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Interstitial lung disease (ILD) is one of the most serious lung complications of

connective tissue disease (CTD). The application of proteomics in the past

decade has revealed that various proteins are involved in the pathogenesis of

each subtype of CTD-ILD through different pathways, providing novel ideas to

study pathological mechanisms and clinical biomarkers. On this basis, a

multidimensional diagnosis or prediction model is established. This paper

reviews the results of proteomic detection of different subtypes of CTD-ILD

and discusses the role of some differentially expressed proteins in the

development of pulmonary fibrosis and their potential clinical applications.

KEYWORDS

proteomics, interstitial lung disease, connective tissue diseases-interstitial lung disease,
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1 Introduction

Interstitial lung disease (ILD) is a group of common heterogeneous lung diseases

characterized by inflammation and fibrosis of lung tissue, which is usually progressive and

fatal (1, 2). ILD is one of the most common complications of connective tissue disease

(CTD), and studies have shown that approximately 32% of CTD patients have ILD (3).

Approximately 30% of ILD cases are associated with CTD, and approximately 15% of ILD

patients develop CTD after diagnosis (4). Therefore, the concept of CTD-ILD was

proposed to include any diffuse parenchymal lung disease in patients with CTD (5). The

CTDs associated with ILD include systemic sclerosis (SSc), rheumatoid arthritis (RA),
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dermatomyositis (DM), polymyositis (PM), Sjogren’s syndrome

(SS), and systemic lupus erythematosus (SLE) (5, 6). ILD in CTD

is associated with a number of adverse outcomes, such as reduced

quality of life, disability, and death (7–9). Notably, the etiology and

pathogenesis of different subtypes of CTD-ILD are not fully

understood, hindering accurate diagnosis and precise treatment in

clinical practice. Therefore, it is critical to explore the potential

pathological mechanism and new diagnostic and therapeutic targets

of each CTD-ILD subtype.

Proteomics is a relatively mature “omics” field that refers to the

study of protein expression, quantification, localization, function,

changes in molecular form, posttranslational modification,

conformation, chemical modification, and protein−protein

interactions at specific times and under specific conditions (10).

In particular, the advent of gel-based and gel-free proteomics

techniques and advances in mass spectrometry (MS) allow rapid,

unbiased, systematic, and high-throughput identification and

quantification of samples of a variety of complex protein

mixtures, such as bronchoalveolar lavage fluid (BALF), serum,

and lung tissue (11). Therefore, proteomics technology is suitable

for exploring the mechanism of complex diseases such as CTD-ILD

and helping to clarify pathogenesis and pathological changes, which

is vital for establishing accurate clinical diagnosis and prognosis

models and identifying therapeutic targets for different CTD-ILD

subtypes. Therefore, we summarized the results of proteomic

studies on different types of CTD-ILD (Table 1), in addition to

the functions of several important proteins and their correlation

with CTD-ILD (Table 2), to provide references for future basic

research or clinical application of CTD-ILD.
2 Proteomics studies in different
CTD-ILD subtypes

2.1 Proteomics studies in RA-ILD

RA is a chronic systemic autoimmune and inflammatory

disease characterized by synovitis and vasculitis (33). RA-ILD is a

common and serious complication of RA. Approximately 40% to

58% of patients with RA develop ILD (34, 35), and the 5-year

mortality rate is estimated at 35% (36). Therefore, it is crucial to

determine the etiology, pathogenesis, and prognostic factors of RA-

ILD, which can be assisted by proteomics.

To investigate the pathogenesis of RA-ILD, Wu et al. compared

the serum proteome of RA patients with or without ILD using

SOMA scan analysis and found 234 differentially expressed proteins

(DEPs). These DEPs provide a good direction to study the

pathogenesis of ILD in patients with RA (13). In clinical practice,

RA-ILD is associated with various pulmonary imaging

manifestations, such as usual interstitial pneumonia (UIP),

nonspecific interstitial pneumonia (NSIP), organizing pneumonia

(OP), and lymphocytic interstitial pneumonia (LIP), with each

having its treatment and prognosis (37). Suhara et al. analysed

the BALF of patients with UIP and OP subtypes of RA-ILD by two-
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dimensional gel electrophoresis (2-DE) and liquid spectrometry

(LC−MS/MS). They found that in BALF, the immunoglobulin k

chain level in UIP was significantly higher than that in OP. In

addition, a-1 antitrypsin, CRP, haptoglobin b, and surfactant

protein A were higher in OP than in UIP. This suggests that

these proteins have different pathological mechanisms in different

subtypes of RA-ILD. Interestingly, there was no significant

difference in gelsolin in BALF, but C-gelsolin and N-gelsolin were

significantly increased in UIP (12), which was also observed by

Oikonomou et al. in animal models. It is speculated that C-gelsolin

and N-gelsolin are gelsolin fragments mediated by caspase-3 (38).

Proteomic studies can help to explore the specific molecular

mechanism and solve related clinical problems by analyzing RA-

ILD with different imaging manifestations.

Proteomics is also of great significance for diagnosing or

monitoring RA-ILD. Wu et al. calculated the correlation between

DEPs and clinical lung function indicators using a linear regression

model and found that two proteins, paired immunoglobulin-like

type two receptor-associated neural protein (PIANP) and secretory

leukocyte peptidase inhibitor (SLPI), were related to the percentage

of carbon monoxide diffusion capacity (13). This finding is

significant for the clinical monitoring of disease progression in

RA-ILD patients, but its specific practical effect needs to be verified

in a large clinical cohort. In addition to this traditional method, Ma

et al. used matrix-assisted laser desorption/ionization time-of-flight

mass spectrometry (MALDI-TOF-MS) and found an overall change

trend of serum protein changes between RA-non-ILD and RA-ILD

patients, rather than quantifying the changes in each specific

protein. Thirteen protein peaks were detected to be

downregulated in RA-ILD patients, and the mass-to-charge value

of protein peaks was used to establish the best tree model to

distinguish RA-ILD from RA, with a sensitivity of 86.36%, a

specificity of 84.09%, and an area under the ROC curve of 0.856

(14). However, the authors did not perform functional analysis of

specific DEPs in protein peaks but verified that the model can be

established using the overall change trend of proteins to distinguish

whether RA patients are complicated with ILD.

In addition, proteomics is also an efficient technology for basic

research to explore the treatment of RA-ILD. Wu et al. compared 98

DEPs between IPF and healthy controls. Sixteen proteins increased,

while five decreased, and showed similar trends of change in RA-

ILD and IPF compared with various control groups. However, four

proteins were increased in RA-ILD but not in IPF (13). The results

suggest that the pathogenesis of ILD in RA patients is similar to that

in IPF patients, but there are also significant differences. These

differences in proteins suggest that in the clinical treatment of RA-

ILD, in addition to anti-pulmonary fibrosis treatment similar to

IPF, other treatments for RA-specific lesions, such as specific

autoantibodies and autoinflammation, should also be considered.

In the same experiment, gene set enrichment analysis (GSEA) was

performed on 234 DEPs between RA and RA-ILD. Signaling

receptor binding, extracellular matrix, and negative regulation of

proteolysis may play an important role in RA-ILD (13). These may

be alternative drug targets for studying RA-ILD patients to

strengthen anti-RA-based therapy.
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TABLE 1 Proteomics study of various CTD-ILD.

Study
ailment

Sample
type

Control
group

Changes in the proteome Important protein Reference

RA-UIP BALF from
patients

RA-OP There was no significant difference in
protein abundance, but the expression
levels of the six proteins were significantly
different between the UIP and OP

Immunoglobulin k chain C region, gelsolin, a-1
antitrypsin, CRP, Haptoglobin b, SFTPA

(12)

RA-ILD Serum from
patients

RA Without
ILD

There were 234 DEPs, of which 16 were
upregulated and 5 were downregulated in
both RA-ILD and IPF

PIANP, SLPI, CCL1810, IL-1711, CXCL12, CCL5,
FGF, LGALS3, galectin-3, MMP7

(13)

RA-ILD Serum from
patients

RA Without
ILD

Thirteen protein peaks were detected that
were all downregulated in RA-ILD patients

The best tree was established to distinguish RA-ILD
from RA by protein peak mass-to-charge value

(14)

SSc-ILD BALF from
patients

IPF and
sarcoidosis

There were quantitative but not qualitative
differences in protein composition among
the three diseases, and the BALF protein
composition of SSc-ILD was between that
of sarcoidosis and IPF

a2-macroglobulin, Prothrombin, Cal B (15)

SSc-ILD BALF from
patients

SSc without
ILD

Three proteins increased and two decreased a2-macroglobulin, a1-antitrypsin, SFTPA, HSP,
GST

(16)

SSc-ILD Fibroblasts in
lung tissue
from patients

Mild asthma —— ED-A fibronectin, a-SMA (17)

SSc-ILD Fibroblasts in
BALF from
patients

Mild asthma There were 24 DEPs, of which 13 DEPs
showed more than 2-fold expression
difference

RanBP1, ERp60, GSTP1-1 (17)

SSc-ILD BALF from
patients

IPF/Sarcoidosis/
PLCH

There were 77 kinds of DEPs in each
group. The levels of most kinds of DEPs in
BALF of SSc-ILD patients were higher than
those of IPF patients and lower than those
of PLCH

Plastin 2, Annexin A3, 14-3-3ϵ, S10A6, GSTP1,
PRDX1, ANXA3

(18)

SSc-ILD BALF from
patients

SSc without
ILD

There were 11 DEPs or protein fragments GSTP, SOD, Cystatin SN, a1-acid glycoprotein,
haptoglobin-a chain, Cal B, Cytohesin-2,
Calumenin, mtDNA TOP1

(19)

SSc-ILD BALF from
patients

Normal
controls

Twenty-one kinds of DEPs were found, and
the levels of most of them were increased in
BALF of SSc-ILD

A1AT, APOAI, Angiotensinogen, GSTP1 and 14-3-
3, S100A6, C3a, haptoglobin, CERU, B2MG,
SFPA2, PRDX1, MANR1

(20)

dcSSc Plasma from
patients

lcSSc/Normal
controls

S100A8/A9 was significantly increased in
SSc and correlated with PF in lcSSc. In
diffuse SSc, S100A8/A9 levels were similar
with or without PF

S100A8/A9 (21)

SSc Plasmacytoid
dendritic cells
from patients

Normal
controls

Plasmacytoid dendritic cells in SSc showed
distinctive peak patterns. SSc patients with
higher CXCL4 levels have earlier evidence
of PF, significantly faster decline in lung
function, and a higher prevalence of PF

CXCL4, CTAP-III, S100A8/9, lysozyme (22)

SSc-ILD EVs
precipitated
from plasma
from patients

Normal
controls

EV proteins of SSc-ILD are mainly involved
in platelet activation, cell adhesion, and
immune responses

MT-A (23)

Patients
who died of
scleroderma

Pulmonary
fibroblasts
from patients

Patients who
died from
nonpulmonary
diseases

CTGF, 9 of which have not been reported
in PF

Pro-a collagen, Caldesmon, Prolyl 4-hydroxylase b-
subunit, IQGAP1, Cytoskeleton-associated protein-
4, Ezrin, Moesin, Vinculin, BiP glucose-regulated
protein, ER-60 protease, HNRPU, Valosin-
containing protein, Stress-induced phosphoprotein-
1

(24)

SSc Extracellular
matrix of
fibroblasts in
vitro

IPF/Normal
controls

There was a high overlap between SSc and
IPF matrix proteins, and the soluble matrix
proteins of SSc and IPF were significantly
different from those of healthy controls

PLOD2, LUM, POSTN, IGFBP5, GREM1, SPARC (25)

(Continued)
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2.2 Proteomics studies in SSc-ILD

SSc is characterized by immune dysregulation leading to

inflammation and fibrosis of the skin and multiple internal

organs (39). ILD is the most common and serious pulmonary

complication of SSc, occurring in 47.0 to 66.4% of SSc patients

and accounting for 35% of SSc-related mortality (40, 41). The

pathogenesis of SSc-ILD may be multifactorial and is not

fully understood.

Rottoli et al. compared the BALF protein composition in SSc-

ILD, IPF, and sarcoidosis and found similar changes in many kinds

of proteins among the three. Most plasma proteins (complement

C3B, transthyretin, A-1-B glycoprotein, and serum retinol-binding

protein (SRBP)) were the most highly expressed in sarcoidosis,

followed by SSc-ILD, and IPF had the lowest expression. However,

locally produced low molecular weight proteins, such as galectin 1,

ubiquitin, and thioredoxin peroxidase 2, were more abundant in

IPF (15). These findings suggest that the pathological mechanism of

SSc-ILD differs from that of IPF. IPF is a generalized fibrotic disease

confined to the lungs, while SSc-ILD is a local manifestation of

systemic immune-inflammatory disease. In fibrotic lesions, the

overexpression of extracellular matrix (ECM) proteins is

considered a molecular marker of fibrosis (42). Mullenbrock et al.

used LC−MS to specifically detect the protein composition of ECM

in the lungs of patients with SSc-ILD and IPF. It was found that the

soluble matrix proteins in the ECM of the lungs of SSc-ILD and IPF

patients were significantly different compared to those in the

healthy control group, but there were no differences in insoluble

matrix proteins (25). Interestingly, SSc-ILD and IPF had a high
Frontiers in Immunology 04
overlap of lung ECM, especially several proteins related to

fibrogenesis, such as PLOD2, LUM, POSTN, IGFBP5, and

GREM1. The above results suggest that ECM protein signatures

may be more reflective of fibrosis and less likely to indicate other

SSc-associated pathologies (25).

In addition, Landi’s team found that 14-3-3ϵ was increased in

the BALF proteome of SSc-ILD patients compared with

nonsmokers (18, 20). In inflammatory and autoimmune diseases,

14-3-3-ϵ, as a component of the TNFR2 complex, restricts the

activation of NF-kB through PI3K/Akt/mTOR signaling and

stimulates the activation of C/EBP-b, thus guiding the plasticity

of macrophages (43). However, studies on 14-3-3ϵ in pulmonary

fibrosis, especially in CTD-ILD, are scarce. Similarly, the level of

transthyretin in the BALF of patients with SSc-ILD was elevated, as

detected by proteomic methods (15, 18, 20). One study found that

transthyretin stimulates the production of collagen I and

immunoglobulin-binding proteins in fibroblasts, which participate

in endoplasmic reticulum stress activation and profibrosis through

mitochondrial oxidative stress in cardiac amyloidosis (44).

However, its function in CTD-ILD needs further confirmation. In

addition to using BALF as a sample, Ryu et al. performed proteomic

detection of extracellular vesicles (EVs) precipitated in plasma by

LC-MS. The results showed that EVs from SSc-ILD patients

contained significantly higher levels of MT-A TP6, and its protein

was mainly involved in platelet activation, cell adhesion, and

immune responses (23).

Larsen et al. conducted an interesting study on the detection

modes. They compared the proteomics results of fibroblasts

obtained from BALF and biopsies from SSc-ILD patients and
TABLE 1 Continued

Study
ailment

Sample
type

Control
group

Changes in the proteome Important protein Reference

SSc Fibroblasts in
vitro

Normal
controls

A total of 155 proteins were directly
ubiquitinated after KLHL42 knockdown,
and 291 proteins were found only after
KLHL42 knockdown

PPP2R5ϵ (26)

SSc-ILD Lung cell
scaffold in
vitro

Normal
controls

Periostin in SSc was similar to the changes
previously reported in decellularized IPF
lung cells, but multiple proteins were more
specific in SSc.

Periostin, Fibulin 3, TINAG-like 1, and Elastin (27)

ASS/IIM Serum from
patients

Normal
controls

IgG fragments can distinguish ASS patients
with ILD from those without ILD

Fc-agalactosylated glycan (28)

PM/DM-
ILD

BALF from
patients

AS-ILD/
Overlap

There were 24 specific protein spots among
the three groups, 9 spots were only present
in PM/DM-ILD, 3 spots were only present
in AS-ILD, and 12 spots were only present
in overlap syndrome ILD

Gelsolin, Vimentin, Human myotonic dystrophy
protein kinase, cofilin 1, Pyruvate kinase, al B,
Peroxiredoxin 1, Coenzyme Q10, D-3-
Hydroxybutyrate dehydrogenase and b-globin

(29)

CTD-ILD BALF from
patients

The healthy
lung of CAP

Sixty-five DEPs were upregulated and 67
DEPs were downregulated

SFTPD, CADM1, ACSL4, SIL1, WIPF1, VCAM-1,
JAML, GALNT1, NDPKB, CPB2

(30)

Progressive
ILD

Plasma from
patients

Nonprogressive
ILD

Thirty-one proteins were associated with
progressive fibrotic ILD, and a progressive
pulmonary fibrosis risk assessment model
consisting of 12 proteins was established by
LASSO analysis

AGER, CST7, CXCL10, DPP10, FASLG, ITGB6,
KRT19, MEPE, PLAUR, PNPT1, TNFSF11,
WFIKN2

(31)
f

SFTPD, surfactant protein D; CADM1, cell adhesion molecule 1; ACSL4, long-chain fatty acid CoA ligase 4; WIPF1, Wiskott–Aldrich syndrome protein interacting protein family member 1;
VCAM-1, vascular cell adhesion molecule 1; JAML, junctional adhesion molecule-like; GALNT1, polypeptide N-acetylgalactosaminyltransferase 1; NDPKB, nucleoside diphosphate kinase B;
CPB2, Carboxypeptidase B2.
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found only three DEPs, indicating that BALF and biopsy fibroblast

cultures from SSc-ILD patients were similar in protein composition

(17). To some extent, we could use noninvasive BALF to replace

biopsied active SSc-ILD-associated proteomic results.

Lung tissue is also an ideal sample type for CTD-ILD

proteomic studies. Previous studies have demonstrated a genetic

association between connective tissue growth factor (CTGF) and

SSc (45, 46). This suggests that subclinical pathologic changes take

place in the lungs of SSc patients even without established ILD. In

addition, it was found that the response of the proteome of lung

fibroblasts in non-ILD SSc patients had an excessive response to
Frontiers in Immunology 05
CTGF (24). This suggests that subclinical pathologic changes take

place in the lungs of SSc patients even without established ILD. In

addition to lung tissue or BALF for proteomic study samples from

SSc-ILD patients, serum samples with a more extensive and

convenient clinical application can be used. Van Bon et al.

adopted the SELDI-TOF-MS examination of plasma from SSc

patients with and without ILD and showed that S100A8

(calprotectin) levels were significantly increased in patients with

SSc-ILD (21), which was consistent with the findings by Fietta

et al. using BALF (19). Van Bon’s team also isolated plasmacyte-

like dendritic cells from patients’ peripheral blood and used
TABLE 2 Summary of important proteins.

Protein name Disease
type

Sample type Effector Related
proteomic
studies

Paired immunoglobulin-like type two
receptor-associated neural protein

RA-ILD Serum from patients Regulation of neutrophils mediates inflammatory
responses

(13)

Secretory leukocyte peptidase inhibitor RA-ILD Serum from patients Resistance to neutrophil elastase destruction (13)

C-gelsolin RA-UIP BALF from patients Involved in caspase-3 related apoptosis process (12)

N-gelsolin RA-UIP BALF from patients Involved in caspase-3 related apoptosis process (12)

Glutathione S-transferase P SSc-ILD BALF from patients Repair membrane phospholipid damage and inhibit
microsomal peroxidation

(16, 19)

14-3-3ϵ SSc-ILD BALF from patients Guide the plasticity of macrophages (18, 20)

Transthyretin SSc-ILD BALF from patients Involved in the activation of endoplasmic reticulum
stress

(15, 18, 20)

S100A8/Calprotectin SSc-ILD Plasma from patients Induced the proliferation of fibroblasts (21)

SSc-ILD BALF from patients (19)

CXCL4 SSc-ILD The supernatant of
dendritic cells from
patients

Associated with decreased lung function in patients (21)

MT-A TP6 SSc-ILD EV in plasma from
patients

Involved in platelet activation, cell adhesion, and
immune responses

(23)

Fc-glycans agalactosylated IgG IIM-ILD Serum from patients Regulating the immune system (28)

Gelsolin PM/DM-
ILD

BALF from patients Improved airway mucus viscosity and preserves the
intrinsic antimicrobial activity of airway surfaces

(29)

RA-ILD (12)

Calgranulin B PM/DM-
ILD

BALF from patients Involved in the recruitment of leukocytes to sites of
inflammation

(29)

SSc-ILD (19)

Surfactant protein D SSc-ILD Serum from patients Involved in the innate immune system (30)

RA-ILD Serum from patients (32)

PM/DM-
ILD

Serum from patients
(32)

Cell adhesion molecule 1 CTD-ILD Serum from patients Regulation of human lung mast cell adhesion receptors
to lung fibroblasts (30)

SIL1 CTD-ILD Serum from patients Nucleotide exchange factors involved in ER stress (30)

N-sulfoglucosamine sulfohydrolase CTD-ILD Serum from patients Desulfation of glycosaminoglycan chains on
proteoglycans (30)
SSc, systemic sclerosis; ILD, interstitial lung disease; RA, rheumatoid arthritis; PM/DM, polymyositis/dermatomyositis; CTD, connective tissue disease; UIP, usual interstitial pneumonitis; BALF,
bronchoalveolar lavage fluid; EV, extracellular vesicles; IIM, idiopathic inflammatory myopathy.
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SELDITOF MS to analyze the whole proteome of the supernatant

after cell lysis. It was found that SSc patients with higher CXCL4

levels in plasmacyte-like dendritic cell supernatant developed ILD

significantly earlier, with a relative decline in forced vital capacity

of over 30%, significantly faster decline in lung carbon monoxide

diffusion capacity, and bilateral fibrosis on CT (22). Therefore, for

long-term follow-up of SSc patients, detecting S100A8 and CXCL4

levels in plasmacytoid dendritic cell supernatant may be an

efficient and convenient way to assess the risk of ILD.

The comorbidity rate of ILD in SSc patients is high, but there is

still a lack of effective drug treatments, and the therapeutic

mechanism of drugs is unclear. Notably, Shirahama et al.,

through 2-D gel electrophoresis of BALF, found that the number

of protein species in SSc patients with ILD was greater than that in

patients without ILD. In addition, five proteins were increased,

while nine were decreased in patients with SSc-ILD. Specifically,

glutathione S-transferase (GST) was increased in each patient with

SSc-ILD compared with those without ILD (16). This result is

consistent with the findings of Fietta et al. (19). Meanwhile, He et al.

reported GST levels in bleomycin-induced pulmonary fibrosis

mouse models (47). Strange et al. confirmed that GST contributes

to the protection of biological macromolecules from oxidative stress

by repairing damage to membrane phospholipids and inhibiting the

induction of microsomal peroxidation (48). This point may provide

evidence to support the treatment of pulmonary fibrosis with GST

inhibitors. Sun et al. decellularized lung tissues from patients with

SSc-ILD to obtain the lung cytoskeleton. The protein composition

of the cytoskeleton was examined using the bottom-up label-free LC

−MS quantitation technique, and periostin in SSc-ILD was found to

be similar to previously reported changes in decellularized IPF lungs

(49). However, the changes in Fibulin 3, Tinag-like 1, and Elastin

were more significant in SSc-ILD (27), and drugs targeting these

proteins may be considered SSC-ILD-specific therapies.
2.3 Proteomics studies in idiopathic
inflammatory myopathies

Idiopathic inflammatory myopathy (IIM) is an autoimmune

disease characterized by skeletal muscle weakness and

inflammation, including DM, PM, anti-synthetase syndrome

(ASS), and other subtypes. The skeletal muscle is usually affected,

and lung changes are represented by ILD, which is the leading cause

of death (50). In order to better explore the possible mechanism

between the development of ILD in IIM patients, Fernandes-

Cerqueira et al. performed proteomic analysis of peripheral serum

from IIM and IIM-ILD patients by LC−MS/MS analysis. Among

them, the abundance of Fc-agalactosylated glycan of IgG is

increased in IIM patients compared to the general population.

Intraindividual normalization of the main agalactosylated glycan

(FA2) of IgG1 vs FA2-IgG2 was used to distinguish IIM-ILD from

IIM-nonILD, which showed that the area under the curve (AUC) of

this standard was 88 ± 6%. Moreover, the increase in Fc-

agalactosylated glycan was not correlated with other

extramuscular manifestations of IIM, further suggesting that the

overexpression of Fc-agalactosylated glycan has a lung-specific
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propensity (28). In the same study, Fernandes-Cerqueira et al.

performed a subgroup analysis of IIM with positive anti-Jo1

autoantibodies in the same group of samples and found that the

abundance of Fc-glycan contained in JO1-specific IgG was lower

than that of total IgG; that is, the proportion of Fc-agalactosylated

glycan increased (28). This is consistent with the conclusion of

previous studies that anti-Jo1 autoantibodies are common in IIM

with ILD (51, 52).

In addition, Passadore et al. used 2-DE and LC−MS/MS to

analyze the BALF proteomics of DM/PM patients with ILD. The

samples were compared with those of ASS patients with anti-Jo1+

and ILD patients with myositis overlap syndrome. There were 24

specific protein spots among the three groups: nine spots were only

present in DM/PM-ILD, three in ASS-ILD, and 12 in myositis

overlap syndrome with ILD (29). In this experiment, the authors

found that gelsolin was also increased in DM/PM-ILD, which was

similar to that found by Suhara et al. in RA-ILD (12). However,

Passadore et al. have a different understanding of the role of gelsolin

in ILD and are more inclined to believe that gelsolin may maintain

the inherent antimicrobial activity of the airway surface (53) and

improve airway mucus viscosity by degrading a large amount of

filamentous actin released by dead cells during inflammation (54).

Similar to the findings of Fietta et al. using BALF of patients with

SSc-ILD (19), calgranulin B was also increased in ILD patients with

myositis overlap syndrome. Studies have shown that calgranulin B

plays a role in endothelial inflammation and participates in the

recruitment of white blood cells to the inflammatory site (55, 56),

and its expression is related to the inflammatory activity of systemic

vasculitis (57). These findings suggest that there may be a common

pathological pathway among different CTD-ILD subtypes, but the

role of various proteins needs further classification research.
2.4 Proteomics studies in other subtypes of
CTD-ILD

Primary Sjögren’s syndrome is a chronic inflammatory

autoimmune disease of unknown origin that particularly affects

the tear and salivary glands (58). Li et al. also examined serum

proteomics in patients with primary Sjogren’s syndrome (pSS)

complicated with ILD. Seven protein peaks were significantly

different between pSS-ILD and pSS. There were three peaks with

ILD high expression and the rest with ILD low expression. Similar

to the findings of Ma et al. (14), three differential protein peaks were

selected to form a diagnostic model, with a sensitivity of 84% and a

specificity of 85.7% (59). These results suggest that searching

differential protein peaks using combinations of proteomics and

statistical screening can effectively identify alternative diagnostic

models of diseases.

Some proteomic studies have not been subdivided into subtypes

of CTD-ILD, and the results are of great concern. For instance, cell

adhesion molecule 1 (CADM1) was found to be downregulated in

CTD-ILD (30). It has been suggested that it is a key adhesion receptor

regulating human lungmast cells (HLMCs) and primary human lung

fibroblasts (30, 60). SIL1 in DEPs is a nucleotide exchange factor for

endoplasmic reticulum (ER) heat shock proteins in eukaryotic cells
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(61). ER stress is associated with various fibrotic diseases, including

cystic fibrosis and idiopathic pulmonary fibrosis (62, 63). N-

sulfoglucosamine sulfohydrolase (SGSH) has been reported to be

involved in the desulfation of glycosaminoglycan chains on

proteoglycans (64). Glycosaminoglycans are important components

of lung ECM turnover, and abnormalities in the ECM are one of the

main pathologies of pulmonary fibrosis (65). However, the

pathological mechanism of the above DEPs in CTD-ILD has not

been elucidated. This is also the most important difference between

nonoffset proteomics and traditional experiments targeting specific

proteins, which can more comprehensively identify the types of

proteins that may be involved in the disease and provide more

comprehensive and powerful clues for related basic research.

In addition, the correlation between some proteins and the

occurrence and development of diseases has been studied more

clearly, which can help to diagnose or monitor clinical diseases. Ye

et al. detected 132 DEPs in the BALF of CTD-ILD patients using an

LC−MS proteomic method. Surfactant protein D (SP-D), a humoral

molecule of the congenital immune system, was found (30, 66), and

Hant et al. pointed out in their pathological studies that it reflected

the status of pulmonary fibrosis and could be used as an alternative

indicator to evaluate lung involvement (67). Meanwhile, multiple

studies have found that increased SP-D is associated with ILD in

patients with SSc, RA, and DM/PM using serum samples (32, 67,

68). The presence of SP-D was also found in the subsynovium and

microvascular endothelium of the pannus of the diseased joints in

RA patients and was more common than in osteoarthritis patients

(69). These findings suggest that the SP-D protein may be involved
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in the common pathogenesis and development of multiple CTD-

ILD, primarily related to fibrosis, and may play a role in

extrapulmonary organs. Recently, Bowman et al. explored

possible proteins involved in the development of progressive ILD

by performing proteomic analysis of peripheral blood from patients

with ILD other than IPF, including CTD-ILD. They selected 12

DEPs as biomarkers to construct a risk assessment model for the

development of progressive ILD (71). The detection results of CTD-

ILD proteomics may not only be used as a guide for targeted

research. All DEPs can be divided into a single object for study, and

they can also be combined through statistical methods to conduct

more direct clinical value transformation.
3 Conclusion

Different CTD-ILD subtypes have different proteomic changes

(Figure 1). The development of proteomic detection technology can

help obtain relevant data from various samples to the maximum

extent, explore specific pathogenesis, and search for clinical

diagnosis and treatment biomarkers. However, uncertainties

persist about the proteomic detection of many types of CTD-ILD,

the changes in the protein composition of CTD-ILD patients before

and after treatment, and the specific molecular mechanism of the

participation of specific kinds of proteins in CTD-ILD. These

questions need to be answered by future proteomic studies based

on larger sample cohorts, prospective clinical studies, and sufficient

clinical evidence.
FIGURE 1

The important proteins of different subtypes of ILD and their target cells/organs: Different subtypes of ILD had different expression proteins, but SP-
D differences were found in the three types of ILD, gelsolin differences were found in IIM and RA. IIM, idiopathic inflammatory myopathies; Fc-ag
IgG, Fc-agalactosylated glycan of IgG; SP-D, surfactant protein D; SSc, systemic sclerosis; GSTP, glutathione S-transferase P; RA, rheumatoid
arthritis; PIANP, paired immunoglobulin-like type two receptor-associated neural protein; SLPI, secretory leukocyte peptidase inhibitor.
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