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Inflammation contributes to many chronic conditions. It is often associated with

circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate

with disease severity. They are often elevated and can serve as markers of

inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-

MSH and ACTH have receptor-mediated anti-inflammatory properties that can

rescue cells from damage and death. These peptides have been studied well in

the past century. In contrast, GLP-1 and its anti-inflammatory properties have

been recognized only recently. GLP-1 has been proven to be a useful adjuvant

therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It

also lowers HbA1C and protects cells of the cardiovascular and nervous systems

by reducing inflammation and apoptosis. In this review we have explored the link

between GLP-1, inflammation, and sepsis.

KEYWORDS

GLP-1 - glucagon-like peptide-1, incretin, GLP-1 agonists, hormone, inflammation,
anti-inflammation
1 Introduction to GLP-1

Glucagon-like peptide-1 (GLP-1) is a peptide hormone that is produced in the intestine

and in multiple other sites that are known for their role in regulating glucose metabolism.

GLP-1 is also involved in multiple other physiological processes including appetite,

cardiovascular function, and inflammation (1).

Acute Inflammation is central to in-vivo responses to a wide range of challenges

including viral and bacteriological infections, and to host repair processes. Chronic

inflammation, on the other hand, is associated with conditions like type 2 diabetes,

metabolic syndrome, obesity, cancer, arthritis, and bowel diseases like Crohn’s disease and
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ulcerative colitis (2). Our recent studies have revealed the anti-

inflammatory properties of several peptide hormones such as hCG,

oxytocin, ghrelin, and vasopressin.(3-6) In this review article, we

focus on the anti-inflammatory properties of the incretin hormone

‘Glucagon-like Peptide-1 (GLP-1). Known for promoting glucose

homeostasis and weight loss, the anti-inflammatory properties of

GLP-1 suggest that it may also blunt inflammation and protect

against organ damage (3–6).
2 Functions of GLP-1 and its receptors

Glucagon-like peptide-1 (GLP-1) is a 30-31 amino acid long

incretin that is produced when proglucagon undergoes post-

translational processing. This glucose-lowering agent is secreted

by intestinal enteroendocrine L-cells in response to nutritional and

inflammatory stimuli and by neurons in the nucleus of the solitary

tract in the brainstem. GLP-1 activates a seven transmembrane G

protein coupled receptor, GLP-1R. GLP-1 receptors are expressed

in pancreatic islet b-cells, pulmonary epithelial cells, atrial cardiac

myocytes, vagal afferent neurons, neurons in a number of brain

regions, as well as cells lining gastric pits and small intestinal

mucosa. The GLP-1R can couple to the Gs or Gq proteins,

leading to increases in intracellular cAMP and/or Ca2+ levels and

activation of PKA, Epac-2, phospholipase C and ERK1/2 signal

transduction pathways. Activation of GLP-1R by GLP-1 or other

exogenous agonists, including exendin-4 and liraglutide, decreases

inflammatory responses in several animal models like rat heart and

whole animal model. The hypoglycemic activity of GLP-1 is

associated with the stimulation of glucose-dependent insulin

secretion, inhibition of glucagon production and regulation of

islet cell proliferation, differentiation, and survival. Under

physiological conditions, GLP- 1 is rapidly degraded by dipeptidyl

peptidase-4 (DPP- 4) after it is released (7).
3 Discovery of GLP-1

In 1923, Charles Kimball and John Murlin, in an attempt to

purify commercial insulin, precipitated a pancreatic fraction that had

a hyperglycemic effect (8). Identifying it as a secreted factor, they

named it ‘Glucagon’ or ‘Glucose Agonist’. In 1959, Roger Unger et al.,

developed the first antibody that could be used in a

radioimmunoassay to detect glucagon in tissue samples and blood

(9, 10). In 1966, Ellis Samols, Vincent Marks and others confirmed

the presence of glucagon-like immunoreactivity in extra-pancreatic

tissue, especially the intestine. Subsequently in 1967, Samols and

Marks reported glucagon-like material in pancreatectomized

humans, indicating its extra-pancreatic origin (11). In 1968, Roger

Unger demonstrated that intraduodenal administration of glucose

increased the levels of a circulating glucagon-like substances (9, 10).

In contrast to glucagon, the intestinal glucagon-like material

stimulated the release of insulin. It was clear that glucagon and the

g lu cagon- l i k e mat e r i a l we r e d i s t i n c t en t i t i e s , and

immunohistochemical studies revealed that intestinal cells that

were positive for the glucagon-like material had a different
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morphology from glucagon secreting a-cells. The cells that made

glucagon-like material were called L-cells. In 1970 the glucagon

precursor, proglucagon, was identified. In the pancreas,

proglucagon undergoes post-translational cleavage yielding two

fragments. One was a mature glucagon and the other was called

the proglucagon fragment. In 1980, the intestinal glucagon-like

material, glicentin, was identified along with a smaller species

named oxyntomodulin in 1982. Collectively, these studies suggested

that proglucagon undergoes tissue-specific processing resulting in

formation of glicentin and oxyntomodulin in the intestine, and

glucagon plus the N-terminal fragment of glicentin in the pancreas.

In the 1980s Joel Habener described a new glucagon-related peptide

encoded in the anglerfish preproglucagon cDNA. Subsequently two

glucagon-related peptides were identified in rat, bovine, hamster, and

human proglucagon. These two peptides are now called glucagon-like

peptides 1 and 2 (GLP-1 and GLP-2) as shown in Figure 1 “The

proglucagon precursor (12–16).
4 GLP-1 receptor

The GLP-1 receptor is a member of the secretin subfamily (B1)

of G-protein coupled receptors (GPCRs). It consists of 463 amino

acids (17). These amino acids are arranged in seven transmembrane

(7TM) alpha-helices with an N-terminal domain that is located

extracellularly and a C-terminal domain that is intracellular. The

transmembrane helices are connected by three extracellular and

three intracellular loops (17, 18). Ligand binding to its receptor

occurs in two stages. The first step involves the binding of the

extracellular domain to the C-terminus of the ligand. This causes a

conformational shift that leads to attachment of the N-terminus of

the ligand to the 7TM domain (18–20). (Figure 2) for a more

detailed figure, refer to reference 18.

GLP-1 receptor signaling occurs primarily through the Gas
stimulatory G protein (21). Coupling of Gas and Gaq in beta cells

of pancreas lead to an increase in cAMP by activation of adenylyl

cyclase and phosphoinositol 3 kinase (PI3K) pathway. cAMP

activates PKA and Epac-2 signal transduction pathways (22).

PKA and Epac-2 inhibit the K-channel, altering Kv currents

leading to calcium influx as well as calcium release from the

endoplasmic reticulum. This results in calcium-induced release of

insulin granules (23). PKA and Epac-2 also activate cyclin D and

CREB, leading to beta-cell proliferation, differentiation, and a

decrease in endoplasmic reticulum stress response (24). Exenatide

decreases ER stress in response to synthetic stressors (25). In mouse

models, exendin-4 increases beta cell proliferation by activation of

epidermal growth factor receptors (26). Human beta cells exposed

to GLP-1 show increased beta cell proliferation (24, 25) (Figure 3).

Activation of the GLP-1 pathways decreases the inflammatory

response in multiple models. GLP-1 Analog liraglutide improves

vascular function in polymicrobial sepsis by reduction of oxidative

stress and inflammation (24, 27–31). Exendin in diabetic mice

diminishes inflammatory responses by increasing the expression

of regulatory T cells (32). Liraglutide has anti-inflammatory effects

on endothelial cells by decreasing activation of NF-kB, inhibiting

TNF-alpha, and increasing nitric oxide production (28). Like GLP-1
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agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, which block the

degradation of GLP-1, also cause attenuation of the inflammatory

responses. Sitagliptin decreases the LPS-inflammatory response by

inhibiting the NF-kB pathway. This leads to decreased production

of proinflammatory cytokines including TNF-a, IL-6, IL-1b and

decreased expression of COX-2 in cardiomyocytes (33).
5 GLP-1 and various organs

GLP-1 has been shown to carry out numerous protective and

regulatory functions in different organ systems. The functions are

illustrated in the Figure (Figure 4).
Frontiers in Immunology 03
6 GLP-1: anti-inflammatory effects

6.1 Cardiovascular system

The antioxidant and anti-inflammatory effects of GLP-1 protect

the cardiovascular system. GLP-1 levels are elevated in patients post

myocardial infarction. Administration of GLP-1 analogs (or DPP-4

inhibitors, which inhibit the degradation of GLP-1), decreased

cardiovascular and thrombotic complications in animal models of

LPS-induced sepsis. They also suppressed inflammation and

formation of reactive oxygen species (ROS) in vasculature,

resulting in vasorelaxation and amelioration of hypotension.

Moreover, reduced organ damage by thrombotic occlusion in the
FIGURE 2

(Original by authors of the manuscript): The seven transmembrane alpha-helices are bound to G-protein subunits (19). These consist of alpha
subunit and beta-gamma subunit complexes bound to GDP. In the inactive state, the a-subunit is bound to GDP. Upon binding of GLP-1, GDP is
replaced by GTP, which then activates the a-subunit. The a-subunit and GTP complex activate signaling cascades through adenylyl cyclase and
phospholipase C (20).The third intracellular loop is most important in receptor signaling.
FIGURE 1

GLP-1 synthesis: In the intestine — The proglucagon precursor gives rise to oxyntomodulin, GLP1 (and its two equipotent, truncated derivatives) and
GLP-2. Like the GLPs, the intervening peptides (IP-1 and IP-2) may also have physiological functions (12, 13). In the pancreas, the proglucagon
precursor yields glucagon and the glicentin-related pancreatic peptide (GRPP) (12–16) Figure modified from article 12. Figure from Open access
(Molecular Metabolism) permissible to re-use under a CC-BY 4.0 license.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1148209
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mehdi et al. 10.3389/fimmu.2023.1148209
lung has been reported in LPS-induced sepsis due to improvement

in microvascular circulation by GLP-1 analogs. In a polymicrobial

model of sepsis induced by cecal ligation and puncture, a GLP-1

analog ameliorated vascular inflammation and oxidative stress by

improving endothelial function (28)

In a cardiac fibrosis model, the GLP-1 analogue liraglutide

reduced vascular reactivity, cardiac hypertrophy, fibroblast

accumulation, collagen deposition and MCP-1 production (40).
Frontiers in Immunology 04
Another GLP-1 analogue, exendin-4, also prevented cardiac

remodeling and diastolic dysfunction in an experimental diabetes

model. This was associated with a reduction in macrophage

infiltration, lower expression of IL-1b and IL-6, and an increase

in IL-10 in the heart (41).

GLP-1 improved left ventricular function in patients with

chronic heart failure and in dogs with dilated cardiomyopathy.

Survival rates after myocardial infarction also improved after GLP-1
FIGURE 4

(Original by authors of the manuscript): Effects of GLP-1 on various organ systems (34–39).
FIGURE 3

GLP-1 receptor signaling (21-26). Figure modified from article 23. Figure from Open access (Gastroenterology) permissible to re-use under a CC-BY
4.0 license.
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administration. Sitagliptin, a DPP-4 inhibitor, improves myocardial

response in coronary artery disease patients. LPS-induced cardiac

dysfunction recovered in DPP-4 deficient rats after treatment with

sitagliptin. Exendin-4 and DPP-4 deficiency prevented

vasoconstriction and multiple organ injury after LPS treatment,

and improved survival in endotoxemic rats (31).

In animal studies, GLP-1 and its analogs reduced macrophage

infiltration in blood vessels, and production of pro-inflammatory

cytokines such as IL-6, IL-1b, TNF-a, and CRP. It has been

speculated that liraglutide, a GLP-1 analog, suppresses cytokine

release in bacterial septic shock and in SARS-CoV-2 viral sepsis.

GLP-1 analogs and DPP-4 inhibitors have shown promise in animal

models of cardiovascular disease. Studies in humans should be done

(42, 43) (Table 1).
6.2 Gastrointestinal system

GLP-1 is secreted into the distal intestine by enteroendocrine L

cells in response to nutrient ingestion (42). GLP-1 receptors are

widely distributed in the gastrointestinal tract, pancreas, heart, lungs,

kidneys, and nervous system. These receptors contribute to the wide

range of physiological functions (45). Besides metabolic effects, GLP-
Frontiers in Immunology 05
1 improves mucosal integrity and diminishes inflammation (42, 46).

Exendin-4, a GLP-1 mimetic peptide, decreases the production of

pro-inflammatory cytokines, and diminishes the enteric immune

response. GLP-1 decreases production of pro-inflammatory

cytokines, mainly by downregulating NF-kB phosphorylation and

nuclear translocation (45).

Several recent studies have suggested that GLP-1 should be

considered as a treatment for a wide range of intestinal diseases,

including Inflammatory bowel diseases, intestinal mucositis, coeliac

disease and short bowel syndrome (45). GLPs, (including GLP-1,

GLP-2 and DPP-4) have recently gained increased attention from

researchers studying Inflammatory bowel diseases (IBDs).

IBDs including Crohn’s disease and ulcerative colitis are

chronic relapsing-remitting diseases with multifactorial etiologies

and complex pathogenesis. The Incidence and prevalence of IBDs

are rising globally. GLPs including GLP-1 regulate weight and

glycemia. GLP-1 also inhibits gastric emptying, decreases food

ingestion, and increases crypt cell proliferation. It also improves

intestinal growth and nutrient absorption. GLPs have been

proposed to improve tissue healing of injured epithelium, regulate

T-cell growth and function, control innate immune cells such as

macrophages and dendritic cells, and lower pro-inflammatory

cytokines in IBD (47) (Table 2).
TABLE 1 Efficacy of GLP-1 agonists efficacy (adapted from UpToDate) (44).

Elimination
half-life

Glycemic
efficacy (reduction

in
A1C in

% points)*

Cardiovascular out-
comes

ASCVD/HF

Nephropathy¶ RetinopathyD Cardiovascular
Overall
mortality

Long-acting GLP-1 receptor agonists (more pronounced effect on fasting glucose)

Dulaglutide 5 days –1 to –1.5 Benefit Benefit Neutral Benefit

Efpeglenatide 6 to 7 days –1 to –1.11 Benefit Benefit ? ?

Exenatide 8 to 14 days –1.5 to –1.6 Neutral ? Neutral Benefit

Liraglutide 11 to 15 hrs –0.8 to –1.5 Benefit Benefit Neutral Benefit

Semaglutide 6 to 7 days –1.5 to –2 Benefit Benefit Unexpected increase
in retinopathy
outcomes◊

Benefit

Short-acting GLP-1 receptor agonists (more pronounced effect on postprandial glucose)

Exenatide 2 to 3 hrs –1 ? ? ? ?

Lixisenatide 3 to 5 hrs –0.8 to –1 Neutral Neutral ? Benefit

Dual-acting GLP-1 and GIP receptor agonists

Tirzepatide 5 days –2 to –2.5 ?§ ? ? ?
GLP-1, glucagon-like peptide 1; A1C, glycated hemoglobin; ASCVD, atherosclerotic cardiovascular disease; HF, heart failure; SubQ, subcutaneously; ?, inadequate data; GIP, glucose-dependent
insulinotropic polypeptide; eGFR, estimated glomerular filtration rate.
*Reduction in A1C is dependent upon a number of factors, such as baseline A1C and background therapy. In trials directly comparing shorter- versus longer-acting GLP-1 receptor agonists,
longer-acting had better glycemic efficacy.
¶Nephropathy is defined as elevated albuminuria, reduced eGFR (usually <60 mL/min/1.73 m2), or both.
DRetinopathy outcomes were not systematically evaluated or adjudicated.
◊The higher rate of retinopathy complications with subcutaneous semaglutide was unexpected and may be a consequence of rapid glycemic control similar to that seen in other settings. If
subcutaneous semaglutide is prescribed to a patient with diabetic retinopathy, titrate slowly to avoid rapid declines in A1C and perform retinal screening within 6 months of drug initiation to
detect progression of retinopathy.
§In preliminary trials, tirzepatide did not increase the risk of major cardiovascular events.
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6.3 Hepatobiliary system

GLP-1 based therapies have shown promise in liver diseases e.g.

non-alcoholic fatty liver disease (NAFLD) and non-alcoholic

steatohepatitis (NASH). In recent years, the prevalence of non-

alcoholic fatty liver disease (NAFLD) has continued to rise, and

10%-25% of NAFLD cases progress to non-alcoholic steatohepatitis
Frontiers in Immunology 06
(NASH). 10%-15% of NASH cases will develop into hepatocellular

carcinoma, approximately 700,000 people die from the disease each

year (53).

Nonalcoholic steatohepatitis is associated with inflammation

of the liver, driven by an aberrant accumulation of fat. In rats fed

with a high-fat diet, treatment with liraglutide, a GLP-1R analog,

reduced steatosis and lobular inflammation compared to the
TABLE 2 GLP-1 analogues under investigation in vitro and in vivo (animal and human studies).

Models Treatments Results References

In-vitro study
Macrophage RAW
264.7
cell culture

Pre-treated with
exendin-4 for 6hrs
followed by LPS for
24hrs

Exendin-4 inhibits production of many LPS-induced inflammatory factors, thereby decreasing production
of ROS reactive oxygen species.

(Lu et al.,
2019) (27)

In-vivo animal
studies
DSS-induced colitis
in
mouse model

GLP-1 self-
associated with
PEGylated
phospholipid
micelles i.p

GLP-1-SSM (sterically stabilized phospholipid micelles) improve architecture of the intestine, partially
preserve goblet cell number, decrease IL1-b secretion and improve diarrhea induced by DSS.

(Anbazhagan
et al., 2017)
(48)

DSS-induced colitis
in
mouse model
— Ischemia/
reperfusion

— I.P or I.V administration of LPS caused a significant rise in plasma levels of GLP-1 through the TLR-4
mechanism.

(Lebrun et al.,
2017) (46)

DSS-induced colitis
in
mouse with GLP-
1R
knockout

Exendin-4 (GLP-1
agonist) s.c.

DSS-induced colitis in GLP-1 R knockout mice showed dysregulation of intestinal gene expression, as
well as abnormal representation of microbes in feces and increased sensitivity to intestinal injury. Also,
Exendin-4 administration caused significantly increased expression of genes encoding cytokines and
chemokines in gut injury.

(Yusta et al.,
2015) (49)

Colonic smooth
muscle
cells of male
BALB/c
mice cultured in
DMEM

LPS+/-Exendin-4 Exendin-4 Inhibited production of pro-inflammatory cytokines including TNF-a and IL-1 a in LPS-
induced inflammation in mouse model.

(Al-Dwairi
et al., 2018)
(50)

Wistar rat model a) GLP-1 injected
i.c.v
b) GLP-1 receptor
antagonist, Exendin
9-39
I.c.v and i.p

Centrally injected Exendin 9-39 inhibited the gastroprotective effects of GLP-1 agonists,
suggesting that this effect is managed by central mechanisms.

(Is ̧bil
Büyükcos ̧kun
et al., 2007)
(51)

MPTP-treated
Parkinson
Disease mouse
model
Human A53T
a-synuclein
transgenic
PD mouse
model
(MPTP=1-methyl-
4-phenyl-1,2,3,6-
tetrahydropyridine)

CCK analogues
or
Liraglutide and
GLP-1 analogues
i.p

CCK analogues or GLP-1 analogues restored the disruption of intestinal tight junction, reduced colonic
inflammation, inhibited colonic dopaminergic neuron reduction and the accumulation of a-synuclein
oligomers in the colon of both PD mouse models.

(Su et al.,
2022) (52)

Human study
a) Healthy
volunteers
b)Ischemia/
reperfusion injury
model of human
gut

— a) 3hrs after LPS injection
plasma GLP-1 levels
rose significantly.
b) 45 min after ischemia
in the human intestine,
GLP-1 levels rose
significantly and
returned to baseline
after reperfusion.

(Lebrun et al.,
2017) (46)
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saline-injected group. Exendin-4, a GLP-1R agonist, was shown in

another study to lower hepatic production of the inflammatory

markers TNF-, IL-1, and IL-6, as well as macrophage markers

cluster of differentiation 68 (CD68), and F4/80 in mice fed a

western-type (high fat) diet (54).

C-reactive-protein (CRP) is produced by the liver and is a

marker of inflammation. Liraglutide produced a significant decrease

in the mean concentration of CRP in a retrospective investigation of

110 obese patients with type 2 diabetes mellitus, indicating its

potential as an anti-inflammatory drug. Exenatide plus metformin

caused a significant reduction in baseline CRP and TNF-a. These
findings show that GLP-1-based treatments improve fatty liver

disease in rats and humans via reducing inflammation (42).

NAFLD is associated with cell death and fibrosis that ultimately

progress to cirrhosis. In obese patients with NAFLD, Fibroblast

growth factor-21 protein (FGF21) and RNA levels are higher in the

liver. Treatment with GLP-1R agonists reduced the level of FGF21.

This supports its use in cirrhosis. Note that 80% of patients who

develop hepatocellular carcinoma had cirrhosis beforehand (55, 56).

GLP-1RA significantly reduced cell necrosis and apoptosis, the

two major forms of liver cell death. Hepatic cell death mainly

includes two forms: apoptosis and cell necrosis. Gupta et al. showed

that a GLP-1RA significantly reduced cell necrosis and

apoptosis.The reduction of abdominal visceral adiposity by GLP-

1RAs results in a reduction in liver fat content that can alleviate

NAFLD. The ability of GLP-1 to reduce fat is due to its binding to a

specific GLP-1R present in adipose tissue (57). Vendrell et al.

confirmed the expression of GLP-1R in mature adipose cells by

the detection of the mRNA and protein (58). A 6-month-long

treatment with GLP-1RAs in obese patients with T2DM resulted in

significant reductions in intrahepatic lipids (IHL). In addition, the

median relative reduction in IHL was 42% (53) (Figure 5).
Frontiers in Immunology 07
6.4 Central nervous system

Glucagon-like peptide-1 is produced in the brainstem and has

numerous functions, including neuroprotection (59–61) GLP-1 and

GLP-1 analogs can cross the blood-brain barrier (62–68) GLP-1

receptors have been observed in the neurons of the nucleus tractus

solitarius that project to GLP-1R–expressing regions in the

hindbrain, hypothalamus, including the paraventricular nucleus

(PVN), dorsal medial nucleus of the hypothalamus, and arcuate

nucleus (ARC) (42, 64, 66, 67, 69, 70). GLP-1-based therapies have

anti-inflammatory effects on multiple tissues (42, 53, 71–73).

Chronic inflammation is a significant risk factor for many

neurodegenerative disorders, e.g., Alzheimer’s disease and

Parkinson’s disease (42, 74–78).

6.4.1 Parkinson’s disease
The prevalence of Parkinson’s disease has been rising in recent

years (79, 80). It is the second most common chronic

neurodegenerative disease and affects between 1% - 2% of people

above age 60 and 4% of those above age 80 (81–87). Parkinson’s

disease occurs when dopaminergic neurons in the substantia nigra

pars compacta form Lewy bodies and gradually die (88–90). The

Lewy body is an abnormal aggregate containing alpha-synuclein.

Most Parkinson’s disease treatments focus on managing symptoms

by replacing dopamine and improving dopaminergic signaling, but

these treatments fail to address the underlying cellular degeneration

(64, 91). Since dopamine breaks down to form reactive oxygen

species, it may contribute to disease progression (92, 93). Activation

of microglia plays a crucial role in spontaneous Parkinson’s Disease

in humans (64, 94–96). MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine) induces Parkinson’s disease in rodents.

MPTP is a pro-drug for the neurotoxin MPP+ (1-methyl-4-
FIGURE 5

Effects of glucagon-like peptide-1 receptor agonist on non-alcoholic fatty liver disease. PPAR-a, Peroxisome proliferator-activated receptor; IHL,
intrahepatic lipids; AMPK, AMP-activated protein kinase; CRP, C reactive protein; AGEs, Advanced glycation and end products; JNK, c-Jun NH2-
terminal kinase; GLP-1RA, Glucagon-like peptide-1 receptor agonist; NAFLD, Non-alcoholic fatty liver disease (53). Modified figure from reference
53. Figure from Open access (World Journal of Gastroenterology) permissible to re-use under a CC-BY 4.0 license).
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phenylpyridinium). This agent destroys dopaminergic neurons in

the substantia nigra (81, 97–104).Exendin- 4, a GLP-1 R agonist,

has inhibitory effects on microglial activation and greatly reduces

the expression of TNF-a and IL-1b caused by MPTP (67, 105–107).

Exendin-4 inhibits 6-hydroxydopamine (6-OHDA)-induced

dopaminergic cell death in neuronal culture. The intraventricular

administration of GLP-1 protects mice from MPTP-induced

dopaminergic cell loss (64, 86, 108, 109).

6.4.2 Alzheimer’s disease
Alzheimer’s disease is the most common form of dementia; it is

responsible for 60–70% of cases (110, 111). About 1 person in 9

(10.8%) in the US population age 65 and older has AD (112). People

65+ years of age in Europe had a pooled incidence rate of AD of 19.4

per 1000 person-years (113–115). The Alzheimer’s disease

population increased by 5% from age 65 to 73, 13.1% from age 75

to 84, and 32% from age 85 and older (112, 116). Alzheimer’s

disease was the seventh-leading cause of death in 2020 and

2021 (112).

In AD, IL-1 beta is significantly increased in the frontal cortex

and hippocampus and may contribute to cognitive dysfunction by

promoting the synthesis of amyloid precursor protein (117, 118).

GLP-1 therapies may have preventive and restorative effects on

Alzheimer’s disease (42, 119). Exogenous GLP-1 (7–36) amide

administration inhibited IL-1 beta transcription and prevented

beta-induced amnesia and cell death (36, 59, 113, 114). Also, it

restores learning and memory by stimulating LTP (long-term

po t e n t i a t i on ) ( 6 0 , 1 20–1 22 ) . I n a r od en t mode l ,

neuroinflammation was reduced due to suppression of TNF-alpha

when GLP-1 exenatide (20 ug/kg/day) was given intraperitoneally.

The peptide improved memory and prevented the loss of

hippocampal neurons (111, 123). Treatment with liraglutide in a
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mouse model of Alzheimer’s disease reduced the inflammatory

response in the cortex by decreasing the number of activated

microglia (60, 65, 107, 124, 125). Mice that express two human

mutant genes linked to early-onset Alzheimer’s disease develop a

chronic inflammatory response (126). In these animals, D-Ala2-

GIP reduces the activation of microglia and astrocytes in the brain,

decreasing the release of pro-inflammatory cytokines and oxidative

stress (127).Microglia and astroglia express GIP receptors (128,

129). Activating them reduces central inflammatory responses. GIP

receptor activation increases microglia expression of key growth

factors such as brain-derived neurotrophic factor(BDNF), glial cell-

line derived neurotrophic factor (GDNF), and nerve growth factor

(NGF) in a phosphoinositide 3-kinase (PI3K) and protein kinase A

(PKA) dependent manner (130) (Figure 6).

Brain irradiation has been demonstrated to increase the

expression of IL-6, IL-1b, and IL-12p70 cytokines. Liraglutide

reduces the proinflammatory cytokine gene expression caused by

X-ray irradiation (42, 131).

In a study on rats, when cultured astrocytes were stimulated by

LPS, IL-1b mRNA expression increased temporally. GLP-1 therapy

decreased IL-1b mRNA production compared to the LPS alone-

treated cultures (67, 72). The GLP-1 suppresses TNF-alpha and

associated cytokines in microglia (Figure 7).
6.5 Stroke models

Strokes in the elderly can cause permanent neurological damage

and are among the leading causes of death. Patients who have

hyperglycemia and diabetes mellitus type 2 (T2DM) have a higher

stroke frequency than those who do not have these conditions (132,

133). Stimulating GLP-1Rs with exendin-4 reduces brain damage
FIGURE 6

Overview of the main pathways induced by GLP-1 in neurons. Activation of the GLP-1R activates adenylyl cyclase and increases cAMP levels. This
activates PKA and other downstream kinases related to growth factor signaling. GLP-1 supports neurogenesis, reduces inflammation, and inhibits
apoptosis while improving learning and memory in the hippocampus.(modify from reference 130) (AATP, adenosine triphosphate; cAMP, Cyclic
adenosine monophosphate; CREB, cAMP response element binding protein; PKA, protein kinase A; PI3K, phosphatidylinositol-3 kinase; PKC, protein
kinase c; mTOR, Mammalian target of rapamycin; ERK, extracellular signal-regulated kinase; BRAF, v-raf murine sarcoma viral oncogene homolog
B1.) Figure modified from reference 130, Open access (Peptides journal) permissible to re-use under a CC-BY 4.0 license).
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and improves stroke outcomes (108, 132, 134, 135). Exendin-4

suppresses oxidative stress, inducible nitric oxide synthase (iNOS)

expression, and cellular apoptosis after ischemia/reperfusion injury

(135, 136).

It is well known that inflammation contributes to the

progression of brain damage following ischemia/reperfusion

injury, and that COX-2 is a significant mediator of oxidative

damage (132, 137). Activation of GLP-1Rs has anti-inflammatory

effects in cerebral ischemia. COX-2 expression in rats was reduced

when they were treated with exendin 9-39 (antagonist) after

ischemia was induced (132) (Figure 8).

There was a reduction in GLP-1R expression in rat brains after

cerebral ischemia. Furthermore, administration of the GLP-1R

agonist exendin-4 in vivo and in vitro proved protective (132,

138, 139) (Figure 9).

GLP-1R elevates cAMP levels and activates protein kinase A

(PKA) signaling. Adding GLP-1 to neurons increases cAMP, which

indicates receptor activation (108, 132, 140). In mice with transient

focal cerebral ischemia, exendin-4 treatment increased cAMP and

activated the cAMP response element-binding protein (CREB)

compared with vehicle-treated mice (135).
6.6 Respiratory system

GLP-1 plays an important role in respiratory system

homeostasis (141). Glucagon-like peptide-1 receptors (GLP1-R)

are found in airway structures as well as vascular and smooth
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muscle tissues (142). Covid victims who took GLP-1R agonists had

fewer hospital admissions (143).
7 GLP-1 in obstructive lung disease
and asthma

Asthma affects about 25 million people in the US and more than

330 million people world-wide (144). GLP-1 receptor agonists

decreased allergic responses in asthma by preventing the activation

of NF-kB leading to decreased release of proinflammatory cytokines

(IL-5, IL-13, IL-33) and neutrophils, eosinophils, basophils and CD4

+ T cell numbers (142, 145). Exendin-4 also relaxes bronchial smooth

muscles by acting on the cAMP-PKA pathway (144).

A recent study demonstrated that GLP-1 agonists improve survival

and lung function in mouse models of asthma and COPD. The results

showed that GLP-1R agonists have therapeutic potential in the

treatment of chronic obstructive pulmonary diseases by decreasing

the severity of acute exacerbations. The anti-inflammatory effects of

GLP-1 agonists in obstructive disease was evident in studies of female

C57BL/6 mice. There was a decrease in CD31+ endothelial cells in lung

tissues after agonist treatment (146). Trials in humans have also shown

that liraglutide administration improves forced vital capacity (147).

GLP-1 causes an increase in cAMP concentration and

phosphorylation of endothelial nitric oxide synthase (NOS).

Nitric oxide produced as a result may be responsible for the

effects of GLP-1 on vasodilation, surfactant production

and bronchodilation.

GLP-1 also activates protein kinase A (PKA), which inhibits

pro-inflammatory mediators such as nuclear factor kappa light

chain enhancer of activated B cells (NF-kB), receptor of advanced

glycation end products (RAGE) and asymmetric dimethylarginine

(ADMA), an endogenous NOS inhibitor. These mediators play a

central role in obesity-related asthma by increasing inflammatory

cell proliferation and infiltration, airway remodeling, airway

hyperreactivity and bronchoconstriction (148). A recent study

showed that bronchodilation caused by GLP-1 analog Exendin-4

was inhibited by GLP-1 receptor blockers. or cAMP-PKA

antagonists. Dipeptidyl peptidase-4 (DPP-4), which degrades

GLP-1, is expressed in the lungs. Allergens cause upregulation of

DPP-4 expression. DPP-4 activates pro-inflammatory pathways

(MAPK and NF-kB) and also increases reactive oxygen species,

AGE and RAGE gene expression (148).
8 GLP-1 in acute lung injuries

Acute lung injury is one of the most serious complications of

sepsis. LPS administration in mice leads to endotoxemia and sepsis.

Inflammation in sepsis can wash out surfactant leading to the

development of acute respiratory distress syndrome (ARDS).

GLP-1 agonists have a protective effect in acute lung injury and

ARDS. GLP-1 promotes the production of surfactant through PKA-
frontiersin.or
FIGURE 7

Impact of GLP-1 on LPS-induced IL-1b mRNA production in rat
astrocytes. ELISA investigation was performed at 360 min after LPS
(100 ng/mL) or vehicle treatment with or without GLP-1 (1 mM) (72).
Data represent the mean ± SEM. ***p<0.001. Figure modified from
Open access (Neuroscience Research Journal) permissible to re-use
under a CC-BY 4.0 license). ###p<.001.
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dependent and PKC-dependent mechanisms (149, 150). Following

LPS injections in mice, co-administration of GLP-1 diminishes the

decline in surfactant levels (142).
9 Studies with liraglutide

Liraglutide has benefits in the treatment of acute lung injury. It

increases surfactant protein A (SPA) expression in type 2

pneumocytes (151). Pre-administration of liraglutide in mice with

LPS-induced acute lung injury decreases the concentration of

neutrophils and pro-inflammatory cytokines (IL-1B & IL-18) in

the bronchoalveolar lavage fluid by down-regulating the expression

of NLRP3 inflammasome (152). Liraglutide also reduced the levels

of TNF-a, IL-1b, IL-6 and the severity of lung injury in mouse

models (153). Use of liraglutide along with mesenchymal stem cells
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(MSCs) for treatment of acute lung injury inhibits MSC apoptosis

via PKA/b-catenin pathway and improves their efficacy (141).
10 Studies with exendin-4

Decreased FOXA2 expression leads to increased mucus secretion

in the lungs of asthma, COPD, and bronchiectasis patients. Exendin-

4, (GLP-1R agonist), increases FOXA2 expression and restores

mucus homeostasis in Pseudomonas aeruginosa infected lungs. It

decreases mucin expression by pyocyanin (154). It protects against

hyperglycemia-induced lung injury by reducing oxidative injury and

glucose levels and stimulating the proliferation of pneumocytes. On

the other hand, Oztay et al. reported that exendin-4 administration

led to increased lung injury by increasing collagen accumulation

around pulmonary vessels (155).
FIGURE 8

tMCAO, Transient middle cerebral artery occlusion (132): 1-The level of COX-2 was significantly increased at 48 h after tMCAO. Treatment with ex-4
restored COX-2 to the basal level after tMCAO in the rat brain. Ex9-39 treatment increased COX-2 levels as much as vehicle Group.(***p<0.001,
compared to sham operated group, ###p<0.001, compared to chemical group) 2-The level of PGE2, which is product of COX-2 activity, was
increased by 1 h tMCAO, but this level was attenuated by ex-4 (n =5, **p<0.01, compared to the sham-operated group. (1) Data represent the mean
± SEM. ***p<0.001, ###p<0.001, (2) Data represent the mean ± SEM. **p<0.01. Figure modified from Open access (Experimental Neurobiology)
permissible to re-use under a CC-BY 4.0 license).
FIGURE 9

Treatment with exendin-4 was accompanied by increased expression of GLP-1R, while treatment with the GLP-1R antagonist, exendin-9-39
(antagonist), did not show this neuroprotective effect in stroke(n=4, *p<0.05, compared to sham-operated group, #p<0.01, compared to the
chemical-treated group). Data represent the mean ± SEM. *P<.05; #P<0.01 (132). Figure modified from Open access (Experimental Neurobiology)
permissible to re-use under a CC-BY 4.0 license).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1148209
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mehdi et al. 10.3389/fimmu.2023.1148209
11 GLP-1 in lung fibrosis

Along with its beneficial effects in obstructive diseases and acute

lung injury, GLP-1 also protects against lung fibrosis. In mice

exposed to bleomycin, significant reductions in inflammation and

fibrosis were seen after GLP-1 therapy due to reduction in NF-kB

signaling and TGF-b1 levels (156).
12 GLP-1 in pulmonary hypertension
and lung development

GLP-1 also has a beneficial effect on pulmonary hypertension.

Activation of GLP-1 receptors in pulmonary arteries leads to

vasodilation (157, 158). GLP-1 also plays an important part in

lung development, and Liraglutide improved lung function and

development in pups suffering from intrauterine growth restriction

caused by ACE2-Ang(1–7)-MasR (159).
13 Summary of pulmonary effects of
GLP-1

GLP-1 and its analogs are potentially beneficial in the

respiratory system at most stages in life. (Figures 10, 11) (148).
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13.1 Renal system

Renal inflammation is a primary cause of kidney failure.

Repeated kidney injuries ultimately result in end-stage renal

disease. Diabetes is one cause of kidney damage. How diabetes

causes inflammation is controversial, but it is known to promote the

problem in both the organ and the whole body (160). Inflammatory

cells, cytokines, and profibrotic growth factors cause vascular

inflammation and fibrosis in diabetic nephropathy (DN). GLP-1,

through its anti-inflammatory effects, reduces inflammation and

fibrosis in diabetes (42).

The presence of oxidative stress in diabetic kidneys is a

significant element in the inflammatory process. Oxidant/

antioxidant imbalances activate NF-kB (161). GLP-1 receptor

knockout mice have increased glomerular superoxide, upregulated

renal NAD(P)H oxidase, and reduced renal cAMP and PKA

activity. These changes lead to renal pathology. Activation of the

cyclic adenosine monophosphate–protein kinase A (cAMP–PKA)

pathway halts the synthesis of reactive oxygen species. GLP-1

receptor agonists activate cAMP-PKA pathway and protect

against oxidative stress. Liraglutide reduced NADPH oxidase

activity and increased cAMP-PKA activity in mice. It also

enhanced glomerular hyperfiltration by improving glomerular

nitric oxide and decreasing mesangial expansion (162, 163).

Advanced glycation end products are a common pathogenic

stimulant in diabetes. They increase production of reactive oxygen

species. GLP-1 agonists interfere with the signaling of receptors for
FIGURE 10

Obesity and consumption of foods high in advanced glycation end-products (red circles, AGEs) create a pro-inflammatory state through
dysregulated arginine metabolism (increasing arginase activity and production of ADMA, in red) and activating RAGE-mediated, NF-kB inflammation
(pink star). ADMA also inhibits endothelial NOS (eNOS) and increases NF-kB activity. GLP-1 production is spurred by consumption of L-arginine
(green circles) and when it binds its receptor, it activates protein kinase A (blue octagon). This activity blunts RAGE-mediated inflammation and
production of ADMA (blue T-lines). The GLP-1 pathway is also a target of treatments for diabetes and obesity. GLP-1 is rapidly degraded by DPP-4,
and DPP-4 inhibitors (gliptins) are used to increase GLP-1. GLP-1 receptor agonists (exenatide and liraglutide) are also available (148). Figure
modified from article 147 Open access (Journal of Immunology Research) permissible to re-use under a CC-BY 4.0 license).
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advanced glycation end products. This leads to less oxidative stress

and promotes protection against diabetic nephropathy (164).

Reactive oxygen species (ROS) increase the synthesis of

monocyte chemotactic protein-1 (MCP-1) in diabetes (165).

Increased NF-kB expression leads to higher levels of MCP-1, IL-1,

and TNF-a. Macrophage activation generates a proinflammatory

condition that causes structural damage to the kidneys. In the

kidneys, prostaglandins serve a protective function. PGE2 synthesis

is inhibited when macrophages secrete IL-1 and TNF-a. Reduced
PGE2 levels hasten the inflammatory process in the kidneys (166). In

rats with STZ-induced diabetes, exendin-4 decreases proteinuria and

serum creatinine levels, and inhibits mesangial matrix expansion. It

also protects against glomerular hypertrophy, monocyte infiltration

and by reducing TGF-b, ICAM1, and CD14 in the renal cortex.

Diabetes caused several histological changes in the renal tissue in

another STZ-induced diabetes mouse model, including decreased

height and continuity of the tubular brush border, vacuolization of

proximal and distal tubular cells, necrosis of tubular and glomerular

cells, hemorrhage, and mononuclear cell infiltration. Exendin-4

therapy resulted in a substantial reduction in all these lesions (167).

In another similar mouse model, liraglutide resulted in restoration of

catalase and glutathione peroxidase-3 levels, enzymes crucial in tissue

protection against oxidative damage in kidneys (168).

GLP-1 protects diabetic kidneys. It lowers glucose levels and

reduces inflammatory responses. GLP-1 receptor levels increase

early in sepsis suggesting that it may have a protective role in this

disorder as well (169). The use of recombinant human GLP-1

decreases the albumin content of the urine. In tubular tissue and

human proximal tubular cells, it also reduces the production of

multiple profibrotic factors including collagen I, alpha smooth

muscle actin (SMA), fibronectin, and inflammatory proteins

MCP-1 and TNF (HK-2 cells). Furthermore, in both diabetic
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tubular tissue and HK-2 cells, rhGLP-1 strongly decreased the

phosphorylation of NF-kB and MAPK (170).

Sitagliptin inhibits inflammation and apoptosis. Use of

sitagliptin in mice has been shown to decrease urine

microalbumin, serum creatinine, blood glucose and blood urea

nitrogen. It also decreased TNF-a receptor microRNA levels (171).
13.2 Skin

13.2.1 GLP-1 effects on wound healing
Along with its anti-inflammatory role in other organs, GLP-1

agonists play a vital role in wound healing. During normal wound

healing, fibroblasts secrete collagen and multiple cytokines to

regulate the process. They also produce matrix metalloproteinases

[MMP] and tissue inhibitors of matrix metalloproteinases [TIMP]

(172)]. Matrix metalloproteinases promote degradation of

extracellular matrix proteins (173). At high levels in wounds,

MMPs delay wound healing (174, 175). This activity of MMPs is

modulated by the tissue inhibitors of matrix metalloproteinases

(TIMPs) (176). Increased activity of TIMPs is associated with better

wound healing (177).

Chronic skin wounds in patients with diabetes have high levels

of MMP-9 and low levels of TIMPs with resultant high MMP-9/

TIMP ratios (178). Higher MMP-9/TIMP ratios can also be seen in

the serum of these patients (178, 179). C-reactive protein, another

indicator of inflammation, is elevated in patients with foot ulcers

(180). Use of exendin-4 in patients with chronic diabetic wounds

normalizes CRP levels in serum and medium (181) (Figure 12). Low

MMP-9/TIMP ratios are associated with earlier wound healing and

better overall outcomes (183). Use of GLP-1, both in vitro and in-

vivo, results in low levels of MMP-9 and low MMP-9/TIMP ratios
FIGURE 11

Diet and obesity may lead to dysregulated arginine metabolism and increase the production of advanced glycation end products (AGE) with
subsequent activation of their receptor (RAGE), contributing to inflammation and asthma. The enhancing GLP-1 pathway may be the key to reducing
this inflammation (148). Figure modified from articles 147 (Figure from Open access (Journal of Immunology Research) permissible to re-use under a
CC-BY 4.0 license).
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in serum and medium, leading to quicker wound healing

(182) (Figure 12).
13.2.2 Psoriasis
Along with effects in wound healing, GLP-1 agonists result in an

improvement in psoriasis symptoms (184). Psoriasis is an

inflammatory condition that is associated with excessive secretion

of proinflammatory cytokines (IL-2, IL-6, IL-8, IL-12, IL-19, IL-22,

IL-23, IFN-g and TNF-a) into blood as well as dermal tissue (185).

Skin biopsies show up-regulation of GLP-1 receptors in psoriasis

lesions (186).

Obesity is an inflammatory disorder with dysregulated innate

immune responses that cause the number of natural killer cells in

the circulation to decrease (187). Obesity, along with psoriasis, is

associated with chronic systemic inflammation (188). There is also a

well-documented positive correlation between obesity and psoriasis

(189). Treating obesity with GLP-1 agonists results in improvement

of glucose tolerance and an improvement in psoriasis. The studies

completed to date have shown decreases in both psoriasis area and

severity index (PASI) (179, 180, 190–192). Histopathological

examination of psoriasis skin lesions after 12 weeks of liraglutide

showed reduced epidermal thickness as well as evidence for lesion

resolution (190). A plausible mechanism through which GLP-1

improves psoriasis is by blocking expression of IL-17, IL-22, IL-23

and TNF-a through the IL-23/Th-17 pathway (191).
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14 Type 2 diabetes and other
metabolic disorders

14.1 Diabetes and metabolic syndrome

Chronic hyperglycemia (high blood sugar) in diabetes can lead

to the production of advanced glycation end products (AGEs) and

reactive oxygen species (ROS), which can damage cells all

throughout the body. Cardiovascular disease, renal failure, and

neuropathy are a few possible effects of this ongoing low-grade

inflammation. The metabolic syndrome, on the other hand, is a

combination of diseases that also cause chronic inflammation,

including obesity, hypertension, diabetes, excessive blood sugar,

and abnormal cholesterol levels. Inflammatory chemicals like

cytokines can be produced by adipose tissue in obese people,

which can increase metabolic dysfunction and lead to insulin

resistance (193).
14.1.1 Liraglutide
Liraglutide decreased TNF-a, IkB, TLR2, and TLR4 mRNAs in

peripheral blood mononuclear cells. Liraglutide appears to improve

the metabolic profiles of obese type 2 diabetic patients and increase

Sirtuin 1(SIRT1) expression, which in turn appears to suppress the

pro-inflammatory NF-kB pathway. It also has an anti-inflammatory

effect on vascular endothelial cells by increasing the generation of

nitric oxide (193).

A sub-study of a randomized trial involving 54 with type 2

diabetes mellitus patients treated for 26 weeks with liraglutide or

placebo examined whether liraglutide exerted anti-inflammatory

effects through modulation of inflammatory gene expression in

peripheral blood mononuclear cells (PBMCs) and Human

monocytic cell line (THP-1) cells. When compared to baseline,

the results showed that liraglutide dramatically lowered the

production of TNF-A IL1B and raised CCL5 in PBMCs. The

placebo group did not show these effects. THP-1 cells were used

in an in vitro test to investigate the potential direct effects of GLP-1

receptor activation on inflammatory genes. The production of

inflammatory genes by THP-1 cells was induced by LPS in the

presence or absence of 2.5 nM recombinant GLP-1. GLP-1 did not

influence any of the tested genes, suggesting that it has no direct

effects on monocytes. GLP-1R is not expressed at the mRNA level in

type 2 diabetes mellitus patients’ PBMCs or THP-1 monocytes.

These results suggest that the effect of GLP-1 agonists on PBMCs

are likely to be a secondary to changes in other tissues and/or the

result of phenotypic alterations like weight loss or better glycemic

control (194).
14.1.2 Exenatide
HbA1c and blood sugar levels are considerably lowered by each

GLP-1 receptor agonist. One of the GLP-1RAs is exenatide, a

synthetic GLP-1RA made from exendin-4. Exenatide 2 mg

administered once weekly (QW) has been demonstrated to

significantly reduce fasting plasma glucose levels. Current

formulations of exenatide, a GLP-1RA based on exendin, include
B

A

FIGURE 12

Use of GLP-1 Exendin-4 results in a) normalizes CRP levels in serum
and medium b) low levels of MMP-9 and low MMP-9/TIMP ratios in
serum and medium. (A) Data represent the mean ± SEM. *P<.05;
**P<0.001, (B) Data represent the mean ± SEM. *P<.05; **P<0.01;
***P< 0.001 (182). Figure modified from article 183. Figure from
Open access (European journal of pharmacology) permissible to re-
use under a CC-BY 4.0 license).
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twice daily (BID), a long-acting GLP-1RA, and once weekly (QW), a

short-acting GLP-1RA. According to the DURATION research

program, exenatide 2 mg QW has shown clinical efficacy and

safety in persons with type 2 diabetes (T2DM). Exenatide QW has

been demonstrated to reduce HbA1c more than exenatide BID

because it requires fewer injections and has higher treatment

compliance (195).
14.1.3 Semaglutide
The Food Drug Administration (FDA) has approved the

injectable GLP-1 receptor agonist semaglutide for use in the

treatment of type 2 diabetes. The mean glycated hemoglobin level

reductions in trials involving semaglutide patients have been

reported to be as high as 1.8 percentage points, while the mean

weight reductions have been reported to be as high as 6.5 kg (196).
14.1.4 Tirzepatide
The once-weekly dual glucose-dependent insulinotropic

polypeptide-GLP-1 receptor agonist tirzepatide outperformed the

selective GLP-1 receptor agonist semaglutide in patients with type 2

diabetes who were taking metformin monotherapy, according to the

SURPASS trial (196).
14.2 GLP-1 and polycystic ovary syndrome

PCOS is associated with hyperinsulinemia and a decrease in

circulating levels of GLP-1 and GIP, two incretin hormones.

Administration of either of the two improves insulin sensitivity

and glucose metabolism in patients with PCOS (197).

14.2.1 Liraglutide
In postmenopausal PCOS rat models, the effects of liraglutide

on the cardiometabolic profile, the intrarenal renin-angiotensin

system (RAS), and the blood pressure (BP) were investigated.

Four-week-old female mice were treated with dihydrotestosterone

(DHT) for 17 months and a placebo. Liraglutide was administered

to postmenopausal PCOS rats over the last three weeks; and this

resulted in a greater decrease in body weight, fat mass, food

consumption, and insulin resistance than in control rats.

Liraglutide improved both dyslipidemia and leptin levels in

postmenopausal PCOS rats. In the control group, Liraglutide,

only decreased intrarenal RAS transiently while increasing heart

rate and decreasing blood pressure. In PCOS rats, liraglutide

increased heart rate but did not affect blood pressure. Enalapril,

an inhibitor of the angiotensin-converting enzyme, eliminated the

BP differences between PCOS and control rats. Liraglutide and

enalapril co-administration further lowered blood pressure only in

control rats. In summary, Liraglutide lowered a number of

cardiometabolic risk factors in postmenopausal PCOS.

Hyperandrogenemia, on the other hand, prevented Liraglutide

from regulating blood pressure in postmenopausal PCOS. The

stimulation of intrarenal RAS by androgens may contribute to BP

increases in postmenopausal PCOS (198).
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In a prospective observational study of the impact of liraglutide

on weight loss in obese and overweight people with PCOS, 84 obese

women with PCOS were given daily subcutaneous injections of

liraglutide beginning with a dose of 0.6 mg. The dose was increased

to 1.2 mg and then 1.8 mg if the compound was well tolerated. The

treatment lasted 4 weeks and subjects were monitored for a total of

27 weeks. They had a significant decrease in weight and BMI.

Weight and atherothrombotic markers, such as endothelial function

and clotting time, significantly decreased in obese women with

PCOS who were given liraglutide (1.8 mg per day) vs those given

placebo. In another study, liraglutide (1.8 mg) had a beneficial effect

on body weight, quality of life (QOL) and depression (197, 198).

In a randomized control trial, liraglutide and a placebo were

given to 72 PCOS, BMI>25, insulin-resistant women for 26 weeks.

Liver fat concentration, the prevalence of nonalcoholic fatty liver

disease (NAFLD), and visceral adipose tissue (VAT) were

investigated. DXA dual-x-ray absorptiometry was used to

measure body composition, Proton magnetic resonance

spectroscopy (1H-MRS) to measure liver fat content, MRI to

measure VAT (Visceral adipose tissue) and an oral glucose

tolerance test to measure glucose metabolism. In comparison to

placebo, liraglutide treatment reduced the prevalence of NAFLD by

two-thirds, the amount of fat in the liver by 44%, visceral adipose

tissue by 18%, and body weight by 5.2 kg (5.6%) (199).
14.2.2 Exenatide
A randomized single-blinded trial was conducted in 119 PCOS

women without diabetes and a BMI of 30 to 45 mm/kg. Exenatide

(EXE) (2 mg weekly), Dapagliflozin (DAPA) (10 mg daily),

Exenatide + Dapagliflozin (2 mg weekly/10 mg daily),

Dapagliflozin (10 mg) + Metformin (MET) (2000 mg extended

release daily), or Phentermine (7.5 mg)/Topiramate were given to

the patients for 24 weeks (46 mg extended release daily). All

medications caused decreases in fasting blood sugar, testosterone,

and blood pressure. Both combinations of Exenatide, Dapagliflozin

plus Phentermine, Topiramate resulted in significant weight loss

and waist circumference decrease. Exenatide plus dapagliflozin was

the only treatment that significantly decreased (fasting) blood sugar

and improved insulin sensitivity. This combination, therefore,

outperformed others in terms of clinical and metabolic effects (200).

For a period of 12 weeks, a combination of exenatide plus

metformin and metformin monotherapy was assessed in fifty obese/

overweight women of reproductive age. Forty patients completed

the study. In terms of lowering weight, body mass index (BMI), and

waist circumference, combination treatment outperformed

metformin monotherapy. Additionally, with combination therapy

as opposed to metformin, showed lower levels of fasting glucose,

oral glucose tolerance test (OGTT) 2-h glucose, and OGTT 2-h

insulin. Thus, in overweight/obese women with PCOS, combination

treatment is more effective than metformin alone by improving

insulin sensitivity, with tolerable short-term side effects (201).

A meta-analysis of the effects of insulin sensitizers in PCOS patients

showed that GLP-1 receptor agonists are superior to metformin in

improving insulin sensitivity, and metformin is superior to

thiazolidinediones in decreasing BMI. A combination of GLP-1
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receptor agonists and metformin had little effect on menstrual frequency

or serum testosterone. Metformin combined with thiazolidinediones

were particularly effective in promoting the recovery of menstruation in

PCOS patients. A combination of GLP-1 receptor agonists and

metformin or thiazolidinediones was superior to metformin

monotherapy as a treatment for hyperandrogenism (202, 203).
14.3 Obesity

Between 1960 and 1980, obesity prevalence among adults aged

20-49 was between 13% and 15% (204). An estimated 33.0% of

American people aged 20 and above are overweight, 35.7% are

obese, and 6.3% are severely obese, according to data from the

2009–2010 National Health and Nutrition Examination Survey

(NHANES), which used measured heights and weights (205). In

the United States between 2017 and 2018 adults aged 20 and above

had a prevalence of obesity of 42.4% and a prevalence of severe

obesity of 9.2% (206). At present 33% of US adults are overweight

and are in the 40-59 age group. Further weight gain is predicted by

2030 (205, 206). Men and women had equal obesity prevalence rates

overall, but women were more likely to have severe obesity than

men. Non-Hispanic black men and women had the highest

prevalence of severe obesity, and non-Hispanic Asian adults had

the lowest (206). In June 2013, the American medical association

first declared obesity a disease. Obesity is now the most prevalent

chronic disease in the United States; it results in $147 billion in

health care spending annually (204). GLP-1 receptor agonists

decrease appetite, increase satiety, reduce food intake and

decrease weight gain (207).

14.3.1 Liraglutide
The GLP-1 receptor agonist Liraglutide may only decrease

appetite for a short period of time. After 10 days of treatment

with Liraglutide, patients had decreased responses in the insula and

putamen to food pictures vs the control group treated with insulin

glargine. After 12 weeks of treatment, there were no differences

between the groups. GLP agonists may initiate weight loss, but not

maintain it (206).

Treatment with a GLP-1R agonist resulted in a greater weight

loss than control treatment did. The GLP-1R agonist had beneficial

effects on systolic and diastolic blood pressure, plasma

concentrations of cholesterol, and glycemic control, but did not

have a significant impact on plasma concentrations of liver

enzymes. Taking the GLP-1R agonist was associated with nausea,

diarrhea, and vomiting, but not with hypoglycemia (208).

Liraglutide 3.0 mg (Saxenda®; Novo Nordisk), as an adjunct to

a caloric restriction and increased physical activity, has been

approved for weight management in the USA and Europe. The

Satiety and Clinical Adiposity Liraglutide Evidence (SCALE) Phase

III trial in non-diabetic and diabetic people investigated the safety

and efficacy of liraglutide 3.0 mg (once daily subcutaneous

injections). In this weight management program subjects treated
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with liraglutide 3.0 mg experienced a dose-dependent weight loss

ranging from 6.0 kg to 8.8 kg, whereas subjects treated with placebo

(on diet and exercise alone) had a mean weight loss of 0.2 kg to 3.0

k (209).

14.3.2 Semaglutide
Semaglutide is a GLP-1 receptor agonist that is dosed once a

week subcutaneously based on its extended half-life. The molecule

binds strongly to albumin because of a large fatty acid chain

attached to the lysine in position 26. A phase 2 dose-finding trial

in subjects with type 2 diabetes showed clear dose-dependent effects

on HbA1c and weight over 12 weeks of treatment. 1.6 mg/week

resulted in an absolute weight loss of 4.82 kg compared to the

placebo group’s 1.18 kg and a drop in HbA1c of up to 1.7%. As a

secondary end-point, a direct comparison with liraglutide (up to 1.8

mg) was made. Semaglutide appeared to be more efficacious for

weight loss than liraglutide (2.6 kg) (210).

Current trials: The significant phase 3 clinical program

assessing the efficacy and safety of semaglutide (SUSTAIN) in

type 2 diabetes has been completed. To avoid the requirement for

subcutaneous injections and new formulations of semaglutide have

been developed. An orally available product is in phase 3. This

formulation is combined with the absorption enhancer SNAC

(sodium N-[8-(2-hydroxy benzoyl)amino] caprylate), causing a

localized increase in pH and enabling a higher solubility and

protection from enzymatic degradation. According to this study,

both hyperglycemia and hypoglycemia in patients with type 1

diabetes gives rise to endothelial dysfunction, oxidative stress, and

inflammation and GLP-1 can be useful to counterbalance these

effects. Thus, it supports the usefulness of GLP-1 and its analogs in

the management of type 1 diabetes (210).
14.4 GLP-1 and type 1 diabetes mellitus

The role of GLP-1 in patients with type 2 diabetes is well-

studied and well-established. Surprisingly, GLP-1 has been slow to

emerge in patients with T1DM. The use of GLP-1 agonists may be

considered in T1DM patients who are overweight or obese and not

at glycemic goals. GLP-1 decreases inflammation in pancreas which

can help in preserving beta cells and ameliorate the progression to

Type 1 diabetes. Further studies are required to fully understand the

role of GLP-1 in T1DM management (210).
14.5 SEPSIS

Sepsis is characterized by widespread inflammation and organ

dysfunction. It continues to be a major cause of illness, disability,

and death at all ages (211). Hormones in the body, such as oxytocin

ghrelin, alpha MSH, ACTH and hCG, have a significant role in

reducing the inflammatory response that occurs during sepsis (3–

6). GLP-1 plays a crucial role in regulating the cytokine storm by

binding to receptors in a wide variety of tissues including the brain,
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kidneys, liver, and lungs. It reduces proinflammatory processes and

boosts anti-inflammatory ones throughout the body. Even though

GLP-1’s use of sepsis has been encouraging in animal models, there

have been no human trials. Additional research on the use of GLP-1

in patients with sepsis may further elucidate its anti-inflammatory

properties and spur human studies.

15 Conclusion

GLP-1 and its agonists have opened new avenues for treatment

of inflammatory diseases to mitigate organ dysfunction, septicemia,

and post-sepsis syndrome. Further clinical research is required.

Besides peptide hormones like ghrelin, oxytocin and hCG,

consideration should be given to incretin and other related peptides.
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51. Is ̧bil Büyükcos ̧kun N, Güleç G, Cam Etöz B, Ozlük K. Central effects of
glucagon-like peptide-1 on cold-restraint stress-induced gastric mucosal lesions.
Turk J Gastroenterol (2007) 18:150–6.

52. Su Y, Liu N, Zhang Z, Li H, Ma J, Yuan Y, et al. Cholecystokinin and glucagon-
like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic
neurons and a-synuclein accumulation in the colon of two parkinson’s disease mouse
models. Eur J Pharmacol (2022) 926:175029. doi: 10.1016/j.ejphar.2022.175029

53. Wang X-C, Gusdon AM, Liu H, Qu S. Effects of glucagon-like peptide-1 receptor
agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol
(2014) 20:14821–30. doi: 10.3748/wjg.v20.i40.14821

54. Wang Y, Parlevliet ET, Geerling JJ, van der Tuin SJ, Zhang H, Bieghs V, et al.
Exendin-4 decreases liver inflammation and atherosclerosis development
simultaneously by reducing macrophage infiltration. Br J Pharmacol (2014) 171:723–
34. doi: 10.1111/bph.12490

55. Samson SL, Sathyanarayana P, Jogi M, Gonzalez EV, Gutierrez A,
Krishnamurthy R, et al. Exenatide decreases hepatic fibroblast growth factor 21
resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a
randomised controlled trial. Diabetologia (2011) 54:3093–100. doi: 10.1007/s00125-
011-2317-z

56. Simon TG, Patorno E, Schneeweiss S. Glucagon-like peptide-1 receptor agonists
and hepatic decompensation events in patients with cirrhosis and diabetes. Clin
Gastroenterol Hepatol (2022) 20:1382–1393.e19. doi: 10.1016/j.cgh.2021.07.010

57. Gupta NA, Kolachala VL, Jiang R, Abramowsky C, Romero R, Fifadara N, et al.
The glucagon-like peptide-1 receptor agonist exendin 4 has a protective role in
ischemic injury of lean and steatotic liver by inhibiting cell death and stimulating
lipolysis. Am J Pathol (2012) 181:1693–701. doi: 10.1016/j.ajpath.2012.07.015

58. Vendrell J, El Bekay R, Peral B, Garcí a-Fuentes E, Megia A, Macias-Gonzalez M,
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