). Dietary Trp has been

reported to prevent the increase of MDA content in grass carp

(Ctenopharyngodon idella) (23). However, the effect of dietary Trp on

the enzymatic and nonenzymatic antioxidant capacity of northern

snakehead, Channa argus (Cantor, 1842) remains to be investigated.

Intestine performs multiple functions, including digestion and

absorption of nutrients, recognition of external factors, and signal

transduction related to innate and adaptive immunity (24). As is

well-known, intestinal cytokines are closely related to intestinal

health (25). According to the research, the production of pro-

inflammatory cytokines, such as interleukin 1 (IL-1), interleukin 6

(IL-6), and tumor necrosis factor-a (TNF-a), play a significant role
in the development of intestinal inflammation (26). Accumulating

evidence indicates that amino acids have powerful regulatory roles

in cell signaling and mRNA translation (27, 28). Trp was reported
02
to exert beneficial regulatory function in mucosal growth or

maintenance, as well as alleviation of intestinal inflammation by

5-hydroxytryptophan (5-HT) (29). Target of rapamycin (TOR) and

nuclear factor-kappa B (NF-kB) signaling pathways have been

considered to have momentous functions in cell proliferation,

differentiation, growth, and metabolism (30, 31). In addition, a

large number of studies have shown that various amino acids can

regulate intestinal inflammation through the TOR or NF-kB
signaling pathway (32–34). Glutamine was found to attenuate

intestinal inflammation dependent on its function via the

mechanistic target of rapamycin (mTOR) and NF-kB signaling

pathways (35, 36). Studies have shown that when the TLRs/MyD88/

NF-kB signal pathway is inhibited, the inflammatory response in

Oreochromis niloticus decreases (37). However, there are few

reports on the effects and mechanisms of dietary Trp on

immunoregulation of Channa argus , which need to be

further investigated.

C. argus is one of the main economic species in China, due to its

rich edible and medicinal value (38). The production of C. argus in

2021 was about 548,500 tons (39). To our knowledge, limited

information about the nutritional immunity of C. argus is

available (40, 41). In our previous research, based on the second-

degree polynomial regression analysis of specific growth rate and

feed efficiency against dietary Trp levels, the optimum dietary Trp

requirements for C. argus were respectively estimated to be 4.6 and

4.5 g/kg (42). Therefore, in the present study, we investigated the

effects of different dietary Trp levels on the antioxidant capacity and

intestinal health of C. argus, and discussed its possible mechanisms

of immune regulation by analyzing the expressions of related genes

of the signaling pathways.
2 Materials and methods

2.1 Experimental diets

The formulation and proximate composition of the basal diet

are shown in Table 1. Fish meal, poultry by-product meal and

mixed L-amino acids were chosen as the main protein sources, fish
frontiersin.org
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oil and soybean oil were chosen as the main lipid sources. 1.0, 2.0,

3.0, 4.0 and 5.0 g/kg diet Trp (Sinopharm Chemical Reagent Co.,

Ltd, SHH, CHN) were added into the basal diet to produce five

experimental diets, respectively. Trp supplement is balanced with

glutamate, accounting for 1% of the diet. Prior to the addition of oil

and water, all raw ingredients were ground through a 246-micron

sieve, then were fully mixed and extruded into particles with

diameter of 2.0 × 3.0 mm. Finally, all diets were dried at 40°C

and stored at -20°C until use.

Amino acid contents of diets were analyzed with automatic amino

acid analyzer (L-8900, Hitachi, Japan). The amino acid profile of the

basal diet is presented in Table 2. The final Trp content in six diets are

1.9, 3.0, 3.9, 4.8, 5.9 and 6.8 g/kg, respectively.
Frontiers in Immunology 03
2.2 Fish and culturing conditions

Healthy C. argus were purchased from a commercial hatchery

in Guangdong, China. Before the trial, fish were acclimated to

experimental conditions in the greenhouse in Yangzhou University

with a water-recirculating system, and fed with the basal diet for two

weeks. Then, 540 fish with initial weight of 10.21 ± 0.11 g were

randomly assigned to 18 cages (1 m × 1 m × 80 cm) with 30 fish in

each cage, and three cages of fish were randomly provided for each

experimental diet. During the feeding trial, all fish were fed at 8:00

and 17:00 daily at apparent satiation level. Feed consumption and

fish mortality were recorded every day. The water dissolved oxygen

was 6.2-6.6 mg/L and the temperature was 25.5-28.5°C. All

experimental protocols were approved by the Animal Care

Advisory Committee of Yangzhou University.
2.3 Sample collection and analysis

After 70 days feeding trial, all C. argus were fasted for 24 h, then

anaesthetized by MS-222 solution (250 mg/L, Sigma). Liver, head

kidney and spleen samples were collected from 10 fish in each cage

and weighed to calculate the hepatosomatic index (HSI), renal index

(RI) and spleen index (SI). Blood samples were collected in heparin

sodium-anticoagulant tubes from 10 fish in each cage and divided

into two parts, one part was prepared for the determination of
TABLE 1 Formulation and proximate analysis of the basal diet (g/kg diet).

Ingredient Content

Fish meal (70.2% crude protein) 105.00

Poultry by-product meal (66.5% crude protein) 200.00

Wheat meal (12.0% crude protein) 150.00

Gelatin (97.5% crude protein) 40.00

Yeast powder (58.2% crude protein) 30.00

Wheat bran (18.6% crude protein) 110.00

Fish oil 25.00

Soybean oil 30.00

Vitamin mixture a 15.00

Mineral mixture b 15.00

Amino acid mixture c 150.00

Calcium dihydrogen phosphate 10.00

Choline chloride 10.00

Cellulose 99.00

Dimethyl-b-propiothetin 1.00

Composition (% dry weight basis)

Moisture 7.00

Crude protein 48.56

Crude lipid 10.38

Crude ash 10.04

Carbohydrate1 24.02

Gross energy2, kJ/g 19.72
a.Vitamin premix (mg/kg diet): vitamin B1, 25 mg; vitamin B2, 45 mg; vitamin B12, 10 mg;
vitamin B6, 20 mg; vitamin K, 10 mg; vitamin A, 32 mg; vitamin C, 2000 mg; vitamin D3, 5 mg;
vitamin E, 240 mg; niacin acid, 200 mg; folic acid, 20 mg; biotin, 60 mg; calcium pantothenate,
60 mg; micocrystalline cellulose 12273 mg.
b Mineral premix (mg/kg diet): inositol, 800 mg; MgSO4·H2O, 1200 mg; CuSO4·5H2O, 10 mg;
FeSO4·H2O, 80 mg; ZnSO4·H2O, 50 mg; MnSO4·H2O, 45 mg; CoCl2·6H2O, 50 mg; Ca(IO3)2,
60 mg; Na2SeO3, 20 mg; zeolite powder, 12685 mg.
c Amino acid mixture (g/kg diet): arginine, 9.98 g; histidine, 3.37 g; isoleucine, 9.91 g; leucine,
18.60 g; lysine, 23.52 g; methionine, 6.27 g; cysteine, 10.27 g; phenylalanine, 7.57 g; threonine,
10.79 g; valine, 8.48 g; aspartic acid, 28 g; glycine, 14 g.
1 Carbohydrate (%) = 100 - (% crude protein + % crude lipid + % moisture + % ash).
2 Calculated based on 17.2 kJ g−1 carbohydrate; 23.6 kJ g−1 protein and 39.5 kJ g−1 lipid
according to the method described in a previous study (43).
TABLE 2 The amino acid profile of the basal diet (% dry weight).

Amino acid Amino acid composition of basal diet

Essential amino acids (EAAs)

Lysine 4.29

Methionine 0.99

Arginine 2.89

Phenylalanine 2.18

Histidine 1.01

Isoleucine 2.04

Leucine 3.93

Threonine 2.21

Valine 2.10

Tryptophan 0.19

Non-essential amino acids (NEAAs)

Aspartic acid 5.06

Glutamic acid 4.65

Serine 1.22

Glycine 4.15

Alanine 2.01

Tyrosine 0.87

Cysteine 1.10
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malondinaldehyde (MDA) value and the antioxidant enzymes

activity, including superoxide dismutase (SOD), catalase (CAT) and

total antioxidant capacity (T-AOC), another part was prepared for

the determination of total hemocyte count (THC). The whole

intestine samples were collected from 5 fish in each cage for

determination of the relative mRNA levels of genes, including

tumor necrosis factor a (tnf-a), interleukin 1b (il-1b), interleukin 6

(il-6), interleukin 8 (il-8), interleukin 22 (il-22), target of rapamycin

(tor), toll-like receptor-2 (tlr2), toll-like receptor-4 (tlr4), toll-like

receptor-5 (tlr5), myeloid differentiation factor 88 (myd88), inhibitor

of nuclear factor kappa B kinase beta subunit (ikkb), inhibitor of

kappa B (ikba), nuclear transcription factor kappa B (nf-kb).
The proximate composition of the ingredients and diet,

including the moisture, crude protein, crude lipid and crude ash

were determined using standard procedures of the AOAC (44).

The content of amino acids in ingredients and diet was

determined by the method of Rajendra (45). THC was measured

and calculated according to Sierra et al. (46). MDA value and the

antioxidant enzymes activity were measured using commercial kits

provided by Jian Cheng Bioengineering Institute, Nanjing, China.

The relative mRNA level of genes was analyzed by RT-qPCR

method according to Miao et al. (47). The cDNA sequences of

the relevant genes were queried in the NCBI, and all primers were

designed using Primer Premier 6. All specific primers for

genes are provided in Table 3. b-actin was chosen as the internal

reference gene based on the preliminary tests and Norm Finder

algorithms (48, 49).
2.4 Calculations and statistical analysis

Hepatosomatic index (HSI), spleen index (SI), and renal index

(RI) were calculated as following:
Frontiers in Immunology 04
HSI   ( % ) = 100� wh

wb

SI   ( % ) = 100� ws

wb

RI   ( % ) = 100� wr

wb

Wb: fish weight (g); Wh: liver weight (g); Ws: spleen weight (g);

Wr: head kidney weight (g)

After homogeneity variance tests by SPSS 18.0 (SPSS Inc.,

Chicago, IL, USA), the data (means ± S.D.) were subjected to a

one-way analysis of variance (ANOVA) by Tukey’s multiple

comparison test to assess the significant differences among the

treatments at P < 0.05. In addition, to determine if the effect was

linear and/or quadratic, a follow-up trend analysis using orthogonal

polynomial contrasts was performed (50).
3 Results

3.1 Organ index

The effects of dietary Trp on organ index and THC of C. argus

are shown in Figure 1. The HSI and RI in fish fed the 1.9, 3.0, 3.9

and 4.8 g/kg Trp diets were significantly higher than that in fish fed

the 5.9 g/kg Trp diet (P < 0.05), and there was no significant

difference among fish fed the 1.9, 3.0, 3.9 and 4.8 g/kg Trp diets (P >

0.05). The SI and HSI of fish increased at first and then decreased as

Trp content increased. Fish fed 3.9 and 4.8 g/kg Trp diets had the

highest SI. There were significantly negative linear and positive

quadratic trends between the dietary Trp levels and the dependent

variables including HSI, SI and RI (P < 0.05).
TABLE 3 Primers sequence for RT-qPCR.

Gene Forward primer (5’-3’) Reverse primer (5′–3′)

b-actin CACTGTGCCCATCTACGAG CCATCTCCTGCTCGAAGTC

tor GAGCCTCTCTCATCCTCACCAC GATTCATTCCTTTCTCTTTAGCCA

tlr-2 CTGGACGAATCATCGAATCACCT AACTTTGGCTTCCTCTTGGCTCT

tlr-4 GGAGGAGACAGAAGGTGTAGATTTG AGGTTGTGATCTTGGGCTGAGTG

tlr-5 ACCTCTTCCGCTGTTGTTTCG AGTGAGCCACCTTCCCTACCA

myd88 TGTCCGAGGTGGAAAGAAGTG TCAAAGTCGCTCTGGCAGTAG

ikkb ATCACAGAGCAACCCCTTTT CCACTGTAGTTAGGGAAGGA

ikba AAAATGTTACCGTGCCAGGAC ATGTATCACCGTCGTCAGTC

nf-kb CAGCCAAAACCAAGAGGGAT TCGGCTTCGTAGTAGCCATG

tnf-a ACAATACCACCCCAGGTCCCA ACGCAGCATCCTCTCATCCAT

il-1b ATGACATGCAATGTGAGCAAAAT TTAACTCGTATGCTGAATGGTGA

il-6 CATGGAGCACTCAAAGAGGATAG CTGAGGTGGAGGTAGTGTTGTCG

il-8 GAGTCTGAGCAGCCTGGGAGT CTGTTCGCCGGTTTTCAGTG

il-22 CAGGCTGTGCAGACGGAGGAAGA GCGTGGTGATGGTCGTGATAGTGAG
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1149151
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1149151
3.2 Total hemocyte count and hematologic
antioxidant-related parameters

The effects of dietary Trp level on THC and the hematologic

antioxidant-related parameters are shown in Figure 2. The THC

levels in C. argus increased as Trp levels increased until the dietary

Trp level reached 3.9 g/kg, then began to decrease when the dietary

Trp level exceeded 4.8 g/kg, and had significantly positive linear and

negative quadratic trends with dietary Trp levels (P < 0.05).

With the increase of Trp, the activities of SOD, CAT and T-

AOC were increased first and then decreased. SOD reached the

highest activity in fish fed the diet with 3.9 g/kg Trp, and T-AOC

reached the maximum activity in fish fed the 3.9 and 4.8 g/kg Trp

diets (P < 0.05). However, the highest CAT activity was showed in

fish fed the diet with 3.0 g/kg Trp (P < 0.05), but there was no

significant difference between the fish fed the 1.9 and 3.9 g/kg Trp

diets (P > 0.05), and the activities of CAT in fish fed the 1.9-3.9 g/kg

Trp diets were significantly higher than that in other fish (P < 0.05).

There were significantly linear and positive quadratic trends
Frontiers in Immunology 05
between the dietary Trp levels and the dependent variables

including SOD, T-AOC and CAT (P < 0.05). However, the MDA

contents had positive quadratic trend with dietary Trp levels (P <

0.05). The MDA contents in fish fed the 3.9 and 4.8 g/kg Trp diets

were significantly decreased compared with those in fish fed the 1.9,

3.0 and 6.8 g/kg Trp diets (P < 0.05), and there was no significant

difference with fish fed the 5.9 g/kg Trp diet (P > 0.05).
3.3 Relative mRNA expression of genes
related to intestinal inflammatory factors

As shown in Figure 3, dietary Trp level significantly affected the

relative expressions of genes related to intestinal inflammatory

factors, including interleukins and TNF-a (P < 0.05).

The expressions of tnf-a, il-6 and il-8 increased first and then

decreased with dietary 1.9-4.8 g/kg Trp. There were significantly

negative linear trends between the dietary Trp levels and the

dependent variables including tnf-a and il-6 (P < 0.05). For il-6
B

C

A

FIGURE 1

Effects of dietary tryptophan with different levels on organ index of C. argus (means ± S.D. of three replications). Bars with different letters indicate
significantly among the treatments (P < 0.05). (A) Hepatosomatic index (HSI); (B) Spleen index (SI); (C) Renal index (RI).
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and il-8, the expressions of them in fish fed the 4.8 g/kg Trp diet were

significantly lower than those fed with 1.9, 3.0 and 3.9 g/kg Trp diets

(P < 0.05), and the expressions of them were higher in fish fed the 3.0-

3.9 g/kg Trp diets compared with 1.9 g/kg Trp diet group (P < 0.05).

The expression of tnf-a was highest in fish fed 3.0 g/kg Trp diet

and significantly decreased in fish fed 3.9 and 4.8 g/kg Trp diets

compared to fish fed the basal diet (P < 0.05). The expression of il-1b
in fish fed diets with 3.0, 4.8, 5.9 and 6.8 g/kg Trp showed a
Frontiers in Immunology 06
decreasing trend compared with the control group, but there

was no significant difference except for dietary 6.8 g/kg Trp

(P > 0.05). There were significantly negative quadratic trends

between the dietary Trp levels and the dependent variables

including il-1b, il-6 and il-22 (P < 0.05). The higher expression of

il-22 was found in fish fed diets with 3.0-4.8 g/kg Trp (P < 0.05), and

there was no significant difference between the fish fed diets with 3.0-

4.8 g/kg Trp (P > 0.05).
B

C D

E

A

FIGURE 2

Effects of dietary tryptophan different levels on total hemocyte count and hematologic antioxidant parameters of blood in C argus (means ± S.D. of
three replications). Bars with different letters differ significantly among the treatments (P < 0.05). (A) Total hemocyte count (THC); (B) Superoxide
dismutase (SOD); (C) Catalase (CAT); (D) Total antioxidant capacity (T-AOC); (E) Malondialdehyde (MDA).
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3.4 Relative mRNA expression of
genes related to the intestinal target
of signaling pathways

As shown in Figure 4, there were significantly linear

and positive quadratic trends between the dietary Trp levels and

the expressions of tor, tlr-2, tlr-4, tlr-5, myd88, ikba and ikkb
(P < 0.05).
Frontiers in Immunology 07
The expressions of tor, tlr-2, tlr-4, tlr-5 and myd88 were all

significantly increased with the dietary Trp increasing from 1.9 to

3.9 g/kg, and then decreased (P < 0.05). The expressions of tlr-2, tlr-

5,myd88 and ikba in fish fed the 4.8 g/kg Trp diet were significantly

lower than those in fish fed the basal diet (P < 0.05). Moreover, the

lowest tor, tlr-2, tlr-5 andmyd88 gene expressions were found in fish

fed the 5.9 and 6.8 g/kg Trp diets (P < 0.05). The expression of ikkb
increased with increasing dietary Trp up to 4.8 g/kg (P < 0.05) and
B

C D

E

A

FIGURE 3

Effects of dietary tryptophan with different levels on the relative mRNA expression of genes related to intestinal inflammatory factors of C argus
(means ± S.D. of three replications). Bars with different letters differ significantly among the treatments (P < 0.05). (A) Tumor necrosis factor a (tnf-
a); (B) Interleukin 8 (il-8); (C) Interleukin 1b (il-1b); (D) Interleukin 6 (il-6); (E) Interleukin 22 (il-22).
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decreased with increasing dietary Trp up to 6.8 g/kg (P < 0.05). The

expression of ikba showed a positive linear except for that in the

fish fed diet with the 3.9 g/kg Trp. At the same time, the expressions

of ikba were lower in the fish fed with 4.8, 5.9 and 6.8 g/kg Trp diets

(P < 0.05), compared with the fish fed with basal diet. The

expressions of nf-kb in the fish fed with 4.8, 5.9 and 6.8 g/kg Trp

diets were lower than those in fish fed the basal diet, but there was

no significant difference (P > 0.05). The expression of nf-kb was
Frontiers in Immunology 08
highest in the fish fed with 3.0 g/kg Trp diet (P < 0.05), and had

significantly positive linear trend with dietary Trp levels (P < 0.05).
4 Discussion

The organ index usually reflects the development of organs and

the general nutritional status of animals (51). The liver, spleen and
B

C D

E F

G H

A

FIGURE 4

Effects of dietary tryptophan with different levels on the relative mRNA expression of genes related to the TOR and NF-kB signaling pathways of C
argus intestine (means ± S.D. of three replications). Bars with different letters differ significantly among the treatments (P < 0.05). (A) Target of
rapamycin (tor); (B) Toll-like receptor-2 (tlr-2); (C) Toll-like receptor-4 (tlr4); (D) Toll-like receptor-5 (tlr5); (E) Myeloid differentiation factor88
(myd88); (F) Inhibitor of nuclear factor kappa B kinase beta subunit (ikkb); (G) Inhibitor of kappa B (ikba); (H) Nuclear factor-k-gene binding (nf-kb).
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kidney are the main immune organs of fish, which can reflect the

immune state of fish to some extent (52). In the present study,

HSI, SI and RI decreased significantly in linear and quadratic

curves with dietary Trp increasing, but there was no significant

difference in fish fed with 1.9-4.8 g/kg Trp diets. Sharf et al. (53)

showed that HSI and viscera somatic index of fingerling Channa

punctatus decreased with the increase of dietary 0.9-9.1 g/kg Trp.

However, studies have shown that dietary supplemented with 0.4-

0.6 g/kg Trp could significantly increase SI of ducks (54). Carrillo-

Vico et al. (55) also proved that melatonin (the metabolic product of

Trp) could positively stimulate the development of spleen. In the

present study, although dietary 3.9 or 4.8 g/kg Trp couldn’t

significantly improve the development of spleen, it has shown a

significantly negative quadratic trend, which may be due to the

differences in culturing time and breeding subjects. These results

provide a hint that the optimum supplementation of Trp in feed

was between 3.9 and 4.8 g/kg, which may be beneficial to the

development of spleen and had no negative effect on the liver and

head-kidney.

The function of blood is closely related to maintaining the

stability of various physiological environments in the fish, such as

eliminating invading bacteria, phagocytosis of foreign body particles

and participating in immune response (56, 57). In this study, the

THC in C. argus increased at first and then decreased with the

increase in dietary Trp level, and there was a significant linear and

quadratic relationship. Studies have shown that changes of THC are

related to the health status of spleen, liver and other hematopoietic

organs (58). This phenomenon was also observed in this study,

when inclusion of 3.9-4.8 g/kg Trp in the diets, the SI of C. argus

showed an upward trend, accompanied by the highest THC. In

aquatic animals, antioxidant systems served as the first line of

defense against oxidative damage (59). SOD, CAT, T-AOC are

commonly used to evaluate the antioxidant capacity and immune

response of aquatic animals (11, 32, 59, 60). The present study

showed that the activities of SOD and T-AOC in blood were

significantly increased when fish fed with 3.9-4.8 g/kg Trp. These

results are similar to the findings in the liver of pigs (61), intestine of

young grass carp (32). Meanwhile, MDA levels in tissues can be

used to estimate lipid peroxidation (62). In this study, the MDA

contents in the blood of C. argus were significantly decreased with

dietary 3.9-4.8 g/kg Trp. Similar results also have been observed in

hybrid catfish (Pelteobagrus vachelli♀ ×Leiocassis longirostris♂)
(11). In this study, the activity of CAT in blood was highest in

fish feed with 3.0 g/kg Trp diet. However, dietary 4.0 g/kg Trp

significantly increased the activity of CAT in juvenile blunt snout

bream (22). The reason may be caused by different kinds of fish.

These findings suggested that dietary 3.9 and 4.8 g/kg Trp can

enhance the antioxidant capacity of C. argus by increasing of SOD

and T-AOC activities and decreasing the contents of MDA in

the blood.

Intestinal cytokines, such as interleukins (ILs) and tumor

necrosis factors (TNFs), are important components of the fish

mucosal immune system (63). Pro-inflammatory cytokines

including TNF-a, IL-1b, IL-6 and IL-8 can promote the

occurrence of inflammatory reactions (64, 65), and anti-
Frontiers in Immunology 09
inflammatory cytokines such as IL-22 can promote host immune

defense against bacterial pathogens (66). In the present study,

when dietary Trp reached 4.8 g/kg, the relative expressions of tnf-

a, il-1b, il-6 and il-8 in intestine of C. argus decreased, whereas the

relative expression of il-22 increased significantly. Trp have been

shown to have a similar effect in other study (67). The TOR

signaling pathway plays a critical role in the immune system of

monocytes (68). And the TOR signaling pathway may improve the

innate immune system of fish and human by regulating the

transcription of cytokines (69, 70). In the present study, we

observed that the expressions of tor, il-1b, il-6 and il-8 were

significantly increased when the dietary Trp was up to 3.9 g/kg,

but the opposite results were observed when dietary Trp reached

4.8 g/kg. Meanwhile, recent studies have shown that dietary Trp

may up-regulate anti-inflammatory factors and down-regulate

pro-inflammatory factors of fish partly by regulating the

transcription of TOR (5, 22). These results demonstrated that

the optimum dietary Trp level could alleviate intestinal

inflammation partly by down-regulating the expressions of tnf-

a, il-1b, il-6 and il-8, and up-regulating the expression of il-22 in

fish intestine via regulating the expression of tor. However, the

underlying mechanism by which dietary Trp attenuates

inflammatory responses through the TOR signaling pathway

remains to be further studied.

Furthermore, the NF-kB translocates to the nucleus and

upregulates the expression of genes linked with inflammation, cell

survival, proliferation, invasion, and angiogenesis (71), and

mediated the proinflammatory action of TOR (70). The increased

expression of IKK complex (including IKKa, IKKb and IKKg)
promotes the phosphorylation and degradation of IkBa, which in

turn activates NF-kB, which suppresses the relative expression of

anti-inflammatory cytokines and up-regulates the relative

expression of pro-inflammatory cytokines (72). In the present

study, the relative expression of ikkb increased and the expression

of ikba decreased significantly with dietary Trp up to 5.9 g/kg, but

there was no difference in nf-kb. These immune responses may be

caused by multiple pathways regulating NF-kB (73), such as TLRs/

MyD88/NF-kB signaling pathway. TLRs (including TLR2, TLR4

and TLR5) are transmembrane proteins that can recognize a variety

of related molecules (such as lipopolysaccharide, sodium urate

crystal, viral double-stranded RNA, etc.) and cause inflammatory

immune response. TLRs can activate the MyD88-dependent

pathways, thus activating NF-kB and resulting in the release of

inflammatory mediators and cytokines (74, 75). In the present

study, the relative expressions of tlr2 and tlr4 showed a certain

positive correlation with that of myd88 when dietary Trp 1.9-4.8 g/

kg. At the same time, dietary 4.8 g/kg Trp inhibited the relative

expression of nf-kb, which is consistent with the relative expressions
of tnf-a, il-1b, il-6 and il-8. Li et al. (52) also observed similar results

in the kidney of juvenile blunt snout bream fed with 2.8 or 4.0 g/kg

Trp. These results implied that the optimum dietary Trp may

regulate inflammatory cytokines through the TLRs/MyD88/NF-

kB signaling pathway.

In conclusion, the present study provided evidence that dietary

3.9-4.8 g/kg Trp could improve total hemocyte count, antioxidant
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enzyme activity in blood, and decrease the content of MDA in

blood, but have no effect on the development of liver, spleen and

head-kidney. Furthermore, dietary 4.8 g/kg Trp could alleviate

intestinal inflammation partly by down-regulating the expression

of tnf-a, il-1b, il-6 and il-8 and up-regulating the expression of il-22

in fish intestine via the TOR and TLRs/MyD88/NF-kB signaling

pathways (Figure 5).
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FIGURE 5

Possible mechanisms of the mechanisms of optimal dietary tryptophan promoted intestinal health via TOR and TLRs/MyD88/NF-kB signaling pathways.
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12. Melchior D, Mézière N, Sève B, Le Floc’h N. Is tryptophan catabolism increased
under indoleamine 2, 3 dioxygenase activity during chronic lung inflammation in pigs?
Reprod Nutr Dev (2005) 45:175–83. doi: 10.1051/rnd:2005013

13. Cao R, Liu Y, Wang Q, Zhang Q, Yang D, Hui L, et al. The impact of ocean
acidification and cadmium on the immune responses of pacific oyster. Crassostrea
gigas. Fish Shellfish Immun (2018) 81:456–62. doi: 10.1016/j.fsi.2018.07.055

14. Sevcikova M, Modra H, Slaninova A, Svobodova Z. Metals as a cause of
oxidative stress in fish: a review. Veterinárnı ́ Medicıńa. (2011) 56(11):537–46.
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