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infiltration, and drug sensitivity
in hepatocellular carcinoma
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and Lichuan Wu1*

1School of Medicine, Guangxi University, Nanning, China, 2Guangxi Scientific Research Center of
Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
Background:Hepatocellular carcinoma is the third most deadly malignant tumor

in the world with a poor prognosis. Although immunotherapy represents a

promising therapeutic approach for HCC, the overall response rate of HCC

patients to immunotherapy is less than 30%. Therefore, it is of great significance

to explore prognostic factors and investigate the associated tumor immune

microenvironment features.

Methods: By analyzing RNA-seq data of the TCGA-LIHC cohort, the set of

cuproptosis related genes was extracted via correlation analysis as a

generalization feature. Then, a random forest cox prognostic model was

constructed and the cuproptosis random forest cox score was built by random

forest feature filtering and univariate multivariate cox regression analysis.

Subsequently, the prognosis prediction of CRFCS was evaluated via analyzing

data of independent cohorts from GEO and ICGC by using KM and ROC

methods. Moreover, mutation characterization, immune cell infiltration,

immune evasion, and drug sensitivity of CRFCS in HCC were assessed.

Results: A cuproptosis random forest cox score was built based on a

generalization feature of four cuproptosis related genes. Patients in the high

CRFCS group exhibited a lower overall survival. Univariate multivariate Cox

regression analysis validated CRFCS as an independent prognostic indicator.

ROC analysis revealed that CRFCS was a good predictor of HCC (AUC =0.82).

Mutation analysis manifested that microsatellite instability (MSI) was significantly

increased in the high CRFCS group. Meanwhile, tumor microenvironment

analysis showed that the high CRFCS group displayed much more immune cell

infiltration compared with the low CRFCS group. The immune escape

assessment analysis demonstrated that the high CRFCS group displayed a
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decreased TIDE score indicating a lower immune escape probability in the high

CRFCS group compared with the low CRFCS group. Interestingly, immune

checkpoints were highly expressed in the high CRFCS group. Drug sensitivity

analysis revealed that HCC patients from the high CRFCS group had a lower IC50

of sorafenib than that from the low CRFCS group.

Conclusions: In this study, we constructed a cuproptosis random forest cox

score (CRFCS) model. CRFCS was revealed to be a potential independent

prognostic indicator of HCC and high CRFCS samples showed a poor

prognosis. Interestingly, CRFCS were correlated with TME characteristics

as well as clinical treatment efficacy. Importantly, compared with the low

CRFCS group, the high CRFCS group may benefit from immunotherapy and

sorafenib treatment.
KEYWORDS

cuproptosis, hepatocellular carcinoma, prognostic signature, immunotherapy,
tumor microenvironment
1 Introduction

Liver cancer remains one of the most lethal cancers, with

830,000 deaths worldwide in 2020, accounting for 8.3% of cancer

related deaths (1). Hepatocellular carcinoma (HCC) is the most

frequent of all primary liver cancers, comprising 75-85% of cases

(2). Due to the lack of diagnostic marker, most of the HCC patients

are diagnosed at advanced stages with a poor prognosis (3).

Therapies such as traditional cytotoxic drugs are rarely effective.

Over the last decade, sorafenib and lenvatinib are the only systemic

drugs that have been proven to be clinically effective in the therapy

of part of the advanced HCC patients (4). Therefore, it is crucial to

find valid prognostic models as well as treatment strategies.

Immune checkpoint inhibitor (ICIs) therapy is one of the fastest-

developing immunotherapy strategies, which effectively breaks the

dilemma of cancer treatment, especially in advanced cancer.

However, the efficacy of immunotherapy varies widely among

patients (5). HCC is intimately correlated with inflammation and

has a complicated tumor microenvironment (TME) (6). Immune

checkpoint therapy is being used for HCC treatment recently. The

sensitivity of immunotherapy in HCC varies significantly due to the

heterogeneity and complexity of the TME (7). Revealing the potential

TME characteristics of HCC patients is hence crucial for predicting

the efficacy of immunotherapy.

Copper (Cu) is a required element for human health.

Disturbance of intracellular coppers is associated with diverse

pathologies (8). Previous studies have demonstrated that Cu levels

are significantly increased in tumor tissues and cancer patients

derived serum (9–12). The elevated levels of Cu are reported to be

involved in tumor cell proliferation, angiogenesis, and metastasis

(13, 14). Cu may also increase the incidence of HCC in Wilson’s

disease patients (15). Both copper chelators and copper ionophores

have been exploited as antitumor drugs and tested in clinical trials
02
(16–18). Besides, Cu homeostasis is essential for maintaining

normal immune function (19–21) and elevated Cu levels in

tumor cells contribute to immune escape by enhancing PD-L1

expression (22). These findings suggest that Cu plays an important

role in tumorigenesis and TME shaping. The Cu metabolism is

recognized as a unique vulnerability in cancer (23) and targeting Cu

metabolism might be an alternative strategy for cancer treatment

(24). Recently, a novel Cu induced programmed cell death termed

cuproptosis was revealed which occurs by targeting lipoylated TCA

cycle proteins (25). Previous studies have shown that cuproptosis-

related signature and genes are closely related to TME in colorectal

cancer (26), breast cancer (27), lung cancer (28), bladder cancer

(29), kidney renal clear cancer (30), and so forth. However, the

relationships between cuproptosis-related genes and prognosis,

immune microenvironment, and drug sensitivity of liver cancer

has not been fully elucidated.

In this study, cuproptosis-related gene sets were derived by

correlation analysis as generalization features. Then a random forest

Cox prognostic model was constructed, and the cuproptosis

random forest Cox score (CRFCS) was built by random forest

feature filtering and univariate multivariate Cox regression. The

HCC patients were clustered according to CRFCS and investigated

in terms of prognosis analysis, mutational characteristics, tumor

microenvironment, prediction of immune evasion, immune

checkpoint, and drug sensitivity.
2 Materials and methods

2.1 Data acquisition and processing

The mRNA expression data, somatic mutation data, and

corresponding clinical information of HCC were downloaded from
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the TCGA database via the R package “TCGAbiolinks”. The clinical

and mRNA expression data of GSE116174 and ICGC-LIHC-US

cohorts were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) and the ICGC database (https://

dcc.icgc.org/projects/), respectively. Then, the mRNA data were

converted to TPM format and normalized by log2 transformation.
2.2 Development of cuproptosis random
forest cox score (CRFCS)

The cuproptosis-associated gene set was derived as a

generalization feature by correlation analysis based on the TCGA-

LIHC cohort. We used the method “rfsrc” in the R package

“randomForestSRC” to construct a random forest model and

selected features. The Cox regression was constructed based on

the mentioned characteristics, and Regression coefficients were

obtained by the “coxph” method in the “survival” package. The

Cuproptosis Random Forest Cox Score (CRFCS) was established by

the following formula:

Score =oEiri

Where Ei is the expression of feature gene i, and ri is the

characteristic co-efficient of feature gene i.
2.3 Survival analysis

Kaplan-Meier (K-M) survival analysis and visualization were

conducted with the “survival” and “survminer” packages. The time-

related receiver operating characteristic curve (time ROC) was

performed by the R package “pROC” to evaluate the prediction

performance of CRFCS in the training and test sets.
2.4 Processing and analysis of
mutation profile

The analysis and visualization of mutation profile were

performed by the “maftools” package. We plotted the mutation

waterfall by the method “oncoplot”. After removing the loci falling

into the CNV region, the Mutant-Allele Tumor Heterogeneity

(MATH) score of the samples was calculated by the

“inferHeterogeneity” method (31). MSI scores were calculated by

the “MSIsensor” method (32).
2.5 TME cell infiltration assessment

The immune cell infiltration was estimated by both ssGSEA and

CIBERSORT algorithms. For the ssGSEA method, we used the

TME-infiltrating gene set from Charoentong et al., which includes

28 immune cell types (33). We evaluated the enrichment fraction of

each sample in the cohort via the ssGSEA method to characterize
Frontiers in Immunology 03
the immune cell invasion in each sample. The CIBERSORT

algorithm worked in conjunction with the immune infiltration

signature matrix LM22 to evaluate the invasion of various

immune cells in the samples. In the case of stromal cells, we

estimated the stromal cell infiltration by evaluating the expression

of markers for each stromal cell.
2.6 Immune evasion prediction

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm is used to assess the immune evasion mechanism of

tumors (34). The effect of both T-cell dysfunction and T-cell

exclusion mechanisms on immune evasion was evaluated

separately by the TIDE algorithm and the TIDE score was used

to predict the degree of immune evasion of the samples.
2.7 Drugs sensitivity prediction

The IC50 values of the drugs in the training set samples were

evaluated by the “pRRopheticPredict” method of the R package

“pRRophetic”, with the dataset “cgp2016”. We calculated the

correlation between IC50 values and CRFCS subgroups to

investigate the association between CRFCS and drug sensitivity.
2.8 Statistical analysis

The analysis and visualization of the data were performed in R

(version 4.1.1). The Wilcoxon test was used to compare the data

between the two groups. Charts were mainly visualized by the “

ggplot2 “ package. The p-value<0.05 was regarded as statistically

significant (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).
3 Results

3.1 The expressions and prognosis analysis
of cuproptosis-related genes in HCC

We initially evaluated the expressions of ten genes in HCC

which were reported to be crucial regulators of cuproptosis (25). It

was noticed that among these ten genes, all of them except FDX1

were significantly highly expressed in HCC (Figure 1A), indicating

that the cuproptosis process might be associated with HCC. To

further explore the prognosis of cuproptosis genes in HCC, we

performed a correlation analysis between cuproptosis gene

expression and HCC patients’ survival (OS) (Figure 1B). The

results displayed that genes DLAT (HR =1.71, p =0.003), PDHA1

(HR =1.42, p =0.046), GLS (HR =1.49, p =0.023), and CDKN2A

(HR =1.78, p =0.001) had prominent prognostic significance in

HCC, and patients with high expression of these four genes

exhibited shorter survival (Figures 1C–F).
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3.2 Construction of cuproptosis random
forest cox score (CRFCS) model

Given that cuproptosis may be involved in the progression of

HCC, a more robust prognostic model was constructed using the

above-mentioned cuproptosis genes with prominent prognostic

significance (DLAT, PDHA1, GLS, and CDKN2A). First and

foremost, correlation analysis of the above genes was initially

conducted via analyzing data from TCGA-LIHC cohort to

enhance the generalization ability of the model. For each

cuproptosis gene listed above, the top 25 expression-related genes

were identified as generalized features based on correlation

coefficients. For the gene sets after the generalization of features,

GO/KEGG analysis was performed to ensure that the characteristics

were not distorted by generalization. The results indicated that the

gene set after features generalization remained associated with key

pathways of cuproptosis, such as the TCA cycle (Figures 2A, B).

Training the gene set as input of the random forest model, the out-

of-bag error of the model stabilized when the number of trees was

approximately around 1000 (Figure 2C). The random forest model
Frontiers in Immunology 04
derived the variable importance (VIMP) ranking of the input

features (Figure 2D). We selected the top 20% of the ranked

features to be involved in the construction of the Cox model.

Excluding the features not significant in the univariate Cox test,

17 features were obtained and model scores were established

according to the steps in Materials and Methods (Figure 2E).
3.3 Prognosis prediction of CRFCS

To evaluate the accuracy of the model’s predictions, we

validated CRFCS in the training set TCGA-LIHC and the external

validation set ICGC-LIHC-US and GSE116174. We divided the

samples of each set into high and low score groups by the median of

CRFCS. In the TCGA-LIHC set, the contemporaneous surviving

rate of the high CRFCS subgroup samples was much lower than that

of the low CRFCS subgroup. The HR for the CRFCS subgroups was

2.86 (1.96-4.16), with a p-value less than 0.001 (Figure 3A).

Likewise, the survival of the high CRFCS subgroup samples was

shorter in both validation cohorts. In the ICGC-LIHC-US cohort,
B C D

E F

A

FIGURE 1

The Expressions and Prognosis Analysis of Cuproptosis-Related Genes in HCC. (A) Differential expression of cuproptosis-related genes in the TCGA-
LIHC cohort. (***p<0.001; ns stands for not significant) (B) Correlation between cuproptosis-related gene expression and survival data (OS) of HCC
patients. The horizontal dotted line stands for p=0.05. The vertical dotted line represents HR=1. (C–F) Kaplan-Meier curves of DLAT (C), PDHA1
(D), GLS (E), and CDKN2A (F).
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the HR of the CRFCS subgroup was 2.69 (1.65-4.38) with a p-value

less than 0.001 (Figure 3B) while the HR value was 2.78 (1.24-6.23)

with a p-value of 0.013 in the GSE116174 cohort (Figure 3C).

Subsequently, ROC analysis was performed to evaluate the

diagnostic potency of CRFCS in HCC. The results demonstrated

that CRFCS was a strong predictor in both training and validation

cohorts (Figures 3D–F). The AUC values for predicting OS were

0.820 at 1 year, 0.727 at 3 years, and 0.670 at 5 years in the TCGA-

LIHC training cohort (Figure 3D). While AUC values for predicting
Frontiers in Immunology 05
OS were 0.720 at 1 year, 0.671 at 3 years, and 0.664 at 5 years in the

ICGC-LIHC-US cohort (Figure 3E) and 0.727 at 1 year, 0.665 at 3

years, and 0.713 at 5 years in the GSE116174 cohort (Figure 3F).

Also, we performed univariate and multivariate Cox analyses of

CRFCS in order to examine the potential of CRFCS as an OS-

independent prognostic factor for HCC. The results showed a

hazard ratio of 2.708 (2.087-3.514) for CRFCS in the univariate

analysis with a p-value less than 0.001 (Figure 3G). In the

multifactorial analysis, the hazard ratio was 2.437 (1.825-3.254)
B

C D

E

A

FIGURE 2

Construction of CRFCS. (A, B) GO (A) and KEGG (B) enrichment analysis of gene sets after generalizing features. (C) Trend of out-of-bag error (oob) of
random forest model with the number of trees (nTree). (D) Ranking of variable importance (VIMP) of features. (E) Multivariate cox test of feature genes.
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with a p-value less than 0.001 (Figure 3H). These results implied

that CRFCS was a potential independent predictor of HCC.
3.4 CRFCS and mutation features

Mutational features are an integral part of the cancer process

landscape. We investigated the mutational characteristics of the
Frontiers in Immunology 06
CRFCS subgroup of HCC. The top 3 high-frequency mutated genes

in the high-CRFCS subgroup were TP53 (29%), TTN (24%), and

CTNNB1 (20%) (Figure 4A) while CTNNB1 (31%), TNN (23%),

and ALB (15%) were identified as the top 3 mutated genes in the

low CRFCS subgroup (Figure 4B). We also found that Microsatellite

Instability (MSI) score was significantly higher in the high

CRFCS subgroup than in the low CRFCS group (p<0.001)

(Figure 4C). Then, we evaluated the MATH scores which were
B C

D E F

G

H

A

FIGURE 3

Prognosis prediction of CRFCS. (A, C) Kaplan-Meier curves of CRFCS subgroups for the training cohort TCGA-LIHC (A), the external validation
cohorts ICGC-LIHC-US (B), and GSE116174 (C). (D–F) AUC curves for the prediction of overall survival (OS) by CRFCS in samples of TCGA-LIHC
(D), ICGC-LIHC-US (E), and GSE116174 (F). (G, H) Univariate (G) and multivariate analysis (H) of CRFCS.
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positively correlated with tumor heterogeneity. The results revealed

that the MATH scores between the two groups were not

significant (Figure 4D).
3.5 CRFCS and TME

Immunotherapy is vital for the treatment of patients with

advanced cancer and TME features are essential indicators of the

efficacy of immune checkpoint inhibitors (ICIs). The level of

various immune-related cellular infiltrates in TCGA-LIHC cohort

samples was assessed by the ssGSEA method (Figures 5A, B). The

results displayed a positive correlation between the CRFCS and the

level of some anti-tumor immune cell infiltration, such as activated

CD4 T cells (p<0.0001), activated dendritic cells (p =0.0142), central

memory CD4 T cells (p<0.0001), central memory CD8 T cells (p

=0.0025), and effector memory CD4 T cell (p<0.0001). Similarly,

infiltrations of pro-tumor immune cells including regulatory T cells

(p<0.0001), type 2 T helper cells (p<0.0001), immature dendritic

cells (p =0.0239), and MDSC (p =0.0173) were also positively

correlated with CRFCS. In addition, some neutral immune

infiltrates such as eosinophil (p<0.0001) and mast cell (p =0.0189)

were negatively related to CRFCS. We also evaluated the immune

infiltration of the samples with the CIBERSORT algorithm

(Figure 5C). Higher infiltration levels of T cells CD4 memory

activated (p<0.001), T cells follicular helper (p<0.01), T cells

regulatory (Tregs) (p<0.01), Macrophages M0 (p<0.001) and
Frontiers in Immunology 07
dendritic cells resting (p<0.01) were observed in the high CRFCS

subgroup. In contrast, B cells naïve (p<0.05), T cells CD4 memory

resting (p<0.05), NK cells activated (p<0.05), monocytes (p<0.05)

and mast cells resting (p<0.001) had higher levels in the low CRFCS

subgroup. Considering both methods together, the infiltration levels

of activated CD4 T cells and regulatory T cells were significantly

higher in the high-CRFCS subgroup, while the infiltration level of

Mast cells resting was lower. Infiltration of stromal cells is also an

integral part of TME. We also assessed the levels of stromal cell-

related markers in the TCGA-LIHC cohort samples. The analysis

showed that the levels of most markers of diverse stromal cells

including CAF, EC, MSC, TAM, M1, and M2 in the samples were

positively correlated with CRFCS (Figure 5D). Regulatory T cells

was reported to suppress the immune response and promote

tumorigenic immune escape (35). We then assessed the extent of

immune escape between high and low CRFCS subgroups by the

TIDE algorithm and the results showed that the high CRFCS group

displayed a decreased TIDE score compared with the low CRFCS

group (Figure 5E), indicating that samples with high CRFCS had

lower levels of immune escape.
3.6 CRFCS and drug-sensitivity

Next, we assessed the drug-sensitivity of CRFCS in HCC by

applying the R package of “pRRophetic”. By analyzing data from

TCGA, we found that the high CRFCS group had a lower IC50 of
B

C

D

A

FIGURE 4

CRFCS and mutation characteristics. (A, B) Mutation oncoplots of high CRFCS group (A) and low CRFCS group (B), including genes with top 30
mutation frequency. (C) Differences in MSI scores between high and low CRFCS subgroups. *** stands for p<0.001. (D) Differences in MATH scores
between CRFCS subgroups.
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sorafenib compared with the low CRFCS group (Figure 6A). To

verify these results, an external data from ICGC-LIHC-US was

analyzed which confirmed that the high CRFCS group are more

sensitive to sorafenib (Figure 6B). Immunotherapy delivers more

opportunities to patients with advanced HCC (36). It is well

recognized that TME characteristic can significantly influence the

outcome of immunotherapy (37). TME is classified into three

subtypes: immune-desert, immune-inflamed, and immune-

excluded. The immune-inflamed type which is highly expressed
Frontiers in Immunology 08
with immune checkpoint such as PD1 and PD-L1 is considered to

be very sensitive to immunotherapy (38). Therefore, we evaluated

the expression profile of immune checkpoint in CRFCS. Our results

displayed that the immune checkpoints including PD-L1, PD1,

TIGIT, TIM3, and CTLA4 were significantly highly expressed in the

high CRFCS group compared with the low CRFCS group in both

TCGA and ICGC HCC cohorts (Figures 6C, D). These results

suggested that high CRFCS group might be more responsive

to immunotherapy.
B

C

D E

A

FIGURE 5

CRFCS and immune infiltration. (A) Heat map of ssGSEA score of various immune cells in high and low CRFCS groups via analyzing TCGA-LIHC
cohort data. (B) The correlations between immune score and CRFCS. (C) Immune infiltration landscape of TCGA-LIHC cohort samples assessed by
the CIBERSORT algorithm. (D) Correlation of stromal cell-associated markers with CRFCS. (E) The level of immune escape between high and low
CRFCS subgroups was assessed by the TIDE algorithm. (*p<0.05; **p<0.01; ***p<0.001; ns stands for not significant).
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4 Discussion

Cuproptosis, a recently discovered new programmed cell death

induced by excessive accumulation of intracellular Cu, is distinct

from known cell death forms including apoptosis, pyroptosis,

ferroptosis, necrosis. To dissect the specific regulators of

cuproprosis, Tsvetkov et al. used genome-wide CRISPR/Cas9

screens and identify ten crucial cuproptosis-specific genes

including FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A (25). These ten genes are closely

associated with HCC progression and TME. Zhang et al.

identified FDX1 as an immunotherapy predictor of HCC (39).

Yan et al. discovered that inhibition of LIPT1 restrained HCC cell

proliferation and invasion (40). Zhou et al. found that

overexpression of DLAT increased HCC cell growth and invasion

and may facilitate cancer cell evade immune system (41). Sun et al.

reported that activation of PDHA1 suppressed the Warburg effect

and promoted HCC apoptosis (42). Yang et al. demonstrated that

knockdown PDHB induced metabolic reprogramming of the

tricarboxylic acid (TCA) cycle leading to glutamine depletion and

inhibition of HCC cell proliferation (43). Yang et al. reported that

over-expression of MTF1 contributed to the proliferation of HCC

cells (44). Dong et al. found that GLS1 promoted HCC cell

proliferation via activating AKT/GSK3b/Cyclin D1 pathway (45).

Xu et al. revealed that upregulation of CDKN2A significantly

inhibited ACTR5 induced HCC cell proliferation (46).

Considering the role of these ten crucial cuproptosis-specific

genes in HCC, constructing a model based on these ten genes
Frontiers in Immunology 09
might provide potential insights for evaluation the TME and

immunotherapy efficacy of HCC.

Since the discovery of cuproptosis, the role of cuptoptosis in

liver cancer prognosis and TME has been gradually evaluated.

Previous studies mainly explored this issue by constructing Lasso

cox model, which directly entered the target genes as model inputs

(47–53). The Lasso model is applied to analyze multicollinearity

data (54). Usually, nonlinear data might be generated when

performing log normalization of the expression matrix. From this

perspective, the lasso cox model might not be the ideal strategy. The

random forest model is a set of binary trees constructed with

recursive partitioning (RPART), which enables the random forest

to handle nonlinear data due to the combination of trees (55).

Therefore, the random forest model with nonlinear data as the

application object is more suitable. Meanwhile, the random forest

model is better at learning potential crossover features consisting of

multidimensional features (56) and shows strong robustness when

applied to large feature sets (57). These reasons led us to use the

random forest model to construct the prognostic model. In

addition, considering that there might be noise differences

between individual data of each sample, some features may be

lost due to the presence of data noise if the target genes are

considered only, we trained the model using gene clusters related

to cuproptosis genes as model inputs to generalize the features. We

generalize the features by acquiring highly correlated genes of

crucial cuproptosis genes when constructing the model so that

the model could learn as much information as possible about the

implicit features in the data. This makes the output of the model
B

C

D

A

FIGURE 6

CRFCS and drug sensitivity. (A, B) Drug sensitivity of sorafenib in high and low CRFCS subgroups via analyzing data from TCGA cohort (A) and ICGC-
LIHC (B). (C, D) Differential expression of immune checkpoints between high and low CRFCS subgroups via analyzing data from TCGA cohort
(C) and ICGC-LIHC (D). (**p<0.01; ***p<0.001).
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smoother and less susceptible to fluctuations caused by noise in the

data, thus improving the robustness of the model. The generalized

input data combined with the random forest model can better learn

the potential cross features in the data.

Microsatellite instability (MSI) is closely correlated with tumor

immunotherapy efficacy. High MSI (MSI-H) in tumor samples

usually cause additional mutant antigens and sensitize patient to

immunotherapy (58). However, MSI-H also tends to increase tumor

heterogeneity, which in turn results in poorer immunotherapy

efficacy (59). In the present study, the mutation landscape of

CRFCS subgroups was investigated which showed that the MSI

scores were significantly higher in the high-CRFCS subgroup

sample than in the low-CRFCS group while no significant

difference between high and low CRFCS subgroups was observed

in the tumor heterogeneity score MATH (Figure 4). These results

suggested that high CRFCS subgroups may have better

immunotherapeutic efficacy. Besides, studies exist demonstrated

that tumor patients with high expression of immune checkpoints

are more sensitive to immunotherapy (38). We evaluated the

expression of immune checkpoints in high and low CRFCS

group. Our results showed that the immune checkpoints

including PD-L1, PD1, TIGIT, TIM3, and CTLA4 were

remarkably highly expressed in the high CRFCS group compared

with the low CRFCS group (Figures 6C, D). In addition, evidence

displayed that Treg cells cause immune escape through several

mechanisms, which in turn impede the anti-tumor immune

response (60). To estimate the tumor immune escape effect

between the CRFCS subgroups, we calculated the TIDE scores of

the samples. The results showed that the high-CRFCS subgroup had

significantly lower TIDE scores (Figure 5E), indicating that samples

of the high-CRFCS subgroup had a lower probability of immune

escape and were less prone to be resistant to immunotherapy.

Combining the results above, it might be inferred that the high

CRFCS group might be more suitable to receive immunotherapy

than the low CRFCS group.

Although a cuproptosis related model termed CRFCS was

successfully constructed to evaluate prognosis and TME

characteristic in HCC, some limitations should not be neglected.

First, cuproptosis was discovered in 2022, only several genes were

confirmed as crucial cuproptosis-specific genes, more genes need to

be identified to provide systematic and comprehensive understanding

of cuproptosis. Second, our study was performed based on integrative

bioinformatic analysis, it would be more valid to carry out functional

experiments in vitro and in vivo. Finally, the data involved in this

study were retrieved from public dataset, it would be better to use

large-scale of local datasets to verify our findings.
5 Conclusions

In aggregate, we constructed a cuproptosis random forest cox

score (CRFCS) model. CRFCS was identified to be an independent

prognostic indicator of HCC and high CRFCS samples showed a

poor prognosis. Interestingly, CRFCS were correlated with TME

characteristics as well as clinical treatment efficacy. Patients with
Frontiers in Immunology 10
high CRFCS had a better clinical prognosis for immunotherapy

and sorafenib.
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