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A novel zinc metabolism-
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predict prognosis and
immunotherapy response
in lung adenocarcinoma
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Background: Zinc is a key mineral element in regulating cell growth,

development, and immune system. We constructed the zinc metabolism-

related gene signature to predict prognosis and immunotherapy response for

lung adenocarcinoma (LUAD).

Methods: Zinc metabolism-associated gene sets were obtained from Molecular

Signature Database. Then, the zinc metabolism-related gene signature (ZMRGS)

was constructed and validated. After combining with clinical characteristics, the

nomogram for practical application was constructed. The differences in

biological pathways, immune molecules, and tumor microenvironment (TME)

between the different groups were analyzed. Tumor Immune Dysfunction and

Exclusion algorithm (TIDE) and two immunotherapy datasets were used to

evaluate the immunotherapy response.

Results: The signature was constructed according to six key zinc metabolism-

related genes, which can well predict the prognosis of LUAD patients. The

nomogram also showed excellent prediction performance. Functional analysis

showed that the low-risk group was in the status of immune activation. More

importantly, the lower risk score of LUAD patients showed a higher response rate

to immunotherapy.

Conclusion: The state of zinc metabolism is closely connected to prognosis,

tumor microenvironment, and response to immunotherapy. The zinc

metabolism-related signature can well evaluate the prognosis and

immunotherapy response for LUAD patients.
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1 Introduction

Lung cancer is the thorniest cancer in the world, and LUAD is

the most prevalent type of non-small cell lung cancer (NSCLC),

accounting for about 40% of lung cancer (1). In the past decades,

with the increasing understanding of the molecular level, the

treatment of lung cancer has undergone profound changes.

Surgery or radiation is still the primary treatment for the early

stage of lung cancer, while patients with advanced lung cancer have

a variety of treatment options, including targeted treatment,

immunotherapy, and combined with other therapies (2). Among

them, immunotherapy brings great benefits to patients with

advanced lung cancer. However, due to the heterogeneity of

tumors in different individuals, about 70% of patients with

advanced non-small cell lung cancer did not respond to

immunotherapy (3). Therefore, the search for new targets still

needs to be continued.

Zinc is one of the essential trace elements in the body (4). It is a

key component of a variety of enzymes and transcription factors,

including oxidoreductase, hydrolase, lyase, synthetase, and ligase,

which are involved in regulating DNA synthesis and cell cycle (5, 6).

Therefore, the lack of zinc will lead to the disorder of DNA

replication process, and then cause the cell to lose control of

proliferation and become cancerous. The zinc content in the

serum of various cancer patients has been significantly reduced,

including breast cancer (7), lung cancer (8), head and neck cancer

(9), and prostate cancer (10). In addition, zinc widely affects the

immune system of the body (11). Yu et al. found that the influx of

zinc increased after T cell receptor (TCR) was initially stimulated,

and then accelerated the activation of T cell by lowering the

threshold of TCR activation, thereby enhancing the immune

response (12). Various zinc finger proteins participate in the

regulation of B cell maturation (13, 14). The deficiency of zinc

transporter SLC39A10 will cause the decrease of zinc level in

macrophages, which leads to p53 mediated apoptosis (15). Zinc

deficiency also promotes the production of inflammatory cytokines

IL-1b, IL-6, and TNF-a via the MAPK pathway (16). In view of the

extensive role of metals such as iron and copper in cancer and the

cell death they cause (ferroptosis and cuproptosis) (17), we believe

that regulating the content of zinc in the body and targeting the key

enzymes in zinc metabolism are expected to become new targets for

cancer treatment in the future.

In this study, we constructed ZMRGS, which can accurately

predict the prognosis of LUAD patients. It can also well evaluate the

immunological characteristics and immunotherapy response of

different LUAD patients.
2 Material and methods

2.1 Data collection and processing

Transcriptome data of LUAD from TCGA was used for the

training set. To reduce the impact of non-tumor factors, we

excluded the lack of survival data and the samples with OS less
Frontiers in Immunology 02
than 30 days. Finally, we collected 485 LUAD and 59 normal

samples. In addition, we also collected the copy number variation

(CNV) data of LUAD in the TCGA database for analysis. The

GSE72094 containing 398 LUAD from GEO was used as the

validation set. Zinc metabolism-related genes were gathered from

the molecular signature database (18).
2.2 Identification of differently expressed
zinc metabolism-related genes and
enrichment analysis

The differentially expressed zinc metabolism-related genes

between tumor and normal tissues in the TCGA dataset were

analyzed by ‘limma’ package (19). The screening criteria were set

as adjusted p value < 0.05 and log2 |Fold Change| ≥ 1, which were

displayed by heatmap and volcano plot. Subsequently, GO/KEGG

enrichment analysis was performed on these genes through the

‘clusterProfiler’ package (20). The ‘CNBplot’ package is a tool for

Bayesian network inference of enrichment analysis results (21). We

used it to infer the gene interaction of key pathways.
2.3 Construction and validation of the zinc
metabolism-related gene signature

To build a reliable prognostic signature, we first screened prognostic

genes through univariate cox regression analysis and then incorporated

them into the LASSO cox regression model to further reduce the

number of candidate genes. Finally, the ZMRGS was constructed by

multivariate cox regression analysis. The risk score of each LUAD

sample = Coefgene1*Expgene1+Coefgene2*Expgene2 … Coefgenen*Expgenen.

According to the median risk score, LUAD patients were divided into

high- and low-risk groups. KM survival analysis was used to analyze the

survival differences between the two groups. Then the risk score of each

LUAD patient in GSE72094 was calculated using the same algorithm

and the same analysis was performed.
2.4 Nomogram for clinical application

Through cox regression analysis, we explored whether clinical

factors affected risk score, and the results were shown by forest plot.

To establish a clinically feasible scoring system, based on the results

of cox regression analysis, we combined the risk score and the

clinical information (p < 0.05) and constructed the nomogram. The

reliability of the nomogram was verified by receiver operating

characteristic (ROC) curve and calibration curve.
2.5 Gene set enrichment analysis

With the purpose of finding out the reasons that affect the

survival differences between two risk groups, we used GSEA

software (version: 4.2.3) to study the biological functions and
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pathways of the two subgroups. The threshold is set to p < 0.05 and

false discovery rate (FDR) < 0.25.
2.6 Analysis of tumor environment features

Further to explore the differences in the characteristics of

immune molecules in different subgroups, we extensively

analyzed a variety of immune molecules, including chemokine,

immunostimulator, immunoinhibitor, MHC molecule, and

receptor. The correlation between key immune checkpoints and

risk score was analyzed by spearman correlation analysis. Then, we

used ssGSEA to analyze the composition of 28 kinds of immune

cells in the TME (22). The ‘estimate’ package was used to analyze

the differences of tumor microenvironment components as a

whole (23).
2.7 Prediction of immunotherapy response

The TIDE algorithm is a method to calculate the dysfunction and

exclusion of patients to immunotherapy according to the gene

expression profile (24). The higher TIDE score means that patients

are more prone to immune escape when receiving immunotherapy.

We calculated the TIDE score of each LUAD patient and analyzed the

response of different subgroups to immunotherapy through chi-

square test. In order to further verify the predictive efficacy of zinc

metabolism-related gene signature, we used two immunotherapy

datasets with complete transcriptome data to verify (1) IMvigor210:

a cohort of 298 patients with advanced urothelial carcinoma

undergoing anti-PD-L1 (atezolizumab) immunotherapy (25). (2)

Checkmate: a cohort of 181 patients with advanced renal cell

carcinoma undergoing anti-PD-1 (nivolumab) immunotherapy (26).
2.8 Analysis of drug sensitivity

Based on the Cancer Genome Project (CGP) 2016 data in the

‘pRRophetic’ package (27), we analyzed the sensitivity of several

commonly used chemotherapy drugs and compared the differences

between the two groups.
2.9 Quantitative real-time PCR (qRT-PCR)

The expression profiles of 6 key genes were verified by

quantitative real-time PCR (qRT-PCR). There were 16 paired

LUAD and lung tissues used for experiment, which were from

patients undergoing lung cancer resection at our center. This study

was approved by the Ethics Committee of Sun Yat-sen University

Cancer Center (YB2018-85). A TRIzol (TIANGEN, Beijing, China)

was used to isolate total RNA from cancer tissue samples and

adjacent normal tissue samples. PrimeScriptTM RTMaster Mix (ES

Science, Shanghai, China) was used to reverse-transcribe

complementary DNA. SYBR Green Master Mix (ES Science,
Frontiers in Immunology 03
Shanghai, China) was used to amplify the target gene. Repeat the

qRT-PCR assays for three times in 10ml reaction volume for each

sample. The PCR primers used for amplification were as follows:

ABCC8, 5′- TCACCTCCGTGGTCTACTATC -3′ (forward),5′-
CTTGGTCTGTATTGCTCCTCTC -3′ (reverse); CPS1, 5′- CAA

CCTGGCAGTTCCTCTATAC-3′ (forward), 5′- ACAGCG

TCCATTTCTACTTCTC -3′ (reverse); HMGA2, 5′- CAGGAAG

CAGCAG-CAAGAA -3′ (forward),5′- CCAGGCAAGGCAACAT
TGA -3′ (reverse); HVCN1, 5′- TGCCTGGAACATCAACTACAA
-3′ (forward), 5′- CTCCAGGCGGAAGACAAATAA -3′ (reverse);
MT1A, 5′- CGCCTTATAGCCTCTCAACTTC -3′ (forward),5′-
TAAATGGGTCAGGGTTGTATGG -3′ (reverse); SLC39A11, 5′-
CAGCTCTCGTGTTCGTATTCTC -3′ (forward), 5′- AGGAT

GCCAGTTTCCCATTAC -3′ (reverse); GAPDH, 5′-GA

TTCCACCCATGGCAAATTC-3′ (forward), 5′- GTCATGAG-TC
CTTCCACGATAC -3′ (reverse). By the comparative threshold

cycle (2-Ct) method, we calculated the relative expression of these

6 genes by paired test.
2.10 Statistical analysis

All graphs and data analysis were conducted by R software

(version: 4.13) and SPSS (version: 26). Chi-square test was used for

categorical variables. The continuous variable was used by the

Wilcoxon test.
3 Results

3.1 Differently expressed Zinc
metabolism-related genes and
function enrichment

The flow chart of this study was shown in Figure 1. By analyzing

the transcriptome differences between LUAD and normal tissues,

we obtained 33 differentially expressed zinc metabolism-related

genes (Figure 2A), of which 11 were up-regulated and 22 were

down-regulated (Figure 2B). Based on the TCGA database, 31.6%

(176/557) of the samples had gene mutations (Figure 2C), of which

CPS1 mutation rate was the highest, reaching 11%. In addition, the
FIGURE 1

Flowchart in this study.
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proportion of CNV gain of most genes was higher, only the results

of GATA1 and OTC were opposite (Figure 2D). The position of 33

genes on the chromosome was shown in Figure 2E. GO/KEGG

enrichment analysis results showed that these genes were mainly

concentrated in zinc metabolism activities, zinc homeostasis, and

metabolism of various nutrients (Figures 2F, G). Then, we

conducted the Bayesian network analysis on the key zinc

metabolism pathway (zinc homeostasis and response to zinc) and

showed the interaction between genes (Figures 2H, I).
Frontiers in Immunology 04
3.2 Construction and validation of the zinc
metabolism-related gene signature

Univariate cox regression found that 9 genes were associated

with prognosis (Figure S1). Based on the minimal lambda value of

LASSO regression, we identified 8 genes (Figures 3A, B). Then, six

key genes and their coefficients were obtained through multivariate

cox analysis (Figure 3C). Risk score = -ABCC8*0.407001

+CPS1*0.105130+HMGA2*0.192565-HVCN1*0.300203+MT1A
B

C

D E

F G

A

H I

FIGURE 2

Characteristic of zinc metabolism-related genes in LUAD. (A) Heatmap showing the differences of zinc metabolism-related genes in LUAD and
normal samples. (B) Volcano plot exhibiting 22 down-regulated and 11 up-regulated genes. (C) Gene mutation landscape of LUAD in TCGA. (D) The
CNV mutation frequency of 33 zinc metabolism-related genes. (E) Chromosome position and alteration of zinc metabolism-related genes. (F) GO
enrichment analysis. (G) KEGG enrichment analysis. Gene interaction network diagram in zinc ion homeostasis (H) and response to zinc ion (I).
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*0.123295+SLC39A11*0.207582. KM survival analysis showed that

the prognosis of low-risk group was better (p = 0.00014, Figure 3D).

The distribution of risk scores showed that more people in high-risk

groups died (Figure 3E). Figure 3F showed the expression of six key

genes. In addition, similar results were obtained in GSE72094

(Figures 3G–I). The qRT-PCR showed that a high expression of

CPS1, HMGA2, and SLC39A11 was found in tumor compared with

adjacent normal tissues by 16 paired LUAD samples from our

center, while the expression of ABCC8, HVCN1, and MT1A was

lower in tumor (Figure 3J).
Frontiers in Immunology 05
3.3 Establishment of the nomogram

Univariate and multivariate cox regression analysis all showed

that risk score was an independent risk factor affecting the

prognosis of LUAD (Figures 4A, B). Then, based on the above

results, we built the nomogram to provide the basis for clinical

practice (Figure 4C). The area under curve (AUC) values in 1, 3, and

5 years were 0.793, 0.741, and 0.722 respectively (Figure 4D). The

correction curve also showed that the predicted value was consistent

with the actual results (Figure 4E).
B C

D E F

G H I

J

A

FIGURE 3

Construction and validation of ZMRGS. (A) Tenfold cross-validation in LASSO model. (B) LASSO coefficients of 9 prognostic-related genes. (C) 6 key
zinc metabolism-related genes and their coefficients. (D) Kaplan-Meier survival analysis in TCGA cohort. (E) Distribution of risk score and OS status
in TCGA cohort. (F) Heatmap of 6 zinc metabolism-related genes in TCGA cohort. (G) Kaplan-Meier survival analysis in GSE72094. (H) Distribution of
risk score and OS status in GSE72094. (I) Heatmap of 6 zinc metabolism-related genes in GSE72094. (J) The mRNA expressions of ABCC8, CPS1,
HMGA2, HVCN1, MT1A and SLC39A11 by qRT-PCR. *p < 0.05, **p < 0.01.
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3.4 Potential functions and pathways in
different subgroups

Based on GSEA, we analyzed the functional and pathway

differences between different subgroups. GO enrichment analysis

showed that there were a large number of pathways related to cell

proliferation and cell cycle regulation in high-risk group

(Figure 5A). In the low-risk group, a large number of immune-

related pathways were activated (Figure 5B). The results of KEGG

enrichment analysis also confirmed the above conclusions

(Figures 5C, D).
3.5 Immune molecule analysis

To investigate the differences of immune molecules between

different subgroups, we systematically analyzed the differences

between chemokine, immunostimulator, immunoinhibitor, MHC

molecule, and receptor (Figures 6A–E). There were obvious

differences in the expression of most immune molecules, and

almost all immune molecules were more abundant in the low-risk

group. Subsequently, we also analyzed the correlation between

several key immune checkpoints and the risk score. The results
Frontiers in Immunology 06
showed that except CD276, the other immune checkpoints were

negatively correlated with risk score, while the immune checkpoints

were positively correlated (Figure 6F).
3.6 Differences of the tumor environment

Based on ssGSEA algorithm, we found that up to 16 kinds of

immune cells were significantly infiltrated in the low-risk group

(57.1%), while only CD4 T cell and type 2 T helper cell were

significantly infiltrated in the high-risk group (7.14%) (Figure 7A).

The ESTIMATE algorithm showed that the low-risk group had a

higher immune score (Figure 7B) and a lower tumor purity

(Figure 7C). However, there was no significant difference between

the stromal score (Figure 7D).
3.7 Prediction of immunotherapy response
by TIDE and immunotherapy datasets

The results of TIDE suggested that the high-risk group had the

higher TIDE score and exclusion score, while the low-risk group

had higher dysfunctional score (Figure 7E), which meant that the

high-risk group patients were more prone to immune escape. The
B

C
D

E

A

FIGURE 4

Construction of the nomogram to predict the prognosis of LUAD. Univariate (A) and multivariate (B) Cox regression analysis of risk score. (C)
Nomogram for the prediction of 1-, 3- and 5-year survival probability. (D) Time-dependent ROC analysis of the nomogram. (E) Calibration curves for
evaluating the accuracy. **p < 0.01, ***p < 0.001.
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result of response to immunotherapy also showed that the low-risk

group was more likely to be responsive to immunotherapy (chi-

square test, p < 0.0001, Figure 7F). In addition, we conducted KM

survival analysis by using two independent immunotherapy

datasets, and the results showed that the prognosis of high-risk

patients was worse (IMvigor210: p = 0.0079, Checkmate: p = 0.003,

Figures 7G, H).
3.8 Analysis of drug sensitivity

According to the data from Cancer Genome Project (CCP) 2016

in the ‘pRRophetic’ package, we analyzed the relative sensitivity of

various drugs. The overall drug sensitivity analysis results were

shown in Figure S2. Surprisingly, the high-risk group was more

sensitive to common drugs (Figures 8A–H).
4 Discussion

Research on the connection between zinc and cancer has made

some hopeful strides in recent years. Zinc widely affects the

proliferation of tumor cells and the function of immune system

(28), more and more studies have proved that zinc plays an

irreplaceable role in the occurrence and development of tumors.

However, the study of key genes in zinc metabolism is rare. As far as

we know, this is the first study to analyze the prognostic value and

immune characteristics of zinc metabolism-related genes in LUAD.

In this study, we analyzed the genomic changes of zinc

metabolism-related genes in LUAD and constructed the ZMRGS.
Frontiers in Immunology 07
The signature showed superior prediction ability. To get closer to

clinical practice, we combined the signature with TNM staging to

construct the nomogram. The prognostic signature of this study was

composed of six genes (ABCC8, CPS1, HMGA2, HVCN1, MT1A,

and SLC39A11). Previous studies had described the partial

relationship between these genes and tumors. ABCC8 is a

member of the MRP family involved in multidrug resistance. It

was regarded as a prognostic marker for glioma and could predict

chemosensitivity (29). CPS1 was thought to be involved in

metabolic reprogramming in hepatocellular carcinoma, thus

affecting the occurrence of tumors (30). The development of

inhibitors for CPS1 also shows potential therapeutic potential

(31). The high expression of HMGA2 in lung cancer indicates a

worse prognosis, which is consistent with our findings. Vivo

experiments have confirmed that overexpression of HMGA2 can

inhibit the proliferation and metastasis of lung cancer, soHMGA2 is

expected to become a new target for the treatment of lung cancer

(32). HVCN1 is the only gene encoding mammalian proton

channel. Zinc ion can promote cell apoptosis and inhibit the

invasion and metastasis of glioma cells by inhibiting the activity

of HVCN1 in vivo and in vitro. MT1A is involved in DNA damage

reaction and metal homeostasis and is therefore inseparable from

the occurrence and development of tumors (33). SLC39A11 is a zinc

transporter, which can inhibit the cloning of LUAD cells after being

knocked down in vitro (34).

Zinc is involved in the formation of various enzymes that

regulate cell cycle. Lack of zinc will lead to abnormal cell

proliferation and then carcinogenesis. Through GSEA analysis, we

found that a variety of cell cycle-related pathways were activated in

high-risk group, which may be the reflection of zinc regulation of
B

C D

A

FIGURE 5

Gene set enrichment analysis between two ZMRGS groups. GO enrichment in high-risk group (A) and low-risk group (B). KEGG enrichment in high-
risk group (C) and low-risk group (D).
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cell cycle disorder leading to poor prognosis of LUAD patients in

our model. In addition, both non-specific and specific immune

systems are affected by zinc, involving the proliferation,

differentiation, and apoptosis of immune cells (35). Our research

also found that there were a large number of immune pathways

enriched and higher expression of immune molecules in the low-

risk group, indicating that the low-risk group immune pathway was

activated. The results of ssGSEA also confirmed that various

immune cells infiltrated in the low-risk group. These results

indicate that the low-risk group was in the state of immune
Frontiers in Immunology 08
activation on the whole. Abundant immune cell infiltration

means that it is more likely to display a better response to

immunotherapy (36). Subsequently, we predicted the response to

immunotherapy through the TIDE algorithm. The results showed

that, as we expected, the high-risk group had a higher TIDE score

and was more prone to immune escape and the low-risk group

showed excellent immunotherapy response (47.7% vs 27.3%). To

verify the reliability of the results of TIDE, we used two datasets of

anti-PD-1/PD-L1 immunotherapy for further analysis. The results,

without exception, suggest that patients in the low-risk group had
B

C D

E F

A

FIGURE 6

Immune-related molecular characteristics. (A) Chemokine. (B) Immunostimulator. (C) Immunoinhibitor. (D) MHC molecule. (E) Receptor.
(F) Correlation circle of risk score and immune checkpoints. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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better prognosis when receiving immunotherapy. Although great

progress has been made in immunotherapy, only 20% of patients

with NSCLC respond to immune checkpoint inhibitors (ICIs) (37).

Previous studies have confirmed that ICIs combined with

chemotherapy could improve the effectiveness of immunotherapy

(38); hence, we also analyzed the sensitivity of chemotherapy drugs

and found that the high-risk group was more sensitive to multiple

chemotherapy drugs. Therefore, immunotherapy combined with
Frontiers in Immunology 09
chemotherapy for the high-risk group may be an option to improve

the prognosis of such patients. These results provided a reliable

basis for our ZMRGS to be applied in clinical practice and provide

different treatment guidance for different LUAD populations.

There are some limitations in this study. First of all, the data we

analyzed was from the public database, and further multi-center

clinical trial verification is still needed in the future. Secondly, due to

the lack of transcriptome datasets of LUAD immunotherapy, the
B C D

E F

G H

A

FIGURE 7

Differences in TME and prediction of immunotherapy response. (A) The differences in the proportions of 28 immune cells between two ZMRGS
groups by ssGSEA. Results of immune score (B), tumor purity (C), and stromal score (D) in two groups. (E) The results of TIDE score. (F) Response to
immunotherapy from TIDE algorithm. Kaplan–Meier analysis by ZMRGS for patients in the IMvigor210 cohort (G) and Checkmate cohort (H). *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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prediction of immunotherapy was only based on some machine

algorithms. Finally, the potential role of these key zinc metabolism-

related genes in lung cancer stil l needs further basic

experimental exploration.

In conclusion, we have constructed a new and reliable zinc

metabolism-related gene signature, which can effectively predict the

prognosis of LUAD patients and distinguish the immune status of

different LUAD patients. More importantly, it can distinguish and

give LUAD patients with different immune states more appropriate

treatment to improve their prognosis.
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FIGURE 8

Chemotherapy sensitivity analysis. (A) Cisplatin. (B) Docetaxel. (C) Doxorubicin. (D) Etoposide. (E) Paclitaxel. (F) Vinblastine. (G) Gemcitabine. (H) Vinorelbine.
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