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Comprehensive analysis of
nicotinamide metabolism-related
signature for predicting
prognosis and immunotherapy
response in breast cancer

Hanxiao Cui †, Xueting Ren †, Luyao Dai, Lidan Chang,
Dandan Liu, Zhen Zhai, Huafeng Kang* and Xiaobin Ma*

Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
Shaanxi, China
Background: Breast cancer (BC) is the most common malignancy among

women. Nicotinamide (NAM) metabolism regulates the development of

multiple tumors. Herein, we sought to develop a NAM metabolism-related

signature (NMRS) to make predictions of survival, tumor microenvironment

(TME) and treatment efficacy in BC patients.

Methods: Transcriptional profiles and clinical data from The Cancer Genome

Atlas (TCGA) were analyzed. NAM metabolism-related genes (NMRGs) were

retrieved from the Molecular Signatures Database. Consensus clustering was

performed on the NMRGs and the differentially expressed genes between

different clusters were identified. Univariate Cox, Lasso, and multivariate Cox

regression analyses were sequentially conducted to develop the NAM

metabolism-related signature (NMRS), which was then validated in the

International Cancer Genome Consortium (ICGC) database and Gene

Expression Omnibus (GEO) single-cell RNA-seq data. Further studies, such as

gene set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, SubMap, and

Immunophenoscore (IPS) algorithm, cancer-immunity cycle (CIC), tumor

mutation burden (TMB), and drug sensitivity were performed to assess the TME

and treatment response.

Results: We identified a 6-gene NMRS that was significantly associated with BC

prognosis as an independent indicator. We performed risk stratification

according to the NMRS and the low-risk group showed preferable clinical

outcomes (P < 0.001). A comprehensive nomogram was developed and

showed excellent predictive value for prognosis. GSEA demonstrated that the

low-risk group was predominantly enriched in immune-associated pathways,

whereas the high-risk group was enriched in cancer-related pathways. The

ESTIMATE and CIBERSORT algorithms revealed that the low-risk group had a

higher abundance of anti-tumor immunocyte infiltration (P < 0.05). Results of

Submap, IPS, CIC, TMB, and external immunotherapy cohort (iMvigor210)

analyses showed that the low-risk group were indicative of better

immunotherapy response (P < 0.05).
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Conclusions: The novel signature offers a promising way to evaluate the

prognosis and treatment efficacy in BC patients, which may facilitate clinical

practice and management.
KEYWORDS

breast cancer, nicotinamide metabolism, prognosis, tumor microenvironment,
immunotherapy
1 Introduction

Breast cancer (BC) is the most frequent malignancy in women,

and its incidence rate increases by 0.5% annually (1, 2). In 2020, BC

overtook lung cancer as the leading cause of cancer-related

morbidity worldwide. In addition, it ranks fifth among global

cancer-related deaths and places a great burden on society (3).

Clinically, BC can be divided into four primary subtypes (4). Based

on subtype classification, BC has distinct therapeutic strategies,

including surgical intervention, radiotherapy, chemotherapy,

endocrine therapy, and targeted therapy (5–7). However, after

conventional treatment, approximately 25% BC patients develop

distant metastases (8). In recent years, tremendous advances have

been achieved in systemic treatment, and the long-term survival

probability of BC patients has clearly improved. Immunotherapy is

an emerging field in the management of BC, and multiple research

has revealed that the immune system plays an indispensable role in

the occurrence and development of BC (9). Previous studies have

demonstrated that checkpoint inhibitors targeting programmed cell

death-1/programmed death ligand-1 (PD-1/PD-L1) can effectively

improve clinical outcomes in patients with advanced BC (10–12).

Additionally, novel therapeutic strategies, including targeting

myeloid-derived suppressive cells and regulatory T cells (Tregs),

have attracted the attention of researchers (13, 14). However,

currently, approximately 80% of patients fail to respond to these

treatments due to tumor heterogeneity. Therefore, it is significant to

explore the molecular characteristics of BC and identify biomarkers

that can precisely predict its response to immunotherapy.

Metabolic reprogramming is an important hallmark of cancer

that modulates energy metabolism in the tumor microenvironment,

thus leading to the uncontrolled growth of cancer cells (15, 16).

Recent studies have revealed that metformin, a widely used first-line

drug for type II diabetes, has good efficacy against a variety of

malignancies, including breast cancer (17). Therefore, we

speculated that regulation of metabolism could be a promising

strategy for tumor treatment. Nicotinamide (NAM) is the active

amide form of vitamin B3 (18). It can be supplemented externally or

synthesized in vivo. NAM is easily absorbed by various cells and

serves as a precursor for the coenzyme nicotinamide adenine

dinucleotide (NAD+). As an important enzyme in biological

redox reactions, NAD+ participates in cellular energy metabolism

and signal transduction, including the tricarboxylic acid cycle, DNA

damage repair, and epigenetic regulation (19, 20). Previous studies

have demonstrated that NAM supplementation effectively delayed
02
aging (21). Senescence and cancer are interconnected. The

reduction in NAD+ during cell senescence leads to an increase in

reactive oxygen species (ROS), thus promoting the accumulation of

hypoxia- induc ib le fac tor-1a , r esu l t ing in metabol i c

reprogramming. Based on these findings, researchers have begun

to explore the antitumor potential of NAM. Previous studies have

observed that NAM enhanced tumor blood flow and ameliorated

the tumor hypoxia microenvironment, thus improving sensitivity to

radiotherapy (22). Phase II trials in head and neck cancer and

advanced bladder carcinoma have demonstrated the efficacy and

safety of NAM as a radiosensitizer for radiotherapy (23, 24). In

chronic lymphocytic leukemia, NAM exerted anticancer effects by

inducing apoptosis via activation of the p53/miR-34a/SIRT1

pathway (25). In triple-negative BC, NAM regulated lipid

metabolism and strengthened ROS-induced apoptosis-related

pathways, thereby inhibiting tumor proliferation and invasion

(18). Nicotinamide phosphoribosyl transferase (NAMPT), a key

enzyme in NAD+ salvage synthesis, catalyzes NAM to generate

nicotinamide mononucleotide (NMN) and is the initiating factor in

the immunosuppressive microenvironment (26–28). In some

tumors, NAMPT was found to drive PD-L1 expression and

regulate tumor immune escape in a CD8+ T cell-dependent

manner (20, 29). Based on these findings, we recognized the

significance and predictive potential of NAM metabolism in

tumor prognosis and immunity.

Therefore, in this study, we developed a six-gene NMRS using

RNA-seq and clinical data from the TCGA database. Subsequently,

we evaluated the predictive ability of the model for survival

outcomes, immunotherapy response, and immune landscape.

Moreover, we verified the expression of the gene signature at the

transcriptional level through single-cell sequencing data

(scRNA-seq).
2 Materials and methods

2.1 Data gathering

We collected RNA-seq data of 1057 BC samples and 111

adjacent normal samples from TCGA database (https://

portal.gdc.cancer.gov/). TPM-formatted files for gene expression

were acquired. The term TPM, which referred to transcripts per

kilobase of exon model per million reads, indicated that it was

successively normalized by the gene length and sequencing depth.
frontiersin.org
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Clinical data were obtained, including age, TNM stage, expression

status of ER, PR, and HER-2, survival time and survival status. The

prognostic prediction capacity of NMRS was verified using an

external cohort made up of 98 BC samples that was retrieved

from the ICGC database (https://dcc.icgc.org). Additionally, the

IMvigor210 cohort, which included 298 advanced urothelial

carcinomas with immunotherapy data, was obtained from the

‘IMvigor210CoreBiologies’ R package to predict therapeutic

response (30). Moreover, scRNA-seq data (GSE118389) of 1534

BC cells were acquired from the GEO database (http://

www.ncbi.nlm.nih.gov/geo) to validate the expression levels of the

model genes in different cellular subtypes. The Molecular Signatures

Database (MSigDB) was searched for two gene sets associated with

NAM metabolism that were used in this investigation. The flow of

the analyses is presented in Figures 1, S1.
2.2 Mutation landscape of NMRGs

Somatic mutation profiles were collected from TCGA database

in the maf’ format. Using the ‘maftools’ R package, we plotted a

waterfall diagram to visualize the mutation landscape of patients

with BC. In addition, we obtained copy number variation (CNV)

data from the UCSC Xena database (https://xena.ucsc.edu/) and

analyzed the CNV frequency of the NMRGs.
2.3 Consensus clustering of the NMRGs

We utilized the ‘ConsensusClusterPlus’ R package to perform

consensus clustering and identified distinct NAM metabolism-

related clusters based on the expression level of the NMRGs (31).

The cluster number (k) was set between 2 and 10, and the optimum

k value was selected according to the cumulative distribution
Frontiers in Immunology 03
function. We evaluated the different clustering results and

duplicated this procedure 1000 times to ensure stability and

reliability. Furthermore, we used the ‘survminer’ R package to

visualize the survival variations between different clusters.
2.4 Identification and enrichment analysis
of the differentially expressed genes

Using the ‘limma’ package, differentially expressed genes

(DEGs) were determined among different clusters. The screening

criteria were |log2 fold change (FC)| more than 2 and an adjusted P-

value of less than 0.01. Then, using the ‘clusterProfiler’ R package,

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses for pathway and function

annotations were conducted (32).
2.5 Development and validation of
the NMRS

To derive the prognostic DEGs, a univariate Cox analysis was

performed. After that, we ran a Lasso regression with a minimum

penalty coefficient to avoid overfitting (33). We then conducted

multivariate Cox analysis to identify the optimal independent

predictive signature. The expression level and corresponding

coefficient of each prognostic gene were used to calculate the risk

score of BC patients: risk score = h0 (t)*exp[Sexpression*coefficient].
Based on the median cutoff value, we separated patients with BC into

distinct risk groups for subsequent analyses. For the training, internal

validation, entire TCGA and ICGC cohorts, survival curves were used

to explore the ability of NMRS to differentiate prognosis between

different risk groups. Similarly, the time-dependent receiver operating

characteristic (ROC) curve was used to evaluate the reliability of the
FIGURE 1

The flow chart of the study.
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signature using the ‘timeROC’ package. Furthermore, we performed

stratified analysis to assess the prognostic value of NMRS in distinct

subgroups stratified by clinical characteristics.
2.6 Development and assessment of the
NAM metabolism-related nomogram

We performed univariate and multivariate Cox regression of

the 6-gene signature and clinical indicators to determine

independent prognostic factors. Based on the independent

predictors, we developed a nomogram to quantify the 3-, 5-, and

10-year survival probabilities of patients with BC. The consistency

and accuracy of the nomogram were assessed using calibration and

time-dependent ROC curves. Additionally, by using decision curve

analysis (DCA), we evaluated the net benefit of the comprehensive

nomogram versus the model that only included clinical variables.
2.7 Functional enrichment analysis

With the use of the annotated gene set ‘c2.cp.kegg.v7.5.1.

symbols.gmt’ from the MSigDB database, we conducted gene set

enrichment analysis (GSEA) to identify the variations in

corresponding pathways between different risk groups (P < 0.05,

false discovery rate (FDR) < 0.25) (34).
2.8 Identification of the immune landscape
and immunotherapy efficacy

The ESTIMATE algorithm was used to evaluate the tumor

purity, immune score, stromal score and ESTIMATE score (35).

According to the ‘CIBERSORT’ algorithm, LM22 gene signature

matrix was employed to measure the relative proportion of 22

immunocytes per sample under 1000 permutations (36–38). The

relative infiltration of 28 immunocyte subpopulations in BC TME

were quantified by single-sample gene set enrichment (ssGSEA)

(39). The expression levels of a few checkpoint genes, the prevalence

of tumor mutations, the score of the cancer-immunity cycle (CIC)

and immunotherapy-related signals were then compared in

different risk groups. Immunophenoscore (IPS) refers to the four

major gene categories that determine immunogenicity, and is

obtained by unbiased analysis using machine learning (40).

Existing studies have confirmed that the IPS can be used as a

predictive tool for the clinical outcomes of immunotherapy (41, 42).

In this study, using IPS data from The Cancer Immunome Atlas

(TCIA) (https://tcia.at/home), we evaluated the potential

immunotherapy response between the high- and low-risk group.

Additionally, the Submap algorithm (http://cloud.genepattern.org/

gp) was applied to predict how the risk groups would react to anti-

PD-1 and anti-Cytotoxic T-Lymphocyte Associated Antigen 4

(CTLA-4) therapy (43). To further evaluate the predictability of

the NMRS for responsiveness to anti-PD-1 therapy, we downloaded
Frontiers in Immunology 04
the corresponding immunotherapy data and clinical information

from the ‘IMvigor210CoreBiologies’ package for analysis.
2.9 Comparisons of drug sensitivity

Half-maximal inhibitory concentration (IC50) values for the

most commonly used chemotherapeutic medicines were calculated

using the ‘pRRophetic’ R package. The drug sensitivity of one risk

group was compared to the other, and any statistically significant

differences were tested using the Wilcox test (44, 45).
2.10 Validation of the 6-gene signature
using scRNA-seq analysis

To further discriminate the cellular subtypes and illustrate the

distribution of the model genes in various subtypes, we acquired an

scRNA-seq cohort (GSE118389) from the GEO database for analysis.

The ‘Seurat’ R package was used to convert the matrix into Seurat

object and carry out strict quality control (46). The data were

normalized and principal component analysis (PCA) was

performed for genes with large coefficients of variation. Then, using

the ‘SingleR’ package, t-distributed statistical neighbor embedding

(tSNE) and subtype annotations were carried out to determine the

model gene expression levels and internal relationships (47).
2.11 Statistical analyses

All statistical calculations and graphs were completed using R

software 4.2.1. With the use of Kaplan-Meier curves and log-rank

test, survival disparities between distinct risk groups were

examined. In addition, we utilized the Wilcox test to evaluate the

divergency between two sets of data. As a statistical threshold, a

two-sided P-value <0.05 was used.
3 Results

3.1 Genomic and transcriptomic landscape
of NMRGs

Based on the two NAM metabolism-related gene sets, we

identified 42 NMRG (Table S1). In the genetic variation analysis,

105 (11.12%) of the 944 samples showed mutations, of which

missense mutations were the most common (Figure 2A). The top

three mutant NMRGs were Homo sapiens aldehyde oxidase 1

(AOX1), poly (ADPribose) polymerase family, member 14

(PARP14) and Homo sapiens poly (ADP-ribose) polymerase

family, member 9 (PARP9). In addition, we analyzed the

frequency of CNV in the NMRGs and observed that both

amplification and loss of the copy number were frequent

(Figure 2B). The differential analysis results demonstrated that,
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compared with the adjacent normal samples from TCGA database,

there were 13 upregulated and 21 downregulated genes (P < 0.05)

(Figure 2C and Table S2).
3.2 Consensus clustering analysis based
on NMRGs

Consensus clustering was performed to identify the NAM

metabolism-related clusters based on the expression levels of

NMRGs. According to the cumulative distribution function, k = 3

exhibited excellent clustering resilience, with relatively strong intra-

cluster correlation and low inter-cluster correlation (Figures 3A–C). As

a result, patients were separated into three clusters: 168 patients placed

in cluster A, 575 in cluster B, and 275 in cluster C. We observed that

patients in cluster C had prolonged overall survival (Figure 3D, P =
Frontiers in Immunology 05
0.021). Considering the significant differences in transcriptome levels

and survival outcomes among the distinct clusters, we speculated about

the presence of DEGs. According to the screening standard, we

collected 1322 DEGs and then ran functional enrichment analysis on

the DEGs. GO analysis enriched DEGs from three categories: biological

processes (BPs), cellular components (CCs), and molecular functions

(MFs). BPs were mainly enriched in ameboidal-type cell migration,

cell-substrate adhesion, and regulation of angiogenesis. CCs were

mainly enriched in cell-substrate junctions, focal adhesions, and cell-

cell junctions. Additionally, the significantly enriched MFs were

extracellular matrix structural constituents, integrin binding, and

growth factor binding (Figure 3E). Results of the KEGG enrichment

analysis showed that the DEGs were predominantly enriched in focal

adhesion, the MAPK signaling pathway, and regulation of the actin

cytoskeleton (Figure 3F). These findings suggested that the DEGs were

involved in signaling pathway modulation and tumor growth.
A

B C

FIGURE 2

The genomic and transcriptomic landscape of NMRGs. (A) The mutation landscape of NMRGs in the TCGA database. (B) The CNV frequency of
NMRGs. (C) The differential expression of NMRGs in BC between tumor and adjacent normal tissues (* p<0.05, ** p<0.01, *** p<0.001).
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3.3 Development and validation of
the NAM metabolism-related
prognostic signature

Through univariate Cox analysis, we identified genes

significantly associated with survival in patients with BC. Lasso

regression demonstrated that the cross-validation effect was best
Frontiers in Immunology 06
when l = -3.5, and relevant genes were included in the multivariate

Cox analysis (Figures 4A, B). Finally, a NAMmetabolism-related 6-

gene signature was created to predict prognosis. The following

equation was developed to calculate the risk scores based on gene

expression levels and the regression coefficient: risk score = h0 exp

[(0.002 × SFRP4) + (0.021 × KLB) + (0.051 × ZMAT3) – (0.022 ×

CNOT10) + (0.011 × C8orf55) – (0.008 × PSME2)]. Patients in the
A B

D

E

F

C

FIGURE 3

Identification of potential NAM metabolism-related clusters in BC patients. (A) The consensus clustering analysis of NMRGs in TCGA-BRCA cohort
(k=3). (B) Consensus CDF. (C) Delta area. (D) The OS Kaplan-Meier curve of different clusters. (E-F) GO and KEGG enrichment analysis of differential
expressed genes.
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TCGA-BRCA cohort had their individual risk scores determined,

and based on the median value, they were assigned to different risk

groups. The survival curve showed that the low-risk group had a

favorable OS compared with the patients in the high-risk group

(Figure 4C, P < 0.001). The distribution of risk score, clinical
Frontiers in Immunology 07
outcomes, and model gene expression patterns between the two

risk groups was displayed in Figure 4D. Among TCGA cohort, the

AUC values for the predicted survival rates at 3-, 5-, and 10-year

were 0.723, 0.726, and 0.770, respectively, demonstrating the robust

prognostic power of the signature (Figure 4E). Compared with
A B

D E F

G H

I J K

C

FIGURE 4

Construction and validation of the NMRS. (A) Cross validation method to select optimal genes. (B) The Lasso coefficient profiles. (C) The OS KM
curves between high- and low-risk groups in the TCGA-BRCA cohort. (D) The model genes, risk score and clinical outcomes in the two risk groups.
(E) The time-dependent ROC curves of the NMRS. (F-H) The time-dependent ROC curves of Wang’s, Yang’s and Zhang’s gene signature. (I) C-idex
of our signature, Wang’s, Yang’s and Zhang’s signature. (J) The OS KM curves between high- and low-risk groups in the ICGC cohort. (K) The time-
dependent ROC curves of the NMRS in the ICGC cohort.
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some existing BC biomarkers, our gene signature had better

predictive performance with higher AUC and c-index values

(Figures 4F–I) (48–50). Using a BC cohort from the ICGC

database, we performed external validation to further confirm the

predictive capacity of the NMRS. Based on the risk score calculation

formula, 98 patients in the ICGC cohort were divided into high-

(n = 49) and low-risk (n = 49) groups according to the median

value. The KM survival curve showed that the survival of the high-

risk group was significantly poorer than that of the low-risk group

(Figure 4J, P = 0.031). Moreover, the AUC value of the 5-year OS in

the external testing cohort was 0.762 (Figure 4K).
3.4 Stratified analysis and establishment of
a NAM metabolism-based nomogram

To further verify the prognostic value of the signature in

subgroups with distinct clinical features, we conducted a stratified

analysis. Based on age, pathological stage, TNM stage, and ER, PR,

and HER-2 status, we divided patients into different subgroups and

performed survival analysis. Figures 5A–H showed the distribution

characteristics of the different risk groups in each subgroup. The

results showed that, consistent with the observation in the entire

cohort, the low-risk group had better clinical outcomes in all

subgroups except in the M1 stage (Figures 6A–P). Additionally,

significant clinicopathological indicators and the gene signature

were subjected to the univariate and multivariate Cox analyses. In

the univariate regression analysis, we observed that age (HR: 1.050,

95% confidence interval (CI):1.030– 1.070, P < 0.001), stage (2.588,

1.594–4.204, P < 0.001), HER-2 status (1.731, 1.032–2.903, 0.037),

and risk score (0.305, 0.174–0.535, P < 0.001) were significantly

related to BC prognosis (Figure 7A). After adjusting for potential
Frontiers in Immunology 08
bias using multivariate regression analysis, age (1.048, 1.028–1.068,

P < 0.001), stage (2.714, 1.649–4.469, P < 0.001), and risk score

(0.319, 0.181–0.563, P < 0.001) were found to be independent

predictors (Figure 7B). Based on the independent prognostic

factors, a comprehensive nomogram was developed to make

quantitative predictions of the 3-, 5-, and 10-year OS probabilities

in patients with BC (Figure 7C). The AUC values were 0.806, 0.766,

and 0.723 at 3, 5, and 10-years, respectively, indicating that the

nomogram could provide accurate predictions (Figure 7D). The

calibration curves demonstrated a high consistency between the

predicted and actual OS (Figure 7E). The clinical applicability of the

nomogram was examined using the DCA curve (51). Compared to

the model with clinical characteristics only, we found that this

comprehensive nomogram could generate more net benefits, which

might contribute to better clinical management (Figure 7F).
3.5 Identification of the immune landscape

GSEA of DEGs was performed to determine the biological

processes of the two risk groups. Notably, the low-risk group was

predominantly enriched in immune-associated processes, such as

antigen processing and presentation, chemokine signaling

pathways, and natural killer cell-mediated cytotoxicity, whereas

the high-risk group was enriched in cancer-related processes,

such as focal adhesion and ECM receptor interaction (Figures 8A,

B). Then, the ESTIMATE and CIBERSORT algorithms were

employed to explore the tumor microenvironment. ESTIMATE

analysis showed that the low-risk group had lower stromal scores,

estimated scores, and higher immune scores (P < 0.05) (Figure 8C).

According to the results of CIBERSORT, the low-risk group had a

significantly higher proportion of CD8 T cells, activated memory
A B D

E F G H

C

FIGURE 5

(A-H) The distribution characteristics of different clinicopathological factors in the two risk groups (Age, Stage, T, N, M, ER, PR and HER-2,
respectively).
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CD4 T cells, follicular helper T cells, regulatory T cells, M0

macrophages, M1 macrophages, activated mast cells, and

eosinophils (P < 0.05) (Figure 8D). The ssGSEA results were

demonstrated in a heatmap to visualize the relative abundance of

28 immunocyte subpopulations (Figure S2). We found that the

immune infiltrating cell subpopulations with anti-tumor effects

were mainly enriched in the low-risk group, such as the activated

dendritic cell and activated CD4/CD8 T cell, while the immunocyte

subpopulations with pro-tumor effects were mainly enriched in the

high-risk group, such as the myeloid-derived suppressor cells

(MDSC) and immature dendric cell. Additionally, nine frequent
Frontiers in Immunology 09
checkpoint genes, including the well-known BTLA, CTLA-4, and

PDCD1, were strongly elevated in the low-risk group (P < 0.05)

(Figure 8E). Furthermore, higher scores were observed in the

committed steps of the cancer-immunity cycle and immune-

associated positive signals in the low-risk group (P < 0.05)

(Figures 8F, G). Tumor cells evade immunosurveillance by

enhancing TMB, whereas TMB conversely serves as a predictor of

immunological response. Thus, we further visualized the mutation

landscape in distinct risk groups and explored the correlation

between risk score and TMB. Figures 8H, I demonstrate the top

20 genes with high mutation frequency in the risk groups, of which
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FIGURE 6

The OS KM curves of the two risk groups stratified by the clinicalpathological factors. (A-B) Age, (C-D) Stage, (E-F) AJCC T stage, (G. H), AJCC N
stage, (I, J) AJCC M stage, (K, L) ER status, (M, N) PR status, (O, P) HER-2 status.
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PIK3CA and TP53 have been shown to be of great significance (52–

55). 391 (85.75%) of the 456 samples had mutations in the high-risk

group, whereas in the low-risk group, 388 (87.19%) of the 445

samples did so. Furthermore, significantly higher TMB was

observed in the low-risk group than in the high-risk group

(Figure 8J). These findings suggest that the immune landscape

between the two risk groups differ considerably.
3.6 Prediction of immunotherapy efficacy

The immunotherapy response in the two risk groups was

evaluated using the IPS, Submap algorithms, and an external
Frontiers in Immunology 10
immunotherapy cohort. The IPS showed marked therapeutic

benefits from checkpoint inhibitor treatment in the low-risk

group (Figure 9A). Results from Submap revealed the

therapeut ic response to ant i -CTLA4 and ant i -PD-1

immunotherapy in BC patients (Figure 9B). The probability that

the low-risk would react to anti-PD-1 immunotherapy was higher,

as shown by the nominal P-value (P = 0.007) and Bonferroni

corrected P-value (P < 0.001). Moreover, in the iMvigor210

cohort, we observed that the objective response rate (CR/PR)

and survival probability in the low-risk group were higher than

that in the high-risk group (Figures 9C, D). The outcomes in the

external cohort verified that the NMRS could identify individuals

that were immunotherapy-sensitive.
A B
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FIGURE 7

Development and assessment of the nomogram. (A) Univariate regression. (B) Multivariate regression of the clinicopathological indicators and gene
signature. (C) A comprehensive nomogram for predicting BC patients’ survival probability. (D) The time-dependent ROC curves of the nomogram.
(E) Calibration curves of the nomogram at 3-, 5-, and 10-year intervals. (F) DCA curves of the clinicopathological indicators and this nomogram.
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3.7 Comparisons of drug sensitivity

To further investigate the clinical utility of NMRS in precise

BC treatment, we assessed the therapeutic efficacy of frequently

prescribed chemotherapeutic medications in different risk
Frontiers in Immunology 11
groups. According to the findings, low-risk individuals were

more responsive to temzolomide, celiparib, doxorubicin,

gefitinib, tamoxifen, 5-Flurouracil and gemcitabine, while less

sensitive to sorafenib, sunitinib, and lapatinib (Figures 10A–J,

P < 0.05).
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FIGURE 8

Identification of the immune landscape between the two risk groups. The GSEA of the DEGs. (A) in the low-risk group. (B) in the high-risk group.
(C) Comparisons of the stromal, immune and ESTIMATE score in the two risk groups. (D) Comparisons of immunocyte’s infiltration fractions in the
two risk groups. (E) The differential expression of checkpoint genes in the two risk groups. (F) Differences of cancer-immunity cycle scores in the
two risk groups. (G) Differences of immune-associated positive signals in the two risk groups. The mutation landscape of the top 20 genes. (H) in the
low-risk group. (I) in the high-risk group. (J) Comparisons of TMB in the two risk groups. * p<0.05, ** p<0.01, *** p<0.001, ns p>0.05.
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3.8 Validation of the gene signature using
scRNA-seq analysis

We analyzed a scRNA-seq cohort to see whether the gene

signature could be utilized to discriminate between different

cellular subtypes. Using the tSNE analysis, fourteen clusters were

identified (Figure 11A). These clusters could be divided into nine

different cell subtypes, including epithelial cells, embryonic stem

cells, monocyte, T cells, fibroblasts, tissue stem cells, smooth muscle

cells, chondrocytes and endothelial cells, according to the results of

the cellular subtype annotation (Figure 11B). The expression level of

the gene signature in each subtype was displayed in a bubble plot,

and the cellular subtypes could be distinguished (Figure 11C). KLB,

ZMAT3, CNOT10, and PSME2 were highly expressed in most cell

subtypes, whereas the other model genes had relatively specific

expression patterns. SFRP4, and THEM6 were highly expressed in

fibroblasts and epithelial cells, respectively. These findings

demonstrated the stability of this gene signature for cellular

subtype discrimination.
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4 Discussion

Nicotinamide (NAM) is a water-soluble amide form of vitamin

B3 and precursor of NAD+ (18). Components of NAM-related

metabolism, such as NAD+, NMN, and the core enzyme NAMPT,

play an important role in maintaining DNA repair and gene

stability, and regulating the immune microenvironment (19, 20,

25–28). Recent studies have shown that NAM supplementation

effectively inhibited the development of various malignancies such

as breast cancer, chronic lymphocytic leukemia, and hepatocellular

carcinoma (18, 25, 56). In recent years, the morbidity of BC has

steadily increased, making it the most frequent malignancy in

women. Clinicopathological characteristics (such as age, stage,

histological grade, tumor size, and lymph node status) remain the

primary indicators to predict prognosis and guide treatment in

clinical practice. However, owing to the high heterogeneity of BC,

traditional clinicopathological factors are insufficient to predict

prognosis precisely. With the development of sequencing

technology, an increasing number of researchers have begun to
A

B DC

FIGURE 9

Prediction of the immunotherapy response in the two risk groups. (A) Comparisons of the IPS in the two risk groups. (B) Submap analysis between
the two risk groups. (C) The proportion of clinical response to anti-PD-L1 immunotherapy in different risk groups in iMvigor210 cohort. (D) KM
curves for the low-risk and high-risk groups in the iMvigor210 cohort. *** p<0.001.
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attach importance to the prognostic value of tumor molecular

mechanisms, and corresponding biomarkers have been developed

(57, 58). Several biomarkers have been applied in clinical molecular

diagnosis and formulation of individualized treatment schemes. For

example, the breast cancer 21-gene assay (Oncotype DX) is used to

predict the recurrence risk and chemotherapy benefits in patients

with hormone receptor-positive, HER2 receptor negative and

lymph node-negative subtypes (59). Additionally, although some

molecular risk models have not been used in clinical management,

they show great potential for the precise prediction of BC, such as

pyroptosis-associated and TP53 mutation-related models (60, 61).

However, the significance of the NAM metabolism in BC remains

unclear. In this study, we constructed a NAM metabolism-related

signature to conduct risk stratification, predict prognosis, and

provide immunotherapy guidance at the transcriptional level for

clinicians treating patients with BC.

Due to the unrobustness of models based on individual genes,

we identified a NAM metabolism-related 6-gene signature using

machine learning methods. All of the six genes have significant roles

in tumorigenesis and progression, but they are not correlated with

each other. By combining the signature with two clinical indicators

(age and pathological stage), a comprehensive nomogram was
Frontiers in Immunology 13
developed for accurate predictions. We observed that the risk

score accounted for a considerable proportion of the total score

in the model, verifying its significance.

Tumor microenvironment (TME) is a complex and dynamic

ecosystem that mainly includes tumor cells, immune cells, and

Sertoli cells. It plays a crucial role in the occurrence, development,

and metastasis of tumors (62). Compared to the high-risk group,

the low-risk group had a higher immune score, which was

consistent with previous studies showing that high immune

infiltration indicated a good clinical outcome (63–65). In

addition, the low-risk group showed abundant infiltration of CD8

+ T cells and M1 macrophages. Previous studies have reported that

these immunocytes have robust anticancer and immunity-

enhancing ability (66, 67). However, M2 macrophages and

MDSCs were the primary component of the high-risk group

immune cells. They can inhibit the immune response and

promote tumor angiogenesis and lymphangiogenesis, thus leading

to tumor growth and metastasis (68–70).

Tumor cells escape immune surveillance through multiple

mechanisms, including activation of the immune checkpoint

pathway. ICIs reverse immunological tolerance by overcoming

tumor cell-mediated immune incapacity, restoring anticancer
J
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FIGURE 10

Drug sensitivity analysis between the low- and high-risk groups. (A) Temozolomide. (B) Veliparib. (C) Doxorubicin. (D) Gefitinib. (E) Tamoxifen.
(F) 5-Fluorouracil. (G) Gemcitabine. (H) Sorafenib. (I) Sunitinib. (J) Lapatinib. * p<0.05, *** p<0.001.
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immunity, and clearing tumor cells (71). Previously, BC was not

considered a highly immunogenic tumor owing to its low mutation

burden and limited ability to form neoantigens (72). However, an

increasing number of studies have reported a close association

between BC and the immune system. Turajlic et al. found that,

compared with other subtypes, TNBC has a relatively high TMB

that can lead to an increase in tumor-related antigens, making it

possible for the immune system to recognize and fight against

tumor cells (73). Su et al. observed that trastuzumab treatment in

HER2-positive patients can reshape the TME and enhance PD-L1

expression, providing a theoretical basis for the combination of

immunotherapy and targeted therapy (74). Researchers have also

found that the combination of endocrine therapy with ICIs may

cause a decline in immunosuppressive cells in hormone receptor (+)

patients (75). In summary, patients with all BC subtypes may

benefit from immunotherapy. However, the efficacy of

immunotherapy varies greatly among individuals, and only a

portion of patients can benefit from it (76). Therefore, the
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development of predictive biomarkers for ICI treatment is

particularly important for screening specific populations for

individualized treatment. Currently, some biomarkers for

predicting treatment response to ICIs have been identified, such

as tumor mutation burden and CD8 infiltration (77, 78). In this

study, based on the NAM metabolism-related signature, we used

multiple algorithms and an independent cohort to explore the

immunotherapy response between different risk groups. The

results consistently showed patients in the low-risk group were

more likely to benefit from immunotherapy, demonstrating the

signature’s robust predictive power for immunotherapy response.

In addition, a comprehensive consideration of this gene signature

could effectively distinguish distinct BC cell subtypes, showing great

application prospects.

However, our study had some limitations. First, our research

was based on an existing public database and the findings require

multicenter prospective trials for validation. Second, there may be

some unknown interactions between genes and gene products in
A B

C

FIGURE 11

Validation of the gene signature in the scRNA-seq data. (A) The tSNE analysis showing 14 cellular subtypes in the scRNA-seq data. (B) The heatmap
demonstrating the corresponding genes in each cellular subtype. (C) The expression level of the model genes in each cellular subtype.
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the signature, which has implications in physiology and

pathology. Further exploration is required to characterize the

mechanisms of the identified gene signature in vitro and

vivo experiments.
5 Conclusion

In summary, we identified a novel NAM metabolism-related

signature for the prognostic prediction in BC using bioinformatic

analyses. Moreover, the gene signature had promising potential for

predicting the immune microenvironment and immunotherapy

response, which might facilitate clinical management.
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52. Martıńez-Sáez O, Chic N, Pascual T, Adamo B, Vidal M, González-Farré B, et al.
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