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Background: Optimal biomarkers to select patients who will benefit most from

immunotherapy remain lacking in nasopharyngeal cancer (NPC). This systematic

review and meta-analysis aimed to evaluate the association between various

biomarkers and clinical outcomes in NPC patients treated with immune

checkpoint inhibitors (ICIs).

Methods: Systematic searches of PubMed, Embase, Cochrane Library, and Web

of Science databases were performed up to October 2022. Studies evaluating

the association between biomarkers and intended outcomes of ICIs were

included. The pooled odds ratio (OR) and hazard ratio (HR) with 95%

confidence intervals (CIs) were calculated, respectively, for the objective

response rate (ORR) and progression-free survival (PFS) under fixed or

random-effect models.

Results: A total of 15 studies involving 1,407 patients were included. The pooled

analysis indicated that NPC patients with lower plasma Epstein-Barr virus (EBV)

DNA level at baseline (OR = 2.14, 95% CI: 1.46-3.14, P < 0.001), decreased EBV

DNA load during immunotherapy (OR = 4.57, 95% CI: 2.24-9.34, P = 0.002) and

higher programmed cell death-ligand 1 (PD-L1) expression (OR = 2.35, 95% CI:

1.36-4.09, P = 0.002) had superior ORR than the counterparts. No significant

differences of ORR were observed between positive PD-L1 expression and

negative PD-L1 expression (OR = 1.50, 95% CI: 0.92-2.45, P = 0.104), as well

as higher tumor mutation burden (TMB) and lower TMB (OR = 1.62, 95% CI: 0.41-

6.44, P = 0.494). Patients with lower plasma EBV DNA level at baseline obtained a

significant benefit on PFS than those with higher plasma EBV DNA level (HR =

0.52, 95% CI: 0.42-0.63, P < 0.001). There were no differences in PFS between

decreased EBV DNA load and increased EBV DNA load during immunotherapy

(HR = 0.51, 95% CI: 0.22-1.17, P = 0.109), higher PD-L1 expression and lower PD-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1146898/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1146898&domain=pdf&date_stamp=2023-03-31
mailto:tyx876@163.com
https://doi.org/10.3389/fimmu.2023.1146898
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1146898
https://www.frontiersin.org/journals/immunology


Qian et al. 10.3389/fimmu.2023.1146898

Frontiers in Immunology
L1 expression (HR = 0.65, 95% CI: 0.42-1.01, P = 0.054), positive PD-L1

expression and negative PD-L1 expression (HR = 0.90, 95% CI: 0.64-1.26, P =

0.531), lower TMB and higher TMB (HR = 0.84, 95% CI: 0.51-1.38, P = 0.684).

Conclusion: Lower baseline plasma EBV DNA level, decreased plasma EBV DNA

during immunotherapy, and higher PD-L1 expression are reliable biomarkers

predicting better response to ICIs treatment. Lower baseline plasma EBV DNA

level was also associated with longer PFS. It is warranted to further explore and

better illuminate the utility of these biomarkers in future clinical trials and real-

world practice.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42022324434.
KEYWORDS

immune checkpoint inhibitors, nasopharyngeal cancer, biomarker, Epstein-Barr virus,
PD-L1 expression, tumor mutation burden, immunotherapy, meta-analysis
1 Introduction

Now is an exciting era of development in immune checkpoint

inhibitors (ICIs), which have also exhibited encouraging anti-tumor

activity for patients with nasopharyngeal cancer (NPC) in recent

years (1–4). However, as one of the most common head and neck

malignant tumors in Southeast Asia, especially in southern China

(5, 6), NPC has no well-established biomarkers for ICIs up to date.

The widely used biomarker, Epstein-Barr virus (EBV), played an

important role in the development and progression of NPC (7, 8).

However, it is obscure whether plasma EBV DNA level correlates with

the anti-tumor activity of ICIs. Some studies showed that lower

baseline plasma EBV DNA level was associated with better objective

response rate (ORR) and progression-free survival (PFS) compared

with the higher EBV DNA level for NPC patients treated with ICIs (3,

9). Other trials, however, did not demonstrate consistent results, in

which patients achieved identical clinical benefits regardless of the EBV

DNA level (2).

The predictive value of commonly used biomarkers for ICI

efficacy, such as programmed cell death-ligand 1 (PD-L1)

expression and tumor mutation burden (TMB), is also unclear in

NPC. PD-L1 expression was reported to be associated with clinical

outcomes in patients with NPC who received chemoradiotherapy,

but the utility for ICI efficacy was not well interpreted. Compared

with other solid tumors, the level of TMB is relatively lower in NPC

(10, 11). Some studies suggested that NPC patients with lower TMB

could also achieve clinical benefits with anti-PD-1/PD-L1 therapies

as those with higher TMB (9, 12).

So far, there has been no pooled analysis exploring the impact of

EBV DNA, PD-L1 expression, and TMB on the clinical outcomes of

ICIs for NPC. Herein, we performed a comprehensive systematic

review and meta-analysis with recently accumulated evidence to

evaluate the association between the three biomarkers and clinical

outcomes in NPC patients treated with ICIs.
02
2 Methods

This systematic review and meta-analysis were conducted

according to the Preferred Reporting Items for Systematic reviews

and Meta-Analyses (PRISMA) guidelines (13) and were registered

on the International Prospective Register of Systematic Reviews

(PROSPERO) (register ID: CRD42022324434).
2.1 Literature search strategy and eligible
study selection

Literature search for studies was performed from electronic

databases, including PubMed, Embase, Cochrane Library, and

Web of Science databases, by two independent investigators

(XYQ and YXT) up to October 10, 2022. The Subject

headings and main keywords included: (a) “nasopharyngeal

carcinoma”, “nasopharyngeal cancer” or “cancer of nasopharynx”;

(b) “immune checkpoint inhibitor”, “immunotherapy”, “anti-PD-1”

or “anti-PD-L1”. The complete literature search strategy was

displayed in Supplementary Table S1.

The main criteria for eligibility are as follows: (1) studies in

which NPC patients were treated with ICI monotherapy, or ICI

combined with chemotherapy/radiotherapy; (2) studies in which

the association between plasma EBV DNA level, PD-L1 expression,

TMB and clinical outcomes (ORR, PFS) of ICIs was evaluated; (3)

studies in which the related data could be extracted directly or

calculated indirectly; (5) studies that were written in English.

Exclusion criteria are as follows: (1) studies that were reviews,

case reports, comments, or letters; (2) studies that were performed

on animals or cells; (3) studies that lacked sufficient information.

Two investigators (XYQ and YXT) conducted the study search and

selection independently. If there was any disagreement, the third

investigator (HZC) reassessed the studies.
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2.2 Data extraction and quality assessment

We extracted the following information from the eligible studies

(1) characteristics of studies (first author, publication year, area,

type of studies, sample size, follow-up time); (2) characteristics of

patients (age, sex, study drugs, biomarkers). (3) clinical outcomes

(ORR and PFS), hazard ratios (HRs), and their corresponding 95%

confidence intervals (CIs) for PFS. If the HRs and 95% CIs were not

provided directly in the study, Engauge Digitizer software (version

11.1) was applied to extract the coordinates of points on the Kaplan-

Meier curves. When the results in both univariate and multivariate

analyses were available, results from the multivariate analysis were

preferred. The cut-off values of plasma EBV DNA levels, PD-L1

expression, and TMB varied across studies. For plasma EBV DNA

and TMB, the lower group was identified by the value of lower than

the cut-off in each study, otherwise, it was defined as the higher

group. When one study reported more than one category by

different cut-off values, one of the results was collected. For PD-

L1 expression, two comparative models were applied: higher vs.

lower and positive vs. negative. The PD-L1 higher and lower

category were identified according to the cut-off value in each

study: Yang et al. (3), Ma et al. (2), and Park et al. (12) using

10%, Yang et al. (14) using 15%, while Wang et al. (9) using 25%.

The PD-L1 positive and negative categories were identified by a cut-

off value of 1%. Two investigators (XYQ and YXT) conducted the

data extraction independently.

The quality of the studies included was evaluated by Newcastle-

Ottawa (NOS) assessment scale criteria, which involved the

selection, comparability, and outcomes of the studies (15). The

total scores ranged from 0 to 9 points, and the quality criteria were

evaluated as follows: poor quality (< 5 points); medium quality (5-7

points); high quality (> 7 points).
2.3 Statistical analysis

The predictive value of EBV DNA, PD-L1 expression, and TMB

was assessed in NPC patients treated with ICIs. The categorical

meta-analysis was performed by comparing lower plasma EBV

DNA level with higher EBV DNA level at baseline, decreased

plasma EBV DNA load with increased EBV DNA load during

ICIs treatment, higher PD-L1 expression in tissue with lower PD-L1

expression, positive PD-L1 expression in tissue with negative PD-L1

expression, and higher TMB in tissue with lower TMB. The impacts

of these biomarkers on the clinical outcomes of ICIs were measured

by ORR and PFS. Odds ratio (OR) and 95% CI was applied for the

pooled analysis of ORR, with HR and 95% CI for PFS.

Cochran’s Q test and Higgins I2 statistic were used to evaluate

the heterogeneity among studies (16, 17). For the Q test, a P value <

0.05 was considered significant heterogeneity. For I2 statistics,

heterogeneity was assessed as follows: low (I2 < 25%), moderate

(25% ≤ I2 < 50%), and high (I2 ≥ 50%). When there was no

significant heterogeneity (P value of Q test ≥ 0.05 and I2 statistic <

50%), a fixed-effect model was performed for the pooled analysis,

otherwise, a random-effect model was used. Publication bias was
Frontiers in Immunology 03
examined by the Funnel plot (18, 19). Sensitivity analysis was

conducted by omitting study by study sequentially. Stata version

15.0 was applied to conduct the statistical analyses. A two-sided P

value < 0.05 was considered a statistically significant difference.
3 Results

3.1 Systematic search and study selection

A total of 2440 records were identified through the electronic

databases, with 361 from PubMed, 854 from Embase, 102 from

Cochrane, and 1123 from Web of Science. The detailed procedure

of literature screening is shown in Figure 1. There were 15 relevant

studies identified for inclusion in the final analysis (2–4, 9, 12, 14,

20–28), with 13 published articles and 2 conference abstracts,

including 1,407 patients.

The quality assessment of the included studies using the

Newcastle-Ottawa scale is presented in Supplementary Table S2.

Two studies were graded as medium quality, with a quality score of

7. Fourteen studies were graded as high quality, with 2 studies

scoring 8 and 11 studies scoring 9.
3.2 Patients’ characteristics

Of the 15 included studies, 13 studies assessed more than one

predictive biomarker. Table 1 presents the baseline characteristics of

the studies included in the systematic review and meta-analysis,

including EBV DNA(n=10), dynamic EBV DNA(n=5), PD-L1

(n=7), and TMB(n=6). The median age of patients ranged from

44 to 57 years old. The majority of patients were male. All the NPC

patients enrolled were recurrence or metastatic diseases. The

median follow-up time of the included studies ranged from 5.8

months to 24.7 months.
FIGURE 1

Flow chart of the literature search strategy and eligible study
selection process. EBV, Epstein-Barr virus; PD-L1, programmed cell
death-ligand 1; TMB, tumor mutation burden.
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TABLE 1 Baseline characteristics of the studies included in the systematic review and meta-analysis.

he line of
eatment Sample

Median
age
(range)

Male
(%)

Median
follow-up
(months)

156 48 (23–71)
124
(79.5)

14.2 (0.7–27.6)

134 52 (40–58)
113
(84.0)

10.2 (IQR:7.7–
12.7)

179 46 (22-71)
148
(82.7)

NR

190 46 (22-71)
158
(83.2)

NR

25
49(IQR: 43.5–
52.5)

18
(72.0)

14.6 (IQR:
13.1–16.2)

82 51 (21–74)
68
(82.9)

NR

93 45 (38–52)
75
(81.0)

9.9 (IQR:8.1–
11.7)

22 44 (34–51)
17
(74.0)

10.2 (IQR:9.7–
10.8)

57 47(25-72)
43
(75.4)

5.8

132 49 (26−68)
109
(82.6)

21.7(95%CI:
19.8−22.5)

93 45 (38–52)
75
(81.0)

9.9 (IQR:8.1–
11.7)

132 49 (26−68)
109
(82.6)

21.7(95%CI:
19.8−22.5)

38 NR NR 14.9 (1.6-23.3)

134 52 (40–58)
113
(84.0)

10.2 (IQR:7.7–
12.7)

22
54.5 (IQR:
40.5-57.5)

15
(68.2)

NR

(Continued)
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Biomarker Outcomes Cut-off
value Study Region Type of

study Treatment Stage T
t

EBV DNA ORR NR
Yang 2021
(14)

China
Prospective
(phase II)

Camrelizumab
recurrent or
metastatic

>

EBV DNA PFS NR
Yang 2021
(3)

China
Prospective
(phase III)

Camrelizumab combined
with chemo (GP)

recurrent or
metastatic

1

EBV DNA PFS 10,000IU/mL
Xu J 2022
(20)

China
Prospective
(phase II)

Toripalimab
recurrent or
metastatic

>

EBV DNA ORR 10,000IU/mL
Wang 2021
(9)

China
Prospective
(phase II)

Toripalimab
recurrent or
metastatic

>

EBV DNA PFS
1,500 copies/
mL

Hua 2021
(21)

China
Prospective
(phase II)

Toripalimab combined with
radiocherapy

recurrence 1

EBV DNA ORR
19,000
copies/mL

Even 2021
(22)

France
Prospective
(phase II)

Spartalizumab(PDR001)
recurrent or
metastatic

>

EBV DNA ORR, PFS
30,000
copies/mL

Fang 2018
(23)

China
Prospective
(phase I)

Cohort1:
Camrelizumab
monotherapy

recurrent or
metastatic

>

EBV DNA ORR, PFS
30,000
copies/mL

Fang 2018
(23)

China
Prospective
(phase I)

Cohort2:
Camrelizumab combination

recurrent or
metastatic

>

EBV DNA ORR, PFS
50,000copies/
mL

Xu L 2022
(26)

China
Prospective
(phase I/II)

Camrelizumab or Nivolumab
recurrent or
metastatic

≥

EBV DNA ORR
1,000 copies/
mL

Shi 2022
(4)

China
Prospective
(phase II)

KL-A167
recurrent or
metastatic

>

Dynamic
EBV DNA

ORR, PFS
30,000
copies/mL

Fang 2018
(23)

China
Prospective
(phase I)

Cohort1:
Camrelizumab
monotherapy

recurrent or
metastatic

>

Dynamic
EBV DNA

ORR
1,000 copies/
mL

Shi 2022
(4)

China
Prospective
(phase II)

KL-A167
recurrent or
metastatic

>

Dynamic
EBV DNA

ORR NR
Chiang
2022 (28)

Hong Kong,
China

Prospective
(phase II)

Bintrafusp alfa
recurrent or
metastatic

>

Dynamic
EBV DNA

PFS NR
Yang 2021
(3)

China
Prospective
(phase III)

Camrelizumab combined
with chemo (GP)

recurrent or
metastatic

1

Dynamic
EBV DNA

PFS NR
Chen 2022
(27)

China
Prospective
(phase II)

Toripalimab combined with
chemoradiotherapy

metastatic ≥
r

2

2

2

1

1

1

1

1

1

1

1

1
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TABLE 1 Continued

age The line of
treatment Sample

Median
age
(range)

Male
(%)

Median
follow-up
(months)

current or
etastatic

>2 156 48 (23–71)
124
(79.5)

14.2 (0.7–27.6)

current or
etastatic

>1 45 57(37-76)
35
(77.8)

12.5 (2.2-22.0)

current or
etastatic

>2 190 46(22-71)
158
(83.2)

NR

current or
etastatic

≥1 42 50 (15–74)
31
(73.8)

13.7 (2.1–55.3)

current or
etastatic

>1 132 49 (26−68)
109
(82.6)

21.7(95%CI:
19.8−22.5)

currence 1 25
49(IQR: 43.5–
52.5)

18
(72.0)

14.6 (IQR:
13.1–16.2)

current or
etastatic

1 130 46(19–72)
124
(85.0)

17.9

current or
etastatic

≥1 42 50 (15–74)
31
(73.8)

13.7 (2.1–55.3)

current or
etastatic

≥1 57 47(25-72)
43
(75.4)

5.8

current or
etastatic

>2 190 46(22-71)
158
(83.2)

NR

currence 1 25
49(IQR: 43.5–
52.5)

18
(72.0)

14.6 (IQR:
13.1–16.2)

current or
etastatic

>1 93 45 (38–52)
75
(81.0)

9.9 (IQR:8.1–
11.7)

current or
etastatic

>1 60 46 (23–73)
95
(76.6)

24.7
(95%CI:23.3-
26.6)

ival; GP, gemcitabine and cisplatin; NR, not reported; IQR, interquartile range; CI, confidence interval.
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Biomarker Outcomes Cut-off
value Study Region Type of

study Treatment S

PD-L1 ORR 1%,10%
Yang 2021
(14)

China
Prospective
(phase II)

Camrelizumab
r
m

PD-L1 ORR 1%,10%
Ma 2018
(2)

Hong Kong,
China

Prospective
(phase II)

Nivolumab
r
m

PD-L1 ORR, PFS 1%, 25%
Wang 2021
(9)

China
Prospective
(phase II)

Toripalimab
r
m

PD-L1 ORR, PFS 1%,10%
Park 2020
(12)

America Retrospective anti-PD-1 antibody therapy
r
m

PD-L1 ORR 1%
Shi 2022
(4)

China
Prospective
(phase II)

KL-A167
r
m

PD-L1 PFS 1%
Hua 2021
(21)

China
Prospective
(phase II)

Toripalimab combined with
radiocherapy

r

PD-L1 PFS 1%, 5%
Mai 2021
(24)

China
Prospective
(phase III)

Toripalimab combined
with chemo(GP)

r
m

TMB ORR, PFS 2.1muts/Mb
Park 2020
(12)

America Retrospective anti-PD-1 antibody therapy
r
m

TMB ORR, PFS 4muts/Mb
Xu L 2022
(26)

China
Prospective
(phase I/II)

Camrelizumab or Nivolumab
r
m

TMB PFS 2.9muts/Mb
Wang 2021
(9)

China
Prospective
(phase II)

Toripalimab
r
m

TMB PFS NR
Hua 2021
(21)

China
Prospective
(phase II)

Toripalimab combined with
radiocherapy

r

TMB PFS NR
Fang 2018
(23)

China
Prospective
(phase I)

Cohort1:
Camrelizumab
monotherapy

r
m

TMB PFS NR
Ma 2021
(25)

China
Prospective
(phase I)

Camrelizumab or Nivolumab
r
m

EBV, Epstein-Barr virus; PD-L1, programmed cell death-ligand 1; TMB, tumor mutation burden; ORR, objective response rate; PFS, progression-free sur
t
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3.3 Pooled analysis of ORR

After pooled analysis, patients with lower plasma EBV DNA

level at baseline had superior ORR than those with higher plasma

EBV DNA level (OR = 2.14, 95%CI: 1.46-3.14, P < 0.001,

Figure 2A). Compared with patients harboring increased plasma

EBV DNA load during immunotherapy, those with decreased EBV

DNA load obtained a significant benefit on ORR (OR = 4.57, 95%

CI: 2.24-9.34, P < 0.001, Figure 2B). There was no heterogeneity

among the studies included.

In the pooled analysis, higher PD-L1 expression was associated

with increased ORR than lower PD-L1 expression (OR = 2.35, 95%

CI: 1.36-4.09, P = 0.002, Figure 2C). Nevertheless, there was no

significant difference between positive PD-L1 expression and

negative PD-L1 expression as for ORR (OR = 1.50, 95%CI: 0.92-

2.45, P = 0.104, Figure 2D). No evidence of heterogeneity was

observed among the analysis.

The pooled OR for ORR was 1.62 (95% CI: 0.41–6.44, P =

0.494), which indicated that patients with lower TMB had a

comparable ORR with those with higher TMB. A moderate level

of heterogeneity (I2 = 30.3%, P = 0.231, Figure 2E) was observed

among the studies included.
3.4 Pooled analysis of PFS

According to the fixed effects model, patients with lower plasma

EBV DNA level at baseline had longer PFS (HR = 0.52, 95% CI:

0.42–0.63, P < 0.001, Figure 3A) than those with higher plasma EBV

DNA level. Patients with decreased plasma EBV DNA load during

immunotherapy did not show a significant benefit on PFS than

those with increased plasma EBV DNA load (HR=0.51, 95%

CI:0.22–1.17, P=0.109; Figure 3B) by the random-effect model.

The pooled analysis showed that patients with higher PD-L1

expression had a tendency towards longer PFS than those with

lower PD-L1 expression, while this did not reach a statistical

difference (HR = 0.65, 95% CI: 0.42-1.01, P = 0.054, Figure 3C),

There was no difference in PFS between positive PD-L1 expression

and negative PD-L1 expression (HR = 0.90, 95% CI: 0.64-1.26, P =

0.531, Figure 3D). No evidence of heterogeneity was observed

among the analysis.

The forest map did not show that patients with higher TMB

have a lower risk of disease progression than those with lower TMB

(HR = 0.84, 95% CI: 0.51-1.38, P = 0.484, Figure 3E) based on a

random-effect model.
3.5 Sensitivity analysis

The sensitivity analysis, which was conducted by removing one

study at each time, showed that the pooled results were not significantly

influenced by any single study (Supplementary Figures S1, S2).

Considering the relatively limited number of included studies for

PFS of PD-L1 expression and ORR of TMB, sensitivity analysis was

not applied to test the potential heterogeneity.
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3.6 Publication bias

There was a slight asymmetrical according to the funnel plot for

PFS of TMB. There was no obvious publication bias for the other

pooled analysis when tested by funnel plot (Figures 4, 5).
4 Discussion

Though immunotherapy has become an increasingly attractive

approach for patients with NPC, the optimal biomarkers to select

patients who will benefit most from ICIs remain lacking. To our

best knowledge, this meta-analysis is the first and the most

comprehensive one that focused on the biomarkers predicting the

clinical outcomes of patients with NPC receiving ICIs. In this study,

we analyzed the association between plasma EBV DNA level at

baseline, dynamic change of plasma EBV DNA level during

immunotherapy, PD-L1 expression, TMB, and intended outcomes

(ORR and PFS) of ICIs in NPC.

The role of plasma EBV DNA as a clinically useful biomarker in

the detection, guiding chemotherapy and radiotherapy,

surveillance, and prognostication for NPC has been well

established (8, 29, 30). However, it is controversial whether the

plasma EBV DNA level was associated with the clinical outcomes of

ICIs. Notably, our study observed that NPC patients with lower

plasma EBV DNA level at baseline had higher ORR and longer

median PFS compared with patients with higher EBV DNA level. In

addition, post-treatment EBV DNA decrease was correlated with a

better response to ICIs in NPC. One possible underlying

mechanism for the pretreatment and the dynamic change of

plasma EBV DNA level as a potential indicator for clinical

outcomes of NPC patients receiving ICIs might be the tumor

evasion from the immune system. The EBV encoding latent

membrane proteins and noncoding RNA molecules, limit the

actions of interferon and block antigen presentation, which allows

NPC cells to escape immune recognition and avoid immune (31,

32). As a result, a heavy load at baseline or an increase post-

treatment of plasma EBV DNA level could be correlated with a

higher number of NPC tumor cells escaping immune recognition,

thus resulting in poor outcomes for patients treated with ICIs (33).

Taken together, plasma EBV DNA may pave a way towards the

precision immunotherapy approach in NPC. More studies

investigating the biological mechanisms underlying those

associations are worthwhile to be conducted in the near future.

The predictive value of PD-L1 expression, the most extensively

studied biomarker for immunotherapy, though proved to be a

useful biomarker in predicting the efficacy of ICIs in lung cancer,

esophageal cancer, and other solid carcinomas (34, 35), was still

inconclusive in NPC. In our study, no difference was observed with

respect to ORR and PFS between positive and negative PD-L1

expression (a cutoff of 1%) in NPC patients receiving ICIs.

However, when using a higher cut-off value, a better ORR was

observed in high PD-L1 expression. These results manifest that PD-

L1 expression has certain predictive utility in NPC, and further

considerable studies are warranted to explore the optimal cut-off
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value of PD-L1 expression to better illuminate the association

between PD-L1 expression and outcomes of ICIs.

TMB was emerging as a potent ia l biomarker for

immunotherapy in recent decades. Previous studies suggested that

higher TMB was associated with a higher number of tumor-

neoantigens presented on major histocompatibility complex class

(MHC) molecules, which facilitated immune recognition and the

response to anti-tumor immunotherapy (36). Our study found that

there was no significant correlation between TMB and clinical

outcomes in NPC patients receiving ICIs. This may be due to the
Frontiers in Immunology 07
variable cut-off values of TMB across studies and the distinct tumor

microenvironment of NPC from other solid tumors. The

relationship between TMB and response to ICIs remains

challenging in NPC.

Notably, additional cohort studies explored the association

between other biomarkers (eg, human leukocyte antigen [HLA],

MHC and the effect on ICIs. In the CAPTAIN trial, a high MHC-II

+ cell density in the stroma was found to be associated with

improved disease control rate (DCR), longer median PFS, and OS

(14). In an international and multicenter study of nivolumab (NCI-
B

C
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FIGURE 2

Meta-analysis of the association between biomarkers and objective response rate (ORR). (A) baseline plasma Epstein-Barr virus (EBV) DNA level and
ORR; (B) Dynamic plasma EBV DNA load during immunotherapy and ORR; (C) programmed cell death-ligand 1 (PD-L1) expression [higher vs. lower]
and ORR; (D) PD-L1 expression [positive vs. negative] and ORR; (E) tumor mutation burden (TMB) and ORR.
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9742), they observed that loss of HLA-A and HLA-B was associated

with better survival than patients with HLA-A– and HLA-B–intact

tumors (2). However, relevant studies were limited, and there was

relatively inadequate power to conduct a meta-analysis. Substantial

efforts are needed to elucidate the role of these biomarkers in

predicting response and prognosis for NPC patients receiving ICIs.

Besides, the definition of biomarkers has been expanded greatly

with the evolution of bioinformatics. A combination of ICI

prediction methods with tumor prognostic markers at the
Frontiers in Immunology 08
molecular level has been well applied in multiple carcinomas (37–

41). Chi and colleagues established a multi-biomarker prognostic

model based on natural killer cell-associated genes in head and neck

squamous cell carcinoma (HNSCC) (37). Chen et al. assessed tumor

microenvironment (TME) through virtual microdissection of gene

expression profiles, classifying the TME of NPC into three immune

subtypes to predict immunotherapy responses and prognosis (42).

Undoubtedly, these approaches provide new perspectives for

evaluating the response and prognosis of immunotherapy.
B
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FIGURE 3

Meta-analysis of the association between biomarkers and progression-free survival (PFS). (A) baseline plasma Epstein-Barr virus (EBV) DNA level and
PFS; (B) Dynamic plasma EBV DNA load during immunotherapy and PFS; (C) programmed cell death-ligand 1 (PD-L1) expression [higher vs. lower]
and PFS; (D) PD-L1 expression [positive vs. negative] and PFS; (E) tumor mutation burden (TMB) and PFS.
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Biomarkers of EBV DNA, PD-L1, and TMB in this study have their

advantages. First, they are affordable in price. Secondly, the

detection technology is mature and easy to be widely used in

clinical. Third, the detection of plasma EBV DNA was non-

invasive and can be monitored dynamically.

Several limitations should be considered in this meta-analysis. First

of all, the number of studies included in each biomarker for each

outcome was relatively small. Only two studies were included in the
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pooled analysis for PFS of PD-L1 expression andORR of TMB, and the

relatively limited number of included studies may limit the power of

analysis. Secondly, the majority of the studies included were from

China, which may lead to some inevitable sources of bias. However,

this may be due to the fact that the endemic regions of NPC are

extremely unbalanced, with 72.8% of new cases in Southeast Asia. The

age-standardized rate was 3.0 per 100,000 in China, while 0.4 per

100,000 in white populations (5, 6). The essential reason for publication
B
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A

FIGURE 4

Funnel plot of objective response rate (ORR) for studies reporting
biomarkers. (A) baseline plasma Epstein-Barr virus (EBV) DNA level;
(B) dynamic plasma EBV DNA load during immunotherapy; (C)
programmed cell death-ligand 1 (PD-L1) expression (higher vs.
lower); (D) PD-L1 expression (positive vs. negative); (E) tumor
mutation burden (TMB).
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FIGURE 5

Funnel plot of progression-free survival (PFS) for studies reporting
biomarkers. (A) baseline plasma EBV DNA level; (B) dynamic plasma
EBV DNA load during immunotherapy; (C) programmed cell death-
ligand 1 (PD-L1) expression (higher vs. lower); (D) PD-L1 expression
(positive vs. negative); (E) tumor mutation burden (TMB).
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bias may be the incentives that researchers are more likely to report

statistically significant results to be accepted for publication and

publishers are more likely to publish studies with statistically

significant findings. Thirdly, though overall survival (OS) is also an

important outcome to be investigated, the studies reporting the effect of

biomarkers on OS were limited to conducte a pooled analysis.
5 Conclusion

In conclusion, lower baseline plasma EBV DNA level, decreased

EBV DNA load during immunotherapy, and higher PD-L1

expression are reliable biomarkers predicting better response to

ICIs treatment. Lower baseline plasma EBV DNA level was also

associated with longer PFS. It is warranted to further explore and

better illuminate the utility of these biomarkers in future clinical

trials and real-world practice.
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