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Background: The pathogenesis of Alzheimer’s disease (AD) is complex and

multi-factorial. Increasing evidence has shown the important role of immune

infiltration in AD. Thus the current study was designed to identify immune

infiltration-related genes and to explore their diagnostic value in AD.

Methods: The expression data of AD patients were downloaded from the GEO

database. The limma R package identified differentially expressed genes (DEGs)

between AD and controls. The CIBERSORT algorithm identified differentially

infiltrated immune cells (DIICs) between AD and controls. DIIC-correlated DEGs

were obtained by Pearson correlation analysis. WGCNAwas employed to identify

DIIC-relatedmodules. Next, LASSO, RFE, and RFmachine learningmethods were

applied to screen robust DIIC-related gene signatures in AD, followed by the

construction and validation of a diagnostic nomogram. Detection of the

expression of related genes in the peripheral blood of Alzheimer’s disease and

healthy volunteers by RT-PCR. In addition, the CTD database predicted

chemicals targeting DIIC-related gene signatures in the treatment of AD.

Results: NK cells, M0 macrophages, activated myeloid dendritic cells, resting

mast cells, CD8+ T cells, resting memory CD4+ T cells, gamma delta T cells, and

M2macrophages were differentially infiltrated between AD and controls. Pearson

analysis identified a total of 277 DIIC-correlated DEGs between AD and controls.

Thereafter, 177 DIIC-related genes were further obtained by WGCNA analysis. By

LASSO, RFE and RF algorithms, CMTM2, DDIT4, LDHB, NDUFA1, NDUFB2,

NDUFS5, RPL17, RPL21, RPL26 and NDUFAF2 were identified as robust gene

signature in AD. The results of RT-PCR detection of peripheral blood samples

from Alzheimer’s disease and healthy volunteers showed that the expression

trend of ten genes screened was consistent with the detection results; among

them, the expression levels of CMTM2, DDIT4, LDHB, NDUFS5, and RPL21 are

significantly different among groups. Thus, a diagnostic nomogram based on a

DIIC-related signature was constructed and validated. Moreover, candidate

chemicals targeting those biomarkers in the treatment of AD, such as 4-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1147501/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1147501/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1147501/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1147501/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1147501&domain=pdf&date_stamp=2023-07-20
mailto:zhengyimingdao@gmail.com
mailto:salide111@163.com
https://doi.org/10.3389/fimmu.2023.1147501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1147501
https://www.frontiersin.org/journals/immunology


Zhuang et al. 10.3389/fimmu.2023.1147501

Frontiers in Immunology
hydroxy-2-nonenal, rosiglitazone, and resveratrol, were identified in the CTD

database.

Conclusion: For the first time, we identified 10 immune infiltration-related

biomarkers in AD, which may be helpful for the diagnosis of AD and provide

guidance in the treatment of AD.
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Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative

disease closely associated with aging (1). In the early stages, patients

with the disease present with mild memory difficulties that progress to

cognitive impairment and various cognitive dysfunctions that affect

several areas of cognition, which seriously diminishes the quality of life

(2). The prevalence of AD is increasing annually, and according to

recent studies, the incidence of Alzheimer’s disease is expected to

double and triple in Europe and worldwide by 2050, respectively (3).

Despite many efforts to better understand the pathogenesis of AD,

current clinical management and treatment are not very effective Early

diagnosis and early intervention to slow down the progression of AD

appear to be particularly crucial (4). Thus, further exploration of AD at

a genetic level, identification of novel biomarkers, and refinement of the

diagnostic model are of great significance to improving the intervention

and treatment of AD patients.

In current clinical work, the diagnosis of AD is mainly based on

the clinical manifestations of typical cognitive decline, with imaging

manifestations such as atrophy of the hippocampus and other

structures as an auxiliary diagnosis (5, 6). However, the typical

clinical symptoms appear mostly in the middle and late stages of the

disease process, which makes the early diagnosis of AD very

challenging. Nowadays, with the rapid development of sequencing

technology, disease sequencing data has increased dramatically (7).

The bioinformatics parsing of sequencing data can identify

biomarkers such as genes and targets that influence the

development of transcendental development, which is of great

value for the early diagnosis of AD (8, 9).

Recent studies have revealed that abnormal activation of

neuroimmune cells and inflammatory response play a key role in

the progression of AD (10). However, the diagnostic value of

immune cell-related genes in AD remains unclear. A

comprehensive understanding of the genetic and molecular
02
mechanisms underlying immune cell involvement in AD could

pave the way for developing targeted therapeutics and personalized

treatment strategies. Furthermore, identifying reliable biomarkers

and establishing diagnostic models may enable earlier and more

accurate detection of AD, facilitating timely interventions and

improving patient outcomes. The research team aims to discover

novel genetic markers and molecular pathways associated with

immune dysregulation in AD by analyzing comprehensive

genomic data, transcriptomic profiles, and immune cell

signatures. Additionally, the study intends to develop a robust

diagnostic model capable of accurately differentiating AD patients

from healthy individuals based on immune cell-related biomarkers.
Materials and methods

Data collection and processing

Three human AD microarray datasets, namely GSE85426,

GSE63060, and GSE63061 were selected and downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). The details of

the selected datasets are presented in Table 1. The selection criteria

were as follows: (i) the datasets include both AD and control samples,

(ii) The sample type used is blood, and (iii) The total number of

samples included in the analysis is not less than 150. After eliminating

the batch effects by the “sva” package in R (11), GSE85426, GSE63060

and GSE63061 were merged and used as AD training cohort. In

addition, the E-MTAB-6094 dataset, including blood samples from

22 AD patients and 13 controls, was downloaded from the Array

Express database (https://www.ebi.ac.uk/arrayexpress/) and used as

an AD testing cohort. The “Limma” package (12) in R was used to

identify DEGs between AD and control samples with FDR < 0.05 and

|log2FC| > 0.5 as the cutoff threshold. The results were visualized in a

volcanic plot and heatmap.
TABLE 1 The information of selected datasets in this study.

ID Platform Total sample number CTRL AD

GSE85426 GPL14550 Agilent 180 90 90

GSE63060 GPL6947 Illumina 249 104 145

GSE63061 GPL10558 Illumina 273 134 139
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Evaluation of immune cell infiltration and
their relationship with DEGs

The CIBERSORT algorithm was applied to calculate the

proportion of 22 immune cells based on gene expression profiles of

merging datasets. Student-t test was used to identify differentially

infiltrated immune cells (DIICs) between AD and control samples in

the training cohort with p < 0.05 as the cutoff threshold. Next, the Cor

function of R was applied to perform correlation analysis between

DIICs and DEGs to screen DIIC-correlated DEGs with p < 0.05 and |

cor| > 0.3 as the cutoff threshold. The function of DIIC-correlated

DEGs was analyzed by DAVID (13, 14), and GO terms and KEGG

pathways with FDR < 0.05 were considered significantly enriched. In

addition, the interactions among DIIC-correlated DEGs were evaluated

in the STRING database (https://string-db.org/), followed by the

construction of PPI network using DIIC-correlated DEGs with

interaction score greater than 0.6 by Cytoscape software (15).
WGCNA analysis

WGCNA was carried out to build modules related to DIICs

based on the gene expression profiles (16). After calculating the

Pearson correlation coefficient, a similarity matrix was constructed.

Then the similarity matrix was converted into an adjacency matrix,

in which the optimal soft threshold was selected to build a scale-free

network. Then adjacency matrix was converted to TOM for

hierarchical clustering analysis of genes, followed by the

identification of network modules by Dynamic TreeCut setting

cut height as 0.995. Next, the correlations between modules and

DIICs were calculated. To further narrow the scope of DIIC-

correlated DEGs, Fisher’s exact test was performed by projecting

DIIC-correlated DEGs into each module. DIIC-correlated DEGs in

modules with p < 0.05 and FC >1 were selected for the

following analysis.
Identification of robust DIIC-related
biomarkers by machine learning

Three machine learning methods, including LASSO, RFE, and RF,

were applied independently to screen DIIC-related biomarkers. Briefly,

LASSO was performed by “lars” package in R (17) to screen the gene

signatures under the optimal lambda with the slightest classification

error. RF was performed by “randomForest” package in R (18), and

gene features and their contributions were then analyzed by explaining

the function of the “DALEX” R package (19, 20); SVM was performed

by “caret” package in R at 100-fold cross-validation to determine the

variables at the max accuracy (20). At last, the overlapped genes

identified by LASSO, RF, and SVM were considered robust DIIC-

related biomarkers in AD (21, 22). The expressions of DIIC-related

biomarkers in AD and control samples from training and testing

cohorts were compared and displayed in the bar charts.
Frontiers in Immunology 03
Construction and validation of a diagnostic
nomogram in AD

Then the overlapped genes were included in multivariate Cox

regression analysis to construct the nomogram in training set by the

“rms” package of R (23). The decision curves were plotted by the

“rmda” package (24) of R to evaluate the clinical utility of the

nomogram (25). In addition, the nomogram was tested in testing

set. Furthermore, chemicals associated with AD and those

biomarkers were searched in the CTD database (http://

ctdbase.org/) and were employed to construct a chemical-gene

network by Cytoscape software.
Quantitative real-time reverse
transcriptions PCR

Total RNA was extracted from the peripheral blood of six

patients with Alzheimer’s disease and six healthy adults from

Liaocheng Hospital of Shandong First Medical University using

Trizol reagent (AG21101, AG, CHINA). Inclusion criteria: people

who met the diagnostic criteria for AD (NIA-AA criteria) published

by the National Institute on Aging (NIA) and the Alzheimer’s

Association (AA) in 2011 (Alzheimer’s disease group); people

without cognitive impairment (control group).

Exclusion criteria: Patients with a clear history of stroke;

Patients with psychiatric disorders; History of the immune system

and severe hematologic disorders. Informed consent was obtained

from the subjects or their legal guardians, and the Ethics Committee

of Liaocheng Hospital, Shandong First Medical University,

approved the study (NO.2023039).

RNA was reverse transcribed into cDNA with a commercial

reverse transcription kit (AG11706, AG, CHINA), and quantitative

real-time PCR was performed by the SYBR premixed Ex Taq kit

(AG11718, AG, CHINA) and specific primers (Table 2).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used

as the reference gene. Relative mRNA levels were expressed and

calculated using the 2(-Delta CT) method. then subjected to one-

way analysis of variance using Graphpad Prism8 software, and P

value < 0.05 was considered a significant difference.
Results

Identification of DEGs in AD
training cohort

Batch effects among GSE85426, GSE63060, and GSE63061

(Figure 1A) were first eliminated (Figure 1B) by “sva” package in R.

A total of 404 DEGs, including 234 down-regulated and 170 up-

regulated genes, were identified between AD (N = 374) and control (N

= 328) samples in the merging AD training datasets (Table S1) and

displayed in the volcanic plot (Figure 1C) and heatmap (Figure 1D).
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A B
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FIGURE 1

Screening of significantly differentially expressed genes (A, B) The three data sets (GSE85426, GSE63060, GSE63061) remove the batch effect
through the “sva” algorithm and merge them into one data set. The sample relationship before and after the batch effect removal. (C) The volcano
map of DEGs. The green and red dots represent significantly lower and higher DEGs, respectively, the black horizontal line represents FDR<0.05, and
the two vertical lines representlog2FC |>0.5. (D) Heatmap of DEGs. Black and white in the sample bar represent the AD and the control groups,
respectively.
TABLE 2 Primers used for RT-PCR in this study.

Gene Forward primer(5′-3′) Reverse primer(5′-3′)

CMTM2-F AAGAAGGACGGTAAGGAGCCA GCACCGCCTTTTGAGGTTTG

DDIT4-F TGGGCAAAGAACTACTGCG AGAGTTGGCGGAGCTAAACAG

LDHB-F CCTCAGATCGTCAAGTACAGTCC ATCACGCGGTGTTTGGGTAAT

NDUFA1-F ATGTGGTTCGAGATTCTCCCC CCTGTGGATGTACGCAGTAGC

NDUFS5-F TGCACATGGAATCGGTTATACTC CCGAAGCAAACACTCTACGAAAT

RPL17-F GAACACTCGTGAAACTGCTCA AACGTCGGAATGGTACACACT

NDUFB2-F GGAGGCCGCCTTTTCAGAA GGAAGGATCAGGATACGGAAAGT

RPL21-F CAAGGGAATGGGTACTGTTCAAA CTCGGCTCTTAGAGTGCTTAATG

RPL26-F GACTTCCGACCGAAGCAAGAA TGCACCCGTTCAATGTAGATAAC

NDUFAF2-F ATGCCTCTGCTCCATACTTTGG TGGCTCTTGCCATCTCGTG
F
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Identification of DEGs correlated with key
infiltrated immune cells in AD

To identify key immune cells in AD, CIBERSORT was carried

out to calculate the proportions of 22 immune cells in AD and

control samples (Table S2). We found that compared to control

samples, AD patients had significantly higher proportions of resting

NK cells, M0 macrophages, activated myeloid dendritic cells, resting
Frontiers in Immunology 05
mast cells and lower proportions of CD8+ T cells, resting memory

CD4+ T cells, gamma delta T cells, and M2 macrophages

(Figure 2A), suggesting that those DIICs were key immune cells

in AD. Next, 277 DEGs were detected to be significantly correlated

with those DIICs (Table S3). Functional analysis showed that

DIICs-correlated DEGs were significantly enriched into 26 GO

terms (Figure 2B), such as SRP-dependent cotranslational

protein targeting to membrane, nuclear-transcribed mRNA
C

A

B

D

FIGURE 2

Screening of DEGs significantly related to immune cells. (A) Distribution histogram of immune cells with significantly different distribution in different
groups based on CIBERSORT evaluation. Immunologically significantly correlated DEGs, significantly correlated GO biological process, *P < 0.05,
***P < 0.001. (B) and KEGG signal pathway (C) bubble diagram, the horizontal axis represents the number of genes, the vertical axis represents the
item name, the size of the dot represents the FoldEnrichment value, and the color represents significance. The larger the dot, the closer the color is
and the higher the significance. (D) Interaction network diagram, color indicates the degree of significant difference.
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catabolic process, nonsense-mediated decay, translation, and 8

KEGG pathways (Figure 2C), including ribosome, oxidative

phosphorylation, Huntington’s disease, Alzheimer’s disease,

Parkinson’s disease, non-alcoholic fatty liver disease (NAFLD),

proteasome and cardiac muscle contraction. Moreover, the PPI

network, including 202 nodes and 1,096 interaction pairs, revealed

close interactions among DIIC-correlated DEGs (Figure 2D).
Frontiers in Immunology 06
Further screening of DIIC-correlated
DEGs by WGCNA

A total of 277 DIIC-related DEGs were analyzed in WGCNA, the

soft threshold power fivewas chosen to construct a scale-free network at

R2 = 0.9 (Figure 3A). Then 7 modules were identified by Dynamic

TreeCut (Figure 3B), and the multidimensional scaling analysis showed
A

B

D

C

FIGURE 3

WGCNA algorithm screening disease progression and immune-related modules. (A) Left figure: The weight parameter power selection diagram of
the adjacency matrix. The horizontal axis represents the weight parameter power, and the vertical axis represents the square of the correlation
coefficient between log (k) and log (p (k)) in the corresponding network. The red line represents the standard line where the square value of the
correlation coefficient reaches 0.9. Right figure: Schematic diagram of average connectivity of genes under different power parameters. The red line
indicates that under the weight parameter power of the adjacency matrix in the left figure, the average connectivity of network nodes is 1. (B) Gene
dendrogram and module colors, each color represents a different module. (C) MDS diagram of DEGs contained in each module. (D) Correlation heat
map between the proportion of sample immune cells and the partition of each module.
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that genes in the same module were distributed in the same region

(Figure 3C). Next, DIIC-correlated DEGs were projected to those

modules. Fisher’s exact test revealed that DIIC-correlated DEGs were

significantly enriched in blue, brown, green, and redmodules (Table 3).

The module-trait correlation analysis showed that the blue module was

positively correlated with resting memory CD4 T cells (cor = 0.35) and

delta gamma T cells (cor = 0.39), the brown module was negatively

correlated with M0 macrophages (cor = -0.35), the green module was

positively correlated with M0 macrophages (cor = 0.49) and negatively

correlated with CD8 T cells (cor = -0.33), resting memory CD4 T cells

(cor = -0.32), delta gamma T cells (cor = -0.34) and M2 macrophages
Frontiers in Immunology 07
(cor= -0.3), redmodulewasnegatively correlatedwithCD8Tcells (cor=

-0.47) (Figure 3D). Thus, 118DIIC-correlatedDEGs in the bluemodule,

17 DIIC-correlated DEGs in brown module, 30 DIIC-correlated DEGs

in greenmodule, and 12 DIIC-correlated DEGs in the redmodule were

used for the downstream analysis (Table S4).
Construction and validation of a DIIC-
related diagnostic model in AD

To screen robust DIIC-related biomarkers in AD, different

machine-learning methods were employed to screen robust DIIC-
TABLE 3 Fisher’s exact test to identify key modules.

ID Color Module size DIIC correlated DEGs Enrichment fold[95%CI] Phypers

module 1 blue 1573 118 2.229[1.7439-2.839] 1.35E-10

module 2 brown 276 17 1.830[1.029-3.063] 2.90E-02

module 3 green 123 30 7.243[4.569-11.19] 1.55E-14

module 4 grey 652 8 0.365[0.154-0.737] 2.54E-03

module 5 red 116 12 3.073[1.516-5.701] 1.24E-03

module 6 turquoise 2643 3 0.033[0.00688-0.100] 2.20E-16

module 7 yellow 263 2 0.226[0.0270-0.836] 1.77E-02
fro
A

B

C

FIGURE 4

Optimization algorithm for screening important immune-related markers. DEGs parameter diagram of RFE (A), LASSO algorithm (B) and RF (C)
filtering features.
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related biomarkers in AD. Using RFE, 16 genes were identified as

potential biomarkers for AD (Table S5, Figure 4A). By LASSO, 37

signatures were extracted as candidate biomarkers (Table S6,

Figure 4B). 46 genes were identified by the RF algorithm (Table S5

and Figure 4C). At last, 10 overlapping genes, including CMTM2,

DDIT4, LDHB, NDUFA1, NDUFB2, NDUFS5, RPL17, RPL21, RPL26

and NDUFAF2, were obtained and considered as robust biomarkers in

AD. Except for DDIT4, the expressions of the other nine genes

significantly decreased in AD compared with those in controls in the

training set (Table S6, Figure 5A). Furthermore, the expression trend of

these ten genes is similar in the test set, with significant differences in

gene CMTM2, DDIT4, LDHB, NDUFS5, and RPL21 (Table S6,

Figure 5B). Six Alzheimer patients and six healthy controls were

included in the study (Table 4), and the expression trends of these

genes verified by peripheral blood qPCR were consistent with the

results of our previous bioinformatics analysis (Figure 6). Based on

CMTM2, DDIT4, LDHB, NDUFA1, NDUFB2, NDUFS5, RPL17,

RPL21, RPL26 and NDUFAF2, a nomogram was constructed
Frontiers in Immunology 08
(Figure 7A). The decision curves showed that the patients got the

highest benefits from the combined nomogram model compared with

the other single biomarker models (Figure 7B). The nomogram was

also constructed in the testing cohort (Figure 7C), and the decision

curves in the testing cohort further demonstrated the efficient clinical

utility of the combined nomogram model (Figure 7D). Moreover,

candidate chemicals targeting those biomarkers in ADwere screened in

the CTD database; a total of 28 chemicals, such as 4-hydroxy-2-

nonenal, rosiglitazone, resveratrol, cannabidiol, colchicine were

identified, followed by the construction of chemical-biomarker

network composed of 94 chemical-biomarker pairs (Figure 8,

Table S7).
Discussion

Neuroimmune refers to the intricate interplay between the

nervous and immune systems, encompassing the coordinated
A

B

FIGURE 5

The expression level distribution of characteristic genes in the combined training data set (A) and E-MTAB-6094 validation data set (B), *P < 0.05,
***P < 0.001.
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regulation of diverse cell types, including neurons, glial cells, and

immune cells (26). Recent research has shed light on the pivotal role

of aberrant activation of neuroimmune cells and heightened

inflammatory responses in the progression of Alzheimer’s disease

(AD) (10). This dysregulated activation of immune cells and the

ensuing surge in inflammatory reactions lead to irreversible damage

to neurons and the delicate functioning of the nervous system (10).

However, the diagnostic value of immune cell-related genes in AD

remains unclear. In the current study, a comprehensive analysis by

CIBERSORT, WGCNA, and machine learning identified 10
Frontiers in Immunology 09
immune cell-related genes in blood samples, followed by the

construction of a reliable diagnostic nomogram and candidate

chemicals in AD treatment. We hope to improve our

understanding of the relationship between immune cells and AD

at a genetic level and provide useful information for the treatment

of AD patients.

The trends of expression levels of the ten hub genes obtained

from this screening were identical in the training and validation

sets, and to further validate the accuracy of our bioinformatics

analysis, we verified their expression differences in peripheral blood
A B

D

E F

I

HG

J

C

FIGURE 6

The relative expression levels of NDUFS5 (A), DDIT4 (B), LDHB(C), CMTM2 (D), RPL21 (E), NDUFB2 (F), NDUFA1 (G), RPL17 (H), RPL26 (I), and
NDUFAF2 (J) in the model between control and AD samples identified by RT-PCR, GAPDH was used as a reference. * P < 0.05, ***P < 0.001, ns,
non-significant.
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in AD patients and healthy populations and obtained consistent

results. Furthermore, evidence suggests that immune cell

populations promise as diagnostic and prognostic biomarkers for

AD (27). For example, a recent study demonstrated significant

differences in the ratios of CD4+ T cells, NK cells, CD8+ T cells, and

monocyte-macrophages between AD patients and healthy

individuals at the single-cell level (28). These findings indicate

that immune cell alterations and dysregulation may indicate

disease status and progression.
Frontiers in Immunology 10
CMTM2 is a member of a newly found gene family

(chemokine-like factor-like MARVEL transmembrane domain-

containing family members), the members which have been

reported to be involved in various tumors, reproduction, and

immunity (29). CMTM2 has been reported in spermiogenesis

(30), hepatocellular carcinoma, HBV-related disorders (31), and

gastric cancer (32). However, its role in immunity and the nervous

system is unknown. In the current study, we found that the

expression of CMTM2 significantly decreased in AD and was
A

B

D

C

FIGURE 7

Construction and verification of Nomogram diagnostic model. (A) Nomogram model diagram based on the expression level of immune DEGs in the
combined training data set based on ten features. (B) Model decision line diagram. (C) Nomogram model diagram of the expression level of immune
DEGs in E-MTAB-6094 validation data set based on ten characteristics. (D) Model decision line diagram.
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significantly correlated with M2 macrophages and gamma delta T

cells (Table S3), which were DIICs between AD and controls. In

AD, decreased M2 macrophage subset has been reported to indicate

worse cognitive performance (33). Transplanting of M2

macrophages could reduce neuron loss, impair inflammation

response and enhance cognitive ability (34). Gamma delta T cells

produce IL-17, the accumulation of which was shown to be

concomitated with the onset of cognitive decline in female AD

mice model (35). Therefore, CMTM2 may regulate AD via M2

macrophages and gamma delta T cells, which needs further study.
Frontiers in Immunology 11
The encoded product of DDIT4, RTP801 (also known as

REDD1), is involved in Ab-induced synaptic dysfunction by

regulating Ab’s cytotoxicity (36, 37), and knockdown of DDIT4

could improve cognitive ability and ameliorate neuroinflammation

severity (38, 39). Those findings indicate that DDIT4 may be a

promising therapeutic target in AD. In addition, our study found that

the expression of DIIT4 was significantly correlated with resting NK

cells. Consistent with our study, the proportion of resting NK cells

was also significantly different between AD and control samples in

other studies (40, 41), indicating an essential role of resting NK cells
FIGURE 8

Small molecule screening of chemical drugs related to characteristic immune DEGs. The linkage map of 10 characteristic genes and small chemical
molecules. The square and yellow circles represent small molecules of characteristic genes and AD-related chemicals.
TABLE 4 Sample details.

Age (years) Sex Diagnosis Sample Collection

75 male Alzheimer’s disease Peripheral blood

67 male Alzheimer’s disease Peripheral blood

86 female Alzheimer’s disease Peripheral blood

79 female Alzheimer’s disease Peripheral blood

74 female Alzheimer’s disease Peripheral blood

77 female Alzheimer’s disease Peripheral blood

60 male Health controls Peripheral blood

70 female Health controls Peripheral blood

68 female Health controls Peripheral blood

77 male Health controls Peripheral blood

82 male Health controls Peripheral blood

73 female Health controls Peripheral blood
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in AD. It has been reported that immune infiltration of NK cells in

the brain may contribute to neuroinflammation in AD (42).

However, the specific role of resting NK cells in the blood remains

unclear. Given studies on DIIT4, it is inferred whether the role of

DDIT4 in neuroinflammation is associated with resting NK cells.

In our study, the expression of LDHB was significantly

decreased in AD samples and was correlated with resting mast

cells and resting memory CD4+ T cells. LDHB is a vital player in

lactate metabolism (43). Alteration of lactate metabolism was

observed to have a close relationship with neuronal damage in

AD mice model (44). In tumors, overexpression of LDHB could

mitigate the effects of lactic acid on CD4 T cell-mediated cytokine

production (45). However, to our knowledge, the role of LDHB on

the CD4 T cells’ function in AD is unknown. Mast cells are involved

in neuroprotection and neuroinflammation by secreting

inflammatory mediators and cytokines (46), and activation of

mast cells may accelerate the development of AD (47). Thus,

LDHB may be involved in AD via lactate metabolism and

neuroinflammation mediated by resting CD4+ T cells and resting

memory cells.

RPL17, RPL21, and RPL26 are all ribosomal proteins. Among

them, RPL26 was reported to be involved in methylation within AD

neurons (48). However, the exact role of RPL26 in AD remains

unclear. In the current study, we found that RPL17, RPL21, and

RPL26 expressions correlated with M2 macrophages and gamma

delta T cells. It will be, therefore, of interest in future studies to test

the relationship between them and their role in modulating

cognitive ability in AD.

NDUFA1, NDUFB2, NDUFS5, and NDUFAF2 are ubiquinone

oxidoreductase subunits or complex assembly factors which play an

important role in oxidative stress (49–51). Oxidative stress may be

essential to AD development by promoting Ab deposition, tau

hyperphosphorylation, and the subsequent loss of synapses and

neurons (52). However, the studies on those genes in AD are

limited. Gly32Arg SNP is a mutational site in NDUFA1 Reported

that may be associated with early-onset dementia (53).

Interestingly, we found that those genes are also significantly

correlated with M2 macrophages and gamma delta T cells,

further indicating the critical role of M2 macrophages and

gamma delta T cells in AD.

AD lacks effective treatment measures in clinical practice (54);

Immunotherapy has garnered considerable attention as a promising

treatment strategy aimed at modulating immune system function,

reducing inflammation, and clearing pathological protein deposits

to improve the disease condition and alleviate symptoms (55).

This study utilized gene expression profiling and bioinformatics

methods to identify abnormal expression patterns of immune cell-

related genes in individuals with Alzheimer’s disease (AD). Based

on the these Hub genes, an effective diagnostic model of Nomogram

was constructed and chemical drugs targeting these genes were

predicted for the treatment of AD.These findings potentially reflect

alterations within the immune system, including immune cell

activation, cellular infiltration levels, and inflammatory responses.

Investigating the mechanisms underlying immune cell activation,
Frontiers in Immunology 12
dysfunction, and interplay, as well as the regulatory networks of

immune genes, holds promise for unraveling the pathogenesis of

AD and establishing a theoretical foundation for developing novel

therapeutic strategies. Nevertheless, certain limitations should be

acknowledged in our current study. Firstly, although PCR

validation confirmed the expression of immune cell-related

biomarkers in the peripheral blood of AD patients and healthy

volunteers, further comprehensive investigations are required to

elucidate the specific mechanisms underlying the actions of these

genes. Secondly, understanding the relationship between immune

cells, biomarkers, and their interactions in regulating the

development of AD necessitates further exploration.
Conclusion

In summary, our study identified CMTM2, DDIT4, LDHB,

NDUFA1, NDUFB2, NDUFS5, RPL17, RPL21, RPL26, and

NDUFAF2 as immune cell-related biomarkers and constructed a

diagnostic model in AD. Our findings may provide novel ideas for

managing and treating AD patients.
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