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Transcriptional control of
ILC identity

Anna A. Korchagina, Sergey A. Shein, Ekaterina Koroleva
and Alexei V. Tumanov*

Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health
Science Center at San Antonio, San Antonio, TX, United States
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which

participate in host defense, mucosal repair and immunopathology by

producing effector cytokines similarly to their adaptive immune cell

counterparts. The development of ILC1, 2, and 3 subsets is controlled by core

transcription factors: T-bet, GATA3, and RORgt, respectively. ILCs can undergo

plasticity and transdifferentiate to other ILC subsets in response to invading

pathogens and changes in local tissue environment. Accumulating evidence

suggests that the plasticity and the maintenance of ILC identity is controlled by a

balance between these and additional transcription factors such as STATs, Batf,

Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-

guiding cytokines. However, how interplay between these transcription factors

leads to ILC plasticity and the maintenance of ILC identity remains hypothetical.

In this review, we discuss recent advances in understanding transcriptional

regulation of ILCs in homeostatic and inflammatory conditions.

KEYWORDS

innate lymphoid cells, transcriptional regulation, ILC identity, ILC plasticity,
transcription factor
Abbreviations: Ahr, Aryl Hydrocarbon Receptor; Bach2, BTB Domain And CNC Homolog 2; Batf, Basic

leucine zipper activating transcription factor–like transcription factor; Bcl11b, B-cell leukemia/lymphoma

11B; Eomes, Eomesodermin; GATA3, GATA binding protein 3; Gfi-1, Growth factor independence 1; IFNg,

Interferon gamma; IL-18RAP, Interleukin 18 receptor accessory protein; ILCs, Innate Lymphoid Cells;, IRF,

IFNg regulatory factor; LDTF, Lineage determining transcription factor; LTi, Lymphoid Tissue Inducer;

NCR, Natural Cytotoxicity Receptor; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells;

NK, Natural Killer, NMUR1, Neuromedin U receptor 1; PLZF, Zinc Finger and BTB Domain Containing 16;

RORa, RAR-related orphan receptor alpha; RORgt, Retinoid Orphan Receptor gamma t; PRGS2,

Prostaglandin-endoperoxidase synthase 2; Runx3, RUNX family transcription factor 3; STAT, Signal

Transducer and Activator of Transcription; T-bet, T-box protein in T cells; TF, Transcription Factor;

TGF-b, Transforming growth factor b; TNF, Tumor necrosis factor; TSLP, Thymic stromal lymphopoietin;

ZBTB46, Zinc Finger and BTB Domain containing 46.
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1 Introduction

Innate lymphoid cells (ILCs) are enriched in mucosal tissues

where they control tissue homeostasis and rapidly respond to

invading pathogens (1). Upon activation ILCs produce effector

cytokines to orchestrate host defense at the early stage of

infection. ILCs are currently classified into five subsets based on

their development and effector functions: ILC1, ILC2, ILC3,

lymphoid tissue inducer (LTi) cells and natural killer (NK) cells

(2). Classification of ILCs is based on the network of lineage-

determining transcription factors (LDTFs) which activate or

repress genes defining the cellular identity of ILCs (3–10).

Moreover, LDTFs regulate subset-specific genes which define

migratory and metabolic cell features as well as effector functions

of ILCs (5, 11, 12). Numerous transcription factors (TFs) control

the development of ILCs from common lymphoid progenitors in

the bone marrow (6). Activation or repression of the specific gene

expression depends on the synergistic effects of numerous TFs

which can bind to specific DNA sequences within the gene

promoter area (13). The accessibility of designated DNA motif to

TFs is controlled by the chromatin structure. Recently it has been

shown that the development and differentiation of ILC subsets

depend on the three-dimensional genome organization that

regulates chromatin accessibility and gene expression in ILCs

(14). ILC subsets identity depends on the activation or repression

of the key transcription factors T-bet, GATA3 and RORgt
(Figure 1). Accumulating evidence suggests that, in addition to
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these core factors, additional TFs define ILC identity and plasticity.

Therefore, in this review, we will discuss recent advances in

understanding the transcriptional regulation of ILC identity and

plasticity in homeostatic and inflammatory conditions and provide

visual presentation of potential mechanisms.
2 Transcriptional control of ILC
development

NK cells and ILC1s are closely related ILC subsets which are

characterized by expression of T-bet (encoded by Tbx21 gene) and

production of IFNg/TNF upon activation (15–17). NK cells and

ILC1s contribute to early host defense against intracellular

pathogens and viruses (15). For example, during Toxoplasma

gondii infection, NK cells and ILC1s contribute to protection by

producing IFNg, while ILC1s also express high levels of TNF (15).

Interestingly, IFNg and TNF-producing ILC1s are increased in the

intestinal tissue of Crohn’s disease patients (18, 19), where TNF

together with IFNg can increase permeability of the intestinal

epithelial barrier leading to exacerbation of inflammation (20–22).

NK cells are migratory cytotoxic cells, whereas ILC1s are mainly

considered as tissue-resident cells (15, 23, 24). IL-15 is required for

the development and maintenance of both NK cells and ILC1s (15,

25). NK cells can exist in the tissues in different maturation states

with distinct cytotoxic capacity and ability to produce cytokines.

The maturation states are defined according to the group of markers
FIGURE 1

ILC subsets are defined by core transcription factors. NK cells express natural cytotoxicity receptors (NCRs) and require Eomes and T-bet for their
development. Eomes and T-bet maintain NK cell effector functions by inducing granzymes, perforin 1, and IFNg. ILC1 development and maintenance
depends on T-bet, which is required for IFNg production. ILC2s require GATA3 for their development and maintenance. Bcl11b promotes ILC2
development by controlling ILC2 lineage associated genes and by restraining ILC3 development. RORa, Bcl11b and GATA3 control production of
type 2 effector cytokines, IL-5, IL-13 and IL-4 in ILC2. ILC3s and LTi cells express RORgt, which is required for their development and maintenance.
RORgt with RORa induce type 3 effector cytokines, IL-17 and IL-22. ILC3s are divided on NCR+ and NCR- subsets. Development of NCR+ ILC3s
depends on GATA3 and T-bet. GATA3 together with RORgt regulate IL-22. LTi cells express CCR6. Plasticity between ILC subsets is shown by
dashed black arrows.
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that they express, such as acquiring integrin aM (CD11b) and

downregulating CD27 markers (26, 27). Immature NK cells (CD27+

CD11b-) develop to terminally differentiated NK cells (CD27-

CD11b+ KLRG1+) with high cytotoxic capacity and with the

ability to produce IFNg (28–30). Transcription factors Eomes and

T-bet are critical for normal development and maturation of NK

cells (15, 31, 32). Eomes is expressed during all stages of NK cell

development, whereas T-bet expression is increased only in mature

NK cells (33–35). The ratio between Eomes and T-bet is critical for

proper NK cell differentiation, maturation and function (31). Thus,

deletion of both Eomes and T-bet leads to the complete loss of NK

cells while single TF deficiency causes an immature NK cell

phenotype suggesting that both TFs are essential for NK cell

development (34, 35). Moreover, inducible deletion of Eomes in

mature NK cells leads to their loss whereas ILC1s are preserved,

suggesting that Eomes is necessary not only for the development but

also for the maintenance of NK cells (36). A recent study

demonstrated that during early NK cell differentiation Eomes

induces expression of the genes responsible for NK cell survival,

such as IL-2Rb and IL-15Rb (31). Conversely, T-bet controls

terminal stages of NK cell differentiation (31). The analysis of

Eomes/T-bet responsive genes showed that Eomes induces the

NK cell-specific gene expression whereas T-bet regulates

expression of the broader gene array (31). For example, Eomes

induced expression of the genes responsible for NK cell cytotoxicity

(FasL, GzmK, Klra8, Prf1) whereas T-bet induced expression of the

genes which regulate responsiveness to IL-12 (Il18r1, Il12rb2, Ifng)
(31, 36). Both T-bet and Eomes are positive regulators of NK cell

maturation while Bach2 TF is a negative regulator of terminal

differentiation of NK cells (29, 30). The expression of Bach2

decreases in immature compared to terminally differentiated NK

cells (29, 30). Moreover, Bach2 deficiency led to upregulation of

genes responsible for NK cell effector functions such as granzyme B

and KLRG1, suggesting that Bach2 can control NK cell maturation

through repression of effector genes (30).

In contrast to NK cells, differentiation of ILC1s depends on T-

bet, whereas Eomes is dispensable for ILC1 development (15, 33,

37). Although ILC1s do not express Eomes, a recent study described

ILC1 population with cytotoxic activity in the liver and salivary

gland, which had low levels of Eomes expression (38). These cells

produced granzyme C and were distinct from NK cells (38).

Interestingly, the majority of ILC1s in the liver and spleen express

or have a history of granzyme C expression (38). Granzyme C

production by ILC1s is dependent on T-bet, but not Eomes (38).

ILC2s participate in immune response against helminths by

producing type two cytokines IL-4, IL-13, IL-5 and IL-9 (39–42).

Additionally, ILC2s are implicated in the pathogenesis of

respiratory and skin diseases (43–45). ILC2s promote restoration

of damaged mucosal tissue by producing amphiregulin (AREG)

(46–48). Although all ILCs express low levels of GATA3, ILC2s

display the highest levels of GATA3 expression (10, 11, 15, 49),

which is required for their development and maintenance (50–53).

Similar to Th2 cell development, GATA3 can promote ILC2 lineage

fate determination by suppressing RORgt expression in these cells

(10, 54). Moreover, ILC2 differentiation depends on Notch

signaling and availability of IL-7 (55). ILC2 precursors have been
Frontiers in Immunology 03
identified in bone marrow and thymus (56, 57). Activation of Notch

signaling induces differentiation of thymic progenitor cells to

ILC2s (58).

Another TF participating in ILC2 development is RORa (55,

56). It was demonstrated that in the thymus RORa is critical for

ILC2 development by suppressing T cell commitment (56). Thus,

overexpression of RORa induced ILC2 development while the

absence of RORa promoted differentiation of the precursor cells

to T cell lineage (56). In addition, it was shown that Rora binds to

promoters of Il13 and Il5 genes in ILC2s, suggesting that RORa can

promote effector function of ILC2s (56). Moreover, high RORa
expression was demonstrated in all ILC subsets using five-color

polychromic ILC reporter mice, suggesting the role of RORa in the

regulation of other ILC subsets (59).

Bcl11b is another transcription factor that promotes ILC2

development by stabilizing expression of ILC2 lineage-associated

genes and restricting their differentiation into ILC3s (60, 61). It was

shown that Bcl11b binds to different sites of Il4, Il13 and Il5 genes in

ILC2s (62). Additionally, Bcl11b deficient ILC2s display a decreased

expression of IL-4, IL-13 and IL-5 (62). Furthermore, ILC2s were

reduced in peripheral blood of patients with heterozygous germline

Bcl11b mutation supporting the essential role of Bcl11b in ILC2

development (63). Interestingly, although Bcl11b is expressed in

both T cells and ILC2s during development, it regulates distinct set

of genes in these cells (62). However, how Bcl11b cooperate with

GATA3 in the regulation of ILC2 specific genes remains to be

further determined.

ILC3 development depends on RORgt (encoded by Rorc gene)

(64). ILC3s contribute to the host defense against extracellular

pathogens, fungi, and maintenance of epithelial cell homeostasis by

producing IL-22 and IL-17 (65). Moreover, ILC3s can protect

intestinal epithelial cells from TNF-induced apoptosis by

producing heparin-binding EGF-like growth factor (66). ILC3s

can be subdivided into two distinct subpopulations of CCR6+ and

CCR6- cells (67). CCR6+ ILCs include LTi (fetal lymphoid tissue

inducer) cells and LTi-like cells (67). Although both ILC3s and LTi

cells depend on RORgt expression for their development, LTis are

considered as a separate lineage (64, 68). ILC3s develop from the

progenitors that express TF PLZF, whereas LTi cells originate from

the progenitors with no history of PLZF expression (9, 68). LTi

cells control lymphoid organogenesis during embryonic

development by producing lymphotoxin (LT) and TNF, whereas

phenotypically close LTi-like cells appear in adulthood (64, 69–72).

CCR6- ILC3s are derived from another precursor and their

development depends not only on RORgt but also on TF Ahr

(67, 68). Some CCR6- ILC3s express NKp46 (the member of

natural cytotoxicity receptors, NCRs) and depend on T-bet,

which is required for their development (67, 73, 74). GATA3 is

required for the development of CCR6- ILC3s but not LTi cells

(10). It was proposed that during ILC ontogeny, GATA3

expression determines the divergence of LTis and other ILC

subsets (10). In addition to controlling ILC3 commitment,

GATA3 maintains mature ILC3 homeostasis (10). GATA3

controls the expression of IL-7Ra in ILC3s to promote cell

survival and proliferation, similarly to its role in ILC2s and Th2

cells (10, 52, 75).
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3 Transcriptional control of
ILC plasticity

Extensive research over the past decade revealed plasticity

within all ILC subsets that is largely controlled by tissue-derived

factors. Thus, inflammation, infection or changing environmental

conditions lead to activation of numerous intracellular signaling

pathways that induce production of cytokines which in turn

induce changes in ILC phenotypes and their function (18, 76).

Therefore, ILC plasticity allows tissue resident cells to quickly

adjust to the changes upon pathogen invasion or inflammatory

conditions that could require different types of immune responses

at the different stages of disease. It is becoming evident that ILC

plasticity is not only an important driver of protective immune

responses but can also lead to exacerbation of chronic and

inflammatory diseases (19, 43, 45, 77). Accumulating evidence

suggests that ILC plasticity can be reversed, underlying

the existence of the mechanisms maintaining ILC balance under

physiological conditions and during pathogen invasion to prevent

excessive inflammation (76, 78). However, the transcriptional

drivers of ILC plasticity remain poorly understood.

During pathogen invasion or ongoing inflammation cytokine

production by immune and non-immune cells drives ILC plasticity

by regulating the expression of lineage-determining transcription

factors which, in turn induce production of effector cytokines by

ILCs (18, 19, 76, 79). The ability of ILCs to undergo plasticity in

response to distinct cytokines depends on the surface expression of

appropriate cytokine receptors (80). Activated epithelial cells or

myeloid cells produce type 1 cytokines such as IL-18, IL-15 and IL-

12 which stimulate IFNg production by ILC1s, whereas IL-23, IL-1b
and IL-2 trigger IL-22 and IL-17 secretion by ILC3s (18, 79, 81).
Frontiers in Immunology 04
Distinct cytokine combinations induce phenotypical changes in the

ILCs, leading to their functional plasticity.

NK!ILC1-like cell plasticity was demonstrated in tumor

models and Toxoplasma gondii infection (82–84) (Figure 2A). In

a subcutaneous fibrosarcoma model, TGF-b signaling promoted

NK!ILC1-like cell plasticity (83). Interestingly, NK cells in the

tumor produced high levels of IFNg but low levels of TNF compared

to ILC1s, which correlated with antitumor activity of NK cells (83).

These results are in line with other studies where the protective role

of IFNg-producing intratumoral NK cells was demonstrated

whereas TNF facilitated tumor growth and metastasis (84–89).

The ability of ILC1-like cells to convert back to NK cells remains

to be proven experimentally.

Studies in mouse models showed that conversion of ILC3s to

IFNg-producing ILC1s is controlled by downregulation of RORgt
and upregulation of T-bet and is induced by IL-12, IL-15, and IL-18

(18, 19, 73, 81) (Figure 3A). Similarly, ILC3!ILC1 plasticity in

humans is controlled by IL-1b and IL-12, whereas combination of

IL-23 and IL-1b can reverse ILC1!ILC3 conversion, with retinoic

acid further amplifying this reverse plasticity (18, 90). It has been

previously proposed that ILC3↔ILC1 plasticity can only occur in

the adult intestine (18, 67, 73); however, a recent study showed the

presence of ILC1s and ILC3s with a previous history of RORgt or T-
bet expression, respectively, during embryonic development (91).

This plasticity is likely driven by the changing tissue micro

environment during intestinal tissue development.

Conversion of NCR+ to NCR- ILC3s has been described in the

intestine (67, 73, 92, 93). The differentiation of NCR- to NCR+ ILC3

is driven by Notch signaling and depends on T-bet (67, 92, 94).

Notch signaling in combination with microbial cues and IL-23

instructs the upregulation of T-bet, thereby regulating the
BA

FIGURE 2

Transcriptional regulation of ILC1s and NK cells. (A) NK↔ILC1 plasticity. Tumors and mucosal pathogens, such as toxoplasma can induce IL-12 and
TGF-b production by DCs and macrophages to drive NK↔ILC1 plasticity. NK↔ILC1 conversion is controlled by upregulation of T-bet and
downregulation of Eomes. The ability of ILC1-like cells to convert back to NK cells remains unknown. (B) Maintenance of ILC1 identity. T-bet is
required for ILC1s to produce IFNg. IL-12R signaling activates STAT4, which induces T-bet transcription. Activated STAT4 also binds to Runx3 and
IFNg promoters to induce expression. Runx3 can also promote expression of IL12Rb1 thereby amplifying IL-12R signaling. T-bet associates with
Runx3 to drive IFNg transcription. IL-12R/STAT4 signaling maintains ILC1 phenotype via inducing T-bet and Runx3 for IFNg production.
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development of NCR+ ILC3s (67, 95). Interestingly, some NCR-

ILC3s transiently expressed NCR (92, 93), suggesting the plasticity

within ILC3 subsets. In contrast to Notch signaling, TGF-b prevents
generation of NCR+ILC3s from their NCR- ILC3s precursors

(92, 93).

A delicate balance between T-bet, GATA3 and RORgt
determines the fate of ILC subsets. Computational analysis of

interactions between TFs and their target genes showed that

LDTFs can antagonize each other thereby regulating ILC fate (7).

Thus, T-bet represses LDTFs in both ILC2s and ILC3s (7). In turn,

RORgt antagonizes NK and ILC1 transcription factors T-bet and

Bach2 (7). The balance between T-bet, GATA3 and RORgt also
defines the developmental fate of NCR-ILC3s, NCR+ ILC3s or ex-

ILC3s (T-bet+ ILC1s with a previous history of RORgt expression)
(10, 67). Since GATA3 limits RORgt expression by directly binding

to Rorc but not Tbx21 gene in NCR+ILC3s (10), it is possible that

the ratio between GATA3 and RORgt expression regulates

NCR+ILC3!ILC1 plasticity. Reduced RORgt expression allows

expression of genes associated with type 1 immunity (4, 67). In

turn, T-bet expression is also required for ILC3!ILC1 plasticity as

ILC3s with deletion of both T-bet and RORgt failed to acquire

ILC1-like phenotype (4). Interestingly, complete ILC3!ILC1

transition requires downregulation of both RORgt and RORa (4).

These studies indicate that the balance between ILC3s and ILC1s is

tightly regulated by a network of TFs through direct control of

effector genes or through indirect regulation of other factors that

can promote or restrain ILC plasticity.

Distinct cytokines regulate ILC2 plasticity (43, 45). Thus,

stimulation of ILC2s with IL-12 and IL-1b resulted in IFNg
Frontiers in Immunology 05
production, accompanied by downregulation of GATA3 and

upregulation of T-bet (43, 96). This conversion can be reversed

by IL-4 (Figure 4A). IL-1b, IL-23 and TGF-b promote production

of IL-17 by ILC2s with increased expression of RORgt (45)

(Figure 4B).

Taken together, recent studies identified the network of TFs

which cooperate with core LDTFs to control ILC effector functions

and their identity. Therefore, in the next sections of this review we

will focus on recent advances in understanding the potential

mechanisms maintaining the transcriptional identity of ILC subsets.
4 Transcriptional regulation of
ILC1 identity

Cell surface cytokine receptors on ILCs activate broadly

expressed transcription factors such as STATs which control ILC

effector programs (97). For instance, activation of STAT4 via IL-12R

signaling promotes IFNg production by NK cells and ILC1s, while

(98) which promotes IFNg production by NK cells and ILC1s (99–

101), while STAT3 activation via IL-23R controls IL-22 and IL-17

production by ILC3s (102) (Figure 2B). The potential contribution of

STAT signaling to ILC1!ILC3 plasticity is highlighted by recent

work demonstrating that STAT4 expression correlates with T-bet

expression in ILC1s in the small intestine (103) (Figure 2B).

Furthermore, distinct ILC subsets have different basal levels of

STAT4 with the highest expression in ILC1s and NK cells, whereas

CD4+ ILC3s display low level of STAT4 expression (103).

Interestingly, ILC1s and NCR+ ILC3s have similar expression level
BA

FIGURE 3

Transcriptional regulation of ILC3s. (A) ILC1↔ILC3 plasticity. Enteric pathogens, such as Salmonella and Campylobacter can induce ILC3!ILC1
plasticity. ILC3!ILC1 conversion is driven by IL-12 and IL-1b, produced by DCs and macrophages which leads to downregulation of RORgt and
upregulation of T-bet expression. The reverse ILC1!ILC3 conversion can be induced by IL-23, IL-1b and retinoic acid (RA). Aiolos, c-Maf and Batf
regulate ILC3↔ILC1 plasticity: Aiolos maintains ILC1 phenotype whereas c-Maf and Batf promote ILC3 phenotype. (B) Maintenance of ILC3 identity.
RORgt is critical for NCR+ ILC3s to produce IL-22 and IL-17. IL-23 binds to IL-23R to activate STAT3, inducing RORgt. IL-6-IL6R signaling can induce
STAT3 activation. Activated STAT3 induces transcription of c-Maf and/or Batf, each of them can bind to T-bet locus bind to T-bet locus, preventing
T-bet transcription and acquisition of ILC1 phenotype. Batf and c-Maf individually or synergistically induce RORgt expression in T cells, however their
ability to drive RORgt expression in ILC3s has not been shown yet. GATA3 limits RORgt expression by direct binding to RORgt gene locus. GATA3 and
RORa can cooperate with RORgt to induce IL-22 production.
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of STAT4 (103). Furthermore, IL-23 and IL-12 can differentially

activate STAT3 and STAT4 in ILC1s and NCR+ ILC3s. Thus, IL-23

signaling activates both STAT4 and STAT3 in NCR+ ILC3s but not in

ILC1s, where activation of STAT4 and STAT3 is induced by IL-12

(103). In contrast, another study showed that IL-12 activates STAT4

in both NCR+ ILC3s and ILC1s, isolated from the colon (104). These

differences could be due to the different responsiveness of ILCs from

the small intestine and the colon to IL-12. Since IL-12 and IL-23

receptors share p40 subunit (105), it is possible to hypothesize that

both cytokines could activate STAT4 signaling, driving IFNg
production by ILC1s and NCR+ ILC3s. In line with this, activated

STAT4 binds to ifng promoter and activates its transcription (106,

107). Importantly, IL-23 stimulation induces chromatin accessibility

of ifng gene in NCR+ ILC3s (103) indicating that the ability of NCR+

ILC3s to produce IFNg in response to IL-23 partially depends on

STAT4 activation. T-bet can cooperate with Runx3 to promote IFNg
production in T cells (108). Additionally, another study showed that

Runx3 can induce IFNg production in ILC1s and ILC3s, potentially

via formation of transcriptional complex between Runx3 and T-bet

(109)(Figure 2B). Therefore, it is possible that cooperation of T-bet

with Runx3 and STAT4 promotes ILC1!ILC3 plasticity by
Frontiers in Immunology 06
increasing remodeling and accessibility of ifng locus and making

cells more responsive to IL-12. (Figure 2B). Further studies are

needed to define whether IL-12 dependent STAT4 activation leads

to ILC1 plasticity.
5 Transcriptional regulation of
ILC3 identity
RORgt is critical for the maintenance of ILC3 phenotype

(Figures 3A, B) (64, 110, 111). IL-23/IL-6-mediated STAT3

activation induces IL-17 and RORgt expression (112–114).

STAT3 can also directly bind to IL-22 locus to induce its

transcription in response to mucosal pathogen Citrobacter

rodentium (C. rodentium) (102). Furthermore, RORgt and STAT3

can further cooperate with Ahr to amplify IL-22 production

(102, 115).

Transcription factor c-Maf is a known regulator of Rorc in T

cells (114). Recently, transcriptomic analysis of ILCs revealed the

expression of c-Maf along with RORgt in NCR+ ILC3 (11, 116, 117)
B

CA

FIGURE 4

Transcriptional regulation of ILC2s. (A) ILC1↔ILC2 plasticity. Mucosal pathogens, such as M. tuberculosis can induce production of IL-12, IL-1b to drive
ILC2!ILC1 plasticity. ILC2!ILC1 conversion is controlled by downregulation of GATA3 and upregulation of T-bet. Batf supports ILC2 maintenance.
ILC2!ILC1 conversion can be reversed by IL-4. (B) ILC2↔ILC3 plasticity. Helminths, such as N. brasiliensis induce IL-1, IL-23, and TGF-b to promote
ILC2!ILC3 conversion. Upregulation of RORgt results in acquisition of ILC3-like phenotype. Vitamin D3 prevents the conversion of ILC2 into IL-17
producing ILC3-like cells, possibly by reducing IL-23R expression on ILC3s and limiting acquisition of RORgt. ILC2!ILC3 conversion can be reversed by
IL-4, which induces GATA3 expression. (C) Maintenance of ILC2 identity. GATA3 is critical for type 2 cytokine production: IL-5, IL-4, IL-13. IL-4 binds to
IL-4R leading to activation of STAT6 which induces GATA3 transcription. GATA3 induces production of IL-5, IL-13, IL-4, IL-9. GATA3 can increase
expression of IL-33R which leads to Batf upregulation. Batf may further support maintenance of ILC2 phenotype by promoting GATA3 expression. STAT5
activation by IL-2 and IL-7 can upregulate GATA3 expression. In addition to GATA3, RORa support IL-13 and IL-5 production by ILC2s. Bcl11b may
support ILC2 phenotype by suppressing Ahr and promoting Gfi1, RORa and GATA3 expression.
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whereas CCR6+ ILC3s had the lowest c-Maf expression (7, 116).

Interestingly, c-Maf expression correlates with T-bet, suggesting the

potential role of c-Maf in regulation of NCR+ ILCs (116).

Importantly, loss of c-Maf led to higher numbers of NCR+ ILC3s

with the increased IFNg but decreased IL-22 production in the

intestine (7, 116) implying that c-Maf regulates T-bet expression to

maintain the ILC3 phenotype (Figure 3B). Indeed, ATAC-seq

analysis revealed that c-Maf prevents NCR+ ILC3s to acquire

ILC1-phenotype by direct binding to Tbx21 promoter to

attenuate the expression of T-bet (116, 117). Consistent with the

induction of RORgt in T cells, c-Maf can directly activate RORgt
transcription in NCR+ ILC3s (114, 116, 117) (Figure 3B). Recently it

has been shown that IL-1b and IL-18 induce c-Maf expression

through NF-kB signaling (116, 117), as pharmacological inhibition

of NF-kB abrogated the cytokine-induced c-Maf expression in

NCR+ ILC3s (117). However, how NF-kB signaling regulates

c-Maf expression remains to be further investigated. Notch

signaling can also regulate c-Maf expression, as c-Maf expression

in ILC3s is higher in the presence of Notch ligand (116, 117).

IL-22 production by ILC3 is regulated by RORgt in cooperation

with other TFs (4, 111, 115). A recent study demonstrated that

interferon regulatory factor 1 (IRF-1) controls IL-23 induced

production of IL-22 by ILC3s during C. rodentium infection

(118). Another example of TF that regulates function of ILC3s

during inflammation is ZBTB46 (119) (Figure 3B). Although

ZBTB46 was previously described as a critical TF for the classical

dendritic cells development (120, 121), a recent study revealed that

ZBTB46 is also expressed by CCR6+ ILC3s (119). The ZBTB46-

expressing ILC3s are a primary source of IL-22 in the large intestine

and are required for protection against C. rodentium (119).

Inactivation of ZBTB46 in ILC3s promoted C. rodentium-induced

intestinal inflammation and bacterial load, but did not affect IL-22

expression (119). Instead, CCR6+ ILC3s in these mice exhibited a

proinflammatory phenotype with increased expression of OX40L

(Tnfsf4) and PTGS2 (119). Interestingly, Zbtb46 locus has the

RORgt binding sites suggesting that RORgt regulates ZBTB46

expression in CCR6+ ILC3s (119). Additionally, microbiota

controls ZBTB46 expression in ILC3s as germ-free mice exhibited

high ZBTB46 expression which was downregulated after

colonization with conventional microbiota (119). Thus, these data

suggest that RORgt regulates ZBTB46 expression, which is required

to restrain proinflammatory functions of ILC3s. However, the

connection between ZBTB46 and RORgt in other models of

intestinal inflammation remains to be determined. As ZBTB46 is

overexpressed in inflamed tissue of IBD patients (119), ZBTB46

targeting strategies could have a therapeutic potential to inhibit

intestinal inflammation.
6 Role of RORa in ILC3 identity

Although early studies showed the critical role of RORa in ILC2

development (55, 122), recent studies suggest that RORa cooperates
Frontiers in Immunology 07
with RORgt for the maintenance of ILC3 phenotype and effector

functions (4, 49, 123) (Figure 3B). Thus, it has been demonstrated

that in the absence of RORgt expression, ILC3s are still capable to
produce IL-17 and IL-22 in the small intestine, suggesting that other

TFs can cooperate with RORgt to regulate ILC3 effector functions

(4, 124). RORgt and RORa differentially regulate the production of

IL-17 and IL-22 in distinct ILC3 subsets (4). Deletion of both RORa
and RORgt in mice using inducible Id2-Cre resulted in the loss of

most ILC3 markers, but preserved IL-22 production by LTi-like

cells and CCR6-NCR- ILC3s, but not by NCR+ ILC3s (4).

Conversely, IL-17 production was reduced in all ILC3 subsets in

the absence of either one or both TFs (4). Furthermore, RORgt
cooperates with RORa to prevent NCR+ ILC3s from acquiring an

ILC1-like phenotype, as the deletion of both TFs leads to transition

of NCR+ ILC3s to ILC1s in T-bet dependent manner. However,

simultaneous deletion of T-bet and RORgt prevented NCR+

ILC3!ILC1 transition (4). RORa can sustain IL-22 production

by ILC3s through the maintenance of IL-23R expression, which,

together with IL-1R, contributes to IL-22 production in ILC3s (73,

110, 125). Consistent with this, simultaneous deletion of RORa,
RORgt and T-bet caused the complete loss of IL-22 production in all

ILC subsets (4). These data indicate that RORa together with

RORgt maintains the ILC3 effector program in NCR+ ILC3s,

whereas T-bet supports type 1 effector program. Thus, the role of

these TFs in ILC development is distinct from their role in

maintaining ILC effector functions.
7 Role of Batf in ILC3 identity

Batf is another TF which controls development of effector T

cells, as well as ILCs (5, 126). Batf-binding motifs can be found in

regulatory regions of the genes critical for T cell development, such

as T-bet and Eomes (127). During Th17 cells development, Batf

cooperates with IRF4 to promote chromatin accessibility and

recruitment of RORgt (128). Although all mature ILCs express

Batf (126), analysis of chromatin landscape in different ILC subsets

revealed the enrichment of Batf motif only in ILC2 and ILC3

subsets (5), indicating a potential role of Batf in regulation of

ILC3 and ILC2 functions. Transcription factor Batf was shown to

promote ILC3 phenotype since Batf deficiency resulted in increased

numbers of IFNg-producing ILC3s in the small and large intestine

(129). Similar to c-Maf, Batf maintains ILC3 phenotype by binding

to Tbx21 locus and preventing formation of Runx3 and T-bet

complex thereby preventing acquisition of ILC1 phenotype (116,

129). Additionally, Batf inhibits chromatin accessibility of IL-1R,

IL-12Rb and IL-18RAP genes, leading to the reduced

responsiveness to ILC1 phenotype-driving cytokines (129). In

contrast to (129), another study showed that Batf ablation led to

the reduction of ILC1 and ILC2 subsets in the colon with unaltered

numbers of T-bet+ ILC3s in naïve mice (126). Moreover, IFNg
production by ILC1s after C. rodentium infection was reduced in

the small intestine but not in the colon of Batf-deficient mice
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compared to controls (126). Furthermore, Batf deficiency led to

reduced IL-22 production accompanied by reduced numbers of

RORgt+ ILC3s (126). These results suggest that Batf regulates ILC

functions in the gut during homeostatic conditions and in infectious

disease. It seems that the role of Batf in regulation of ILC3

homeostasis is broader than the role of c-Maf, as Batf not only

restricts ILC3!ILC1 plasticity but also restrains CD4+ T cell

activation by inducing MHCII expression on ILC3s in the small

intestine (129). The different outcomes of Batf ablation in these

studies could be due to the distinct regulatory mechanisms in

physiologically different parts of the small and large intestines.

For example, microbiota composition is less diverse and abundant

in the small intestine compared to the colon which could potentially

change Batf-dependent regulation of ILCs (130). Additionally, it is

known that Batf regulates microbiota in the small intestine by

shifting the proportion of beneficial and potentially pathogenic

microbiota species that may in turn change ILCs composition (129).

Batf regulates differentiation of Th17 cells and promotes IL-17

expression by binding to the promoter of Il17 gene (131, 132). As

IL-6/STAT3 signaling is known to induce Batf-dependent

expression of c-Maf in follicular helper T cells (133, 134), it is

tempting to speculate that Batf can cooperate with c-Maf in NCR+

ILC3s to promote ILC3 phenotype by maintaining sustainable

expression of RORgt (Figure 3B). Further studies are needed to

define the mechanism by which Batf and c-Maf regulate the balance

of ILC3s and ILC1s in the gut.
8 Role of Ikaros TF members in
ILC3 identity

Several studies identified the potential role of Ikaros family of

transcription factors in ILC maintenance (90, 135). Analysis of

expression of Ikaros family members in ILCs revealed the highest

levels of Helios in ILC3s (90, 135), whereas Ikaros is expressed in all

ILC populations (135), with the lowest expression in intestinal

ILC3s (136). Ikaros suppresses effector functions of mature ILC3s in

the gut by interacting with Ahr and inhibiting its translational

activity (136). Another member of Ikaros family, Aiolos, is

expressed in all ILCs in mice, except LTi-like cells (4). Aiolos

regulates differentiation to type 1 program, as high levels of

Aiolos were detected in ILC1s and NK cells but not in ILC3s and

ILC2s (135). Furthermore, in the presence of lenalidomide, an

immunomodulatory drug which selectively degrades Ikaros and

Aiolos (137, 138), reduced IL-12 mediated ILC3!ILC1 plasticity

and increased IL-22 expression were reported (90). Thus, these

results suggest a potential role of Aiolos in promoting ILC3!ILC1

plasticity (90). Consistent with this, microarray analysis showed

that lenalidomide treatment upregulated ILC3-related genes in

tonsillar ILC3s treated with IL-12 and IL-1b (90), suggesting that

Aiolos and Ikaros may regulate the balance between ILC1s and

ILC3s via suppression of ILC3-related genes and promotion of

ILC1-specific genes.
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9 Transcriptional regulation of
ILC2 identity

Recent evidence from studies in mice and humans reported that

ILC2s can also adopt alternative fates and convert to IFNg
producing ILC1s (43, 139–141) (Figure 4A). Specifically,

stimulation of isolated ILC2s in vitro with IL-1b+IL-12 or IL-33

+TSLP+ IL-12 resulted in robust IFNg production (43) whereas IL-

1b or IL-33 alone induced IL-5, IL-4, GM-CSF but not IFNg (43,
141). However, activation of ILC2s in the presence of IL-1b induced

low levels of T-bet and IL-12R promoting ILC2!ILC1 plasticity in

response to IL-12 mediated STAT4 activation (141). Moreover, IL-

12 stimulation led to reduction of GATA3 and subsequent

induction of T-bet expression in ILC2s (43, 141). These results

demonstrate that ILC2s can transdifferentiate into ILC1s in

response to type 1 inflammatory cytokines. It has been shown

that ILC2!ILC1 plasticity can be reversed by IL-4 (43, 45, 142),

suggesting that the ratio between IL-12 and IL-4 regulates the

functional identity of ILCs. Interestingly, IL-4 stimulation led to

inhibition of ILC2!ILC3 transition along with inhibition of

STAT3 activation indicating a potential role of STAT3 in

promoting ILC2 plasticity (142). Consistently, another study

showed that ILC2s can convert to RORgt-expressing, IL-17

producing ILC3s in the presence of IL-1b, IL-23 and TGF-b (45).

In addition to IL-4, vitamin D3 can prevent ILC2!ILC3 plasticity

(142). Since vitamin D3 downregulates the expression of IL-23R on

ILC3s and consequently IL-23-dependent production of IL-22 and

IL-17 (143), it is possible that vitamin D3 limits the acquisition

of RORgt.
GATA3 supports ILC2 phenotype by inducing type 2 effector

cytokines: IL-5, IL-4, IL-13 along with IL-33 receptor (also known

as ST2) and by suppressing alternative cell lineage genes (53, 144,

145). Given that GATA3 directly binds to the Il4/Il13 locus utilizing

similar mechanism described for Th2 cells, it is possible that IL-4

reverses ILC2 plasticity through STAT6-induced GATA3

expression (54, 146, 147). Moreover, IL-2, IL-7, and TSLP can

synergistically induce GATA3 through STAT5 activation (145, 148,

149) (Figure 4B). It was shown that STAT5 binds to GATA3

promoter and directly upregulates its expression (145). It should

be noted that GATA3 can autoregulate its own transcription by

binding to GATA3 gene locus in T cells (54, 150). Accordingly,

similar mechanism of GATA3 regulation was proposed for

ILC2s (151).

Current studies in mouse models indicate the existence of ILC2

subsets that differently respond to IL-25 and IL-33 in the lungs (40,

152, 153). Natural ILC2s (nILC2) are IL-33 responsive and can be

found in the lungs in homeostatic conditions, whereas

inflammatory ILC2s (iILC2) respond to IL-25 and emerge after

IL-25 treatment or during helminth infection (40, 152, 153). iILC2s

migrate from the small intestine to the lungs during early stages of

Nippostrongylus brasiliensis (Nb) infection, where they initiate type

2 immune response by producing IL-13 (152). At the later stages of

helminth infection, iILC2s can become responsive to IL-33 and give
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rise to nILC2s (40). Additionally, iILC2s express RORgt along with
GATA3 and produce IL-17 together with type 2 cytokines during

helminth and Candida albicans infections (40, 152, 153). The iILC2

phenotype is regulated by Notch signaling (153). Notch via

formation of complexes with transcription factors directly

promotes RORgt expression in iILC2s without affecting GATA3

expression (153). Interestingly, Notch signaling in the presence of

IL-33 inhibits the proliferation and activation of nILC2s thereby

promoting iILC2s in the lungs during inflammation (153). In

contrast to iILC2s, nILC2s are tissue-resident cells that produce

more IL-9 after activation (152). IL-33 and TSLP activate IL-9

production by ILC2s which further induces IL-5 and IL-13 during

helminth infection (41, 42, 154). Since ILC2s express IL-9R, ILC2-

derived IL-5/IL-13 can be regulated in autocrine manner by IL-9

(41, 154). Similar to T cells, IL-9 production in ILC2s depends on

the transcription factor IRF4 (42, 155). Accordingly, IRF4-

dependent production of IL-9 in ILC2s facilitates rapid initiation

of the immune response against helminth pathogens.

The role of Batf in the maintenance of ILC2 phenotype has also

been described (126, 156). Ablation of Batf led to defective

production of IL-5 and IL-13 by ILC2s in the lungs suggesting

that Batf expression is required for proper ILC2 activation (126,

156). Additionally, during Nb infection Batf regulates expression of

IL-4 and IL-13 in iILC2s but not in nILC2s (157). Upon viral

infection, Batf-deficient ILC2s upregulate genes associated with

ILC3 phenotype, such as Il23r, Il17a, Il6ra and Il1b (156). Since

Batf deficiency reduced GATA3 and RORa expression in ILC2s

(156), it remains to be determined whether Batf controls expression

of ILC2 lineage-defining TFs directly or through the formation of

transcriptional complexes with other factors.

Similar to Batf, Bcl11b and Gfi-1 are the transcription factors

maintaining ILC2 identity by promoting type 2 effector program

and repressing ILC3 associated genes (158) (Figure 4C). The

ablation of either Bcl11b or Gfi-1 led to reduced GATA3 and

increased RORgt expression (158, 159). Additionally, Bcl11b

deficiency resulted in downregulation of the genes controlling

ILC2s effector functions, such as RORa, Gfi-1 and ST2, and

concomitant upregulation of Ahr and Il23r (158). Ahr has been

shown to suppress ILC2 effector functions in the gut by

downregulating Gfi-1-ST2 pathway (160). Given that Ahr is

important for ILC3 maintenance and function (67, 102, 115),

Bcl11b can suppress ILC3s by directly binding to Ahr promoter

(158, 161, 162). Additionally, Bcl11b promotes ILC2 identity by

inducing Gfi-1 expression which stabilizes GATA3 expression (158,

159). At the same time, Bcl11b suppresses ILC3 effector program in

ILC2s by repressing Ahr expression (158).

IL-33 pathway serves as an additional regulator of the ILC2

identity (Figure 4C). IL-33 signaling is an important activator of

ILC2s and Th2s (48, 163). It has been shown that Bcl11b, Gfi-1 and

Batf directly bind to the promoter of the Ilrl1 gene to support IL-

33R expression (156, 158, 159). These data suggest that the positive

regulation of IL-33R expression by Bcl11b, Gfi-1 and Batf can

promote ILC2 phenotype stability. It remains to be determined

whether these transcriptional networks control ILC2!ILC3

plasticity during inflammation. Since the regulation of ILC2
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phenotype in the intestine is different from the lungs (57), further

studies are needed to elucidate the molecular mechanisms of TF

regulation in ILCs in different tissues under physiological and

pathological conditions. Recently developed mouse model in

which ILC2-specific NMUR1 promoter drives the expression of

Cre recombinase allows to selectively target ILC2s (164, 165). These

mice will be helpful to study the specific role of different TFs in ILC2

maintenance and plasticity.
10 Conclusions and perspectives

Recent studies have led to great progress in the characterization

of ILC development and plasticity. An important feature of ILCs is

their ability to quickly respond to the changing environment caused

by tissue damage, pathogen invasion or cell stress. The prompt ILC

response is mediated by rapid cytokine production to promote

protection against harmful stimuli. Emerging studies report that

most ILC subtypes exhibit plasticity and can acquire phenotype of

another ILC subset in response to environmental changes. ILC

plasticity could be one of the mechanisms enabling rapid response

to pathogenic stimuli. Transcriptome analysis of ILCs revealed the

existence of intermediate transcriptional profiles within every main

ILC subset.

ILC identity is controlled by transcription factors. Transcriptome

studies revealed the similarities between mechanisms regulating

effector programs in T cells and ILCs. Like T cells, ILCs depend on

the same lineage-determining transcription factors T-bet, Eomes,

GATA3, RORa, RORgt for their development and function. It is

becoming increasingly clear that complex transcriptional networks

that regulate ILC identity utilize similar gene-regulatory mechanisms

compared to T cells. It is well established in the literature that core

transcription factors are required to control ILC effector functions,

but recent studies also highlighted that the ratio between different

transcription factors determines ILC identity and phenotype

maintenance. Moreover, the role of TFs also depends on the

developmental stage of ILCs. Some transcription factors are critical

to determine ILC fate, while other TFs define phenotype of mature

ILCs. Emerging data suggests that tissue microenvironment can also

impact the expression of genes which define ILC phenotypes.

Epigenetic studies uncovered the differences in regulomes between

ILCs and T cells during development. However, more work is

required to fully understand how different transcription factors and

epigenomic elements control gene expression and lineage specificity

in response to different pathogenic stimuli. Mechanisms of epigenetic

control of ILC plasticity are still poorly characterized. Revealing how

chromatin landscape is changed in ILCs in response to different

stimuli may uncover previously unrecognized mechanisms of

transcriptional control of ILC functions as well as their phenotype.

Although ILCs are present in human tissues and contribute to

the host protection, it is still poorly understood how ILC identity is

regulated in humans. The changes in ILC composition have been

described in human diseases. However, it remains to be determined

whether changes in ILC composition occur because of ILC plasticity

or mediated by mature or immature precursors during
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inflammation. The regulatory mechanisms and the functional role

of ILC plasticity during ontogenesis remains to be explored. Finally,

understanding the regulation of transcription factor networks in

ILCs could uncover new therapeutic targets to treat autoimmune

diseases and chronic infections.
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