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Objectives: The tumor microenvironment (TME) play important roles in

progression of endometrial carcinoma (EC). We aimed to assess the cell

populations in TME of EC.

Methods: We downloaded datasets of single-cell RNA-seq (scRNA-seq) and spatial

transcriptome (ST) for EC fromGEO, and downloadedRNA-Seq (FPKM) and clinical data

of TCGA-UCEC project from TCGA. The datasets were analyzed using R software.

Results:We obtained 5 datasets of scRNA-seq, 1 of ST and 569 samples of RNA-

seq. Totally, 0.2 billion transcripts and 33,408 genes were detected in 33,162 cells

from scRNA-seq. The cells were classified into 9 clusters, and EC cells were

originated from epithelial cells and ciliated cells. Gene set variation analysis

(GSVA) indicated that the pathways enriched in the subclusters of epithelial cells

and endothelial cells were significantly different, indicating great heterogeneity in

EC. Cell-cell communication analyses showed that EC cells emitted the

strongest signals, and endothelial cells received more signals than other cells.

Further analysis found that subclusters of 1 and 2 of epithelial cells were showed

a more malignant phenotype, which may confer malignant phenotype to

subcluster of 0 of endothelial cells through MK pathway by MDL-NCL signal.

We also analyzed communications between spatial neighbors with ST data and

confirmed the findings on MDL-NCL in cell-cell communication. TCGA and GEO
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analyses indicated that the expression levels of NCL was inversely correlated with

ImmuneScore.

Conclusion: Our study revealed EC cells can confer malignant phenotype to

endothelial cells by MDK-NCL signal, and NCL is associated with suppressed

immune activity. EC cells may shape TME by inhibiting immune cells and

“educating” stromal cells via MDK-NCL signal.
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Introduction

Tumors are characterized by extensive heterogeneity which

plays a critical role in tumor progression and treatment response

(1). The tumor microenvironment (TME) consists of both

malignant cells and stromal cells with different functional

phenotypes and spatial distribution patterns (2, 3). Cancer cells

are heterogeneous due to genetic diversification and clonal selection

(1, 4). Stromal cells are the cells surrounding the tumor, such as

immune cells, inflammatory cells, fibroblasts and endothelial cells

(5). Even for one type of stromal cells, heterogeneity is still exist and

they may be composed of several subpopulations exerting different

biological roles (4). TME diversity is a challenge for the treatment of

tumors, which will influence response to anti-cancer therapy (6).

However, the extent of this heterogeneity as well as how the cells are

shaped by other cells in the TME remains poorly known.

Endometrial carcinoma (EC) is themost commonmalignancy of the

female reproductive system in the developed countries, where has the

highest incidence (7, 8). The two most frequent types are endometrioid

adenocarcinoma (EAC) and serous cystadenocarcinoma (SCC), which

have different risk factors, prognosis, patterns of metastasis, and

microscopic appearance (9, 10). Although surgery alone can cure most

EC patients, the prognosis of patients with more aggressive variants of

EC remains poor (11). EC has both inter- and intra-tumoral

heterogeneity (12). A high proportion of ECs are composed of

different tumor cell clones with different morphologic and molecular

features. Tumor heterogeneity may have an important impact on

diagnosis, prognosis, and therapeutic decisions. It is therefore

important to identify minor cell subpopulations.

ScRNA-seq is a method to measure the expression levels of all

genes over thousands to millions of individual cells, and reveals

heterogeneity at cell level (13, 14). For example, Lambrechts et al.

characterized the phenotype and co-optive behavior of stromal

cells using scRNA-seq techniques (4). Therefore, with the aid of

scRNA-seq, we can explore TME of EC to improve the

understanding of the diagnosis, treatment and management of

EC. In the present study, we investigated EC using the scRNA-seq

data from GEO, and tried to uncover heterogeneity of EC. We also

integrated scRNA-seq and spatial transcriptome (ST) to reveal

tissue architecture of EC.
02
Materials and methods

Data collection

Single-cell RNA-seq (scRNA-seq) data for 5 patients with EAC

(Table S1) and spatial transcriptomic data for one patient with EC

(GSM6177623 in GSE203612) were downloaded from Gene

Expression Omnibus (GEO).

We downloaded RNA-Seq (FPKM) and clinical data of TCGA-

UCEC project from TCGA (https://portal.gdc.cancer.gov, accessed

November 2022), and obtained 553 RNA-Seq files for EC tissues

and 35 for normal endometrial tissues. We downloaded mRNA

profiles of 145 EC patients from GEO (GSE120490) (15) and used

as validation dataset.
Single-cell transcriptome analysis

All analyses in the present study were performed using R

software (version 4.1.1). The scRNA-seq data were analyzed using

Seurat package (version 4.2) (16). Low-quality cells with less than

300 or over 7500 expressed genes, or over 25% unique molecular

identifiers (UMIs) derived from the mitochondrial genome were

removed. Then, mitocondrial, ribosomal and hemoglobin genes

were removed from the data sets. Finally, 33,162 cells and 33,408

genes were retained for further analysis.

We used canonical correlation analysis (CCA) to correct for

batch effects across datasets (17). Top 2000 highly variable genes

were identified using FindVariableFeatures function in Seurat

package with default parameters. Principal component analysis

(PCA) were performed with the highly variable genes after Z-score

normalization. Uniform manifold approximation and projection

(UMAP) dimension reduction was performed with the top 30

significant principal components (PCs). Clusters were determined

using the FindClusters function (resolution = 0.5). Marker genes for

each of clusters were identified as those with a fold change larger

than 2 using the Seurat FindMarkers function. The clusters were

annotated to known cell types with the marker genes using

CellMarker 2.0 (18) and PanglaoDB (19). MUC16/CA125

expression levels was used to identify malignant EC cells (20).
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Spatial transcriptome analysis

ST data were analyzed with Seurat package (version 4.2) (16)

using similar method as scRNA-seq. The single cell data were

predicted on the ST data with the FindTransferAnchors and

TransferData functions from the Seurat package with default settings.
Gene set variation analysis

Human gene sets from 50 hallmark pathways were retrieved

using msigdbr package (version 7.5.1). Then we used method

mentioned by Lambrechts et al. (4) to remove genes associated to

two or more pathways, and applied GSVA using standard settings

to assign pathway activity estimates to individual cells with GSVA

package (version 1.40.0).
Cell-cell communication analysis

We analyzed intercellular communications using CellChat

package (version 1.5.0) (21) for scRNA-seq and NICHES package

(version 1.0) (22) for ST.
TCGA analysis

After log-normalizing the expression of each gene to an average

expression of 1 in the samples of EM and removing outliers of the

average expression of each marker gene, we used boxplots to evaluate

per cell type the combined expression of marker genes for each

subcluster. The survival analyses were conducted as previously

described (23). Briefly, we separated the patients into two groups

according to the expression levels of a gene. Then the overall survival

(OS) was evaluated by the log-rank test with the survival package (R

package version 3.4). We used cox proportional hazards model to

calculate hazard ratios (HRs) and their 95% confidence intervals

(CIs) and forestplot package (R package version 3.1) to draw forest

plot. We also calculated ImmuneScore, StromalScore and

ESTIMATEScore using estimate package (R package version

1.0.13). The relationships between the scores and the genes in MK

pathway were evaluated using Spearman correlation test.
Validation dataset analysis

To further validate the associations between ImmuneScore and

the genes in MK pathway, we calculated the scores and their

correlations with GSE120490 dataset by the method above mentioned.
Tissue specimens

We collected 32 EC tissues and 19 normal endometrial tissues

from Women’s Hospital of Nanjing Medical University and The
Frontiers in Immunology 03
Affiliated Cancer Hospital of Nanjing Medical University. The EC

patients were not received any preoperative radiation, chemotherapy,

or other anticancer therapies before surgery. This study was approved

by the Ethics Committee of Women’s Hospital of Nanjing Medical

University (No. 2021NFKSL-071). All subjects involved in this study

signed informed consent documents prior to the operation.
Real-time quantitative PCR

Total RNA was extracted and reversely transcribed as

previously described (24). The expression levels of genes were

detected with the primers in Table S2. b-action was used as a

reference gene. All samples were analyzed in duplicate for each

gene. The differences between groups were assessed using Mann-

Whitney test.
Results

scRNA-seq and cell typing of EC

All 5 tissues subjected to scRNA-seq were from patients with

endometrioid carcinoma. Totally, 0.2 billion UMIs and 33,408 genes

were detected in 33,162 cells after quality filtering. We found several

clusters were composed one sample, suggesting there were potential

batch effects (Figure 1A), thus we corrected the batch effects using

CCA. These cells were classified into 9 clusters, and their marker

genes are shown in Table S3. According to these marker genes, the 9

clusters were assigned to known cell lineages, including fibroblasts,

epithelial cells, endothelial cells, T cells, NK cells, macrophage,

ciliated cells, mast cells and B cells (Figure 1A). Figure 1B shows

the expression levels of a representative marker gene for each cell

type. We found that the EC cells were originated from epithelial cells

and ciliated cells according to the expression of MUC16/CA125, and

cancer cells were detected more transcripts than other cells

(Figures 1A, C, Table S4).
Subclusters of endothelial cells

Totally, 3,736 endothelial cells were detected and re-clustered into

3 clusters (Figure 2A). Based their marker genes (Table S5), clusters 0

and 1 were assigned as blood endothelial cells and cluster 2 were

assigned as lymphatic endothelial cells (Figure 2B). Further analysis

showed that selected genes associated with angiogenesis were highly

expressed in clusters 0 and 1 (Figure 2C). Pathway analysis showed a

significant phenotypic diversity among the three clusters, and cluster 0

was involved in more pathways than the other two pathways

(Figure 2D). We analyzed expression of the marker genes in TCGA

and found the marker genes from cluster 0 had a higher expression

levels in SCC and EAC than those in EM, however, the marker genes

from clusters 1 and 2 showed an opposite tendency (Figure 2E).

Survival analysis with the marker genes showed that HSPA1B, TFF3

and LAMA4 were associated with EC survival (Figure 2F).
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Subclusters of epithelial cells

Totally, 5,586 epithelial cells were detected and re-clustered into

5 clusters (Figure 3A). The marker genes for the clusters are listed in

Table S6 and representative marker genes were showed in

Figure 3B. To characterize functions of these clusters, we

compared pathway activities. Cluster 0 was much different from

the other four clusters. Clusters 1 and 2, as well as clusters 3 and 4

were similar (Figure 3C). The average expression of the marker

genes in TCGA are presented in Figure 3D. The marker genes of all

clusters but not cluster 4 showed a significant association between

EAC and EM or between SCC and EM. Survival analysis with the
Frontiers in Immunology 04
marker genes are showed in Figure 3E, and six genes were

associated with EC survival (Figure 3E).
Cell-cell communication between cells in
scRNA-seq data

We analyzed the communications between the 9 cell clusters

using CellChat with scRNA-seq data. The cells were interacted with

each other through 27 pathways (Figures 4A, B). The pathways in

Figures 4A, B were ordered by their strength (Left to right), and the

top one pathway was MK pathway. Epithelial cells emitted the
A

B

C

FIGURE 1

Overview of the 33,162 single cells from endometrioid carcinoma. (A) Uniform manifold approximation and projection (UMAP) of the 33,162 cells
profiled here, with each cell color coded for (left to right): the corresponding patient in raw data and integrated data, the associated cell type and
the number of transcripts (UMIs) detected in that cell (log scale as defined in the inset). K, thousand. (B) Expression of the representative marker
genes for the cell types. (C) For each of the 9 cell clusters (left to right): the fraction of cells originating from each of the 5 patients, the number of
cells and box plots of the number of transcripts.
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strongest signals (Figures 4A, C, D, S1); and endothelial cells received

more signals than other cells (Figures 4B, D). We found the cells were

mainly contacted through Ligand-Receptor (L-R) pairs of MDK –

NCL inMK signal pathway (Figures 4E, S2). The signals inMK signal

pathway are showed in Figure 4F, and the expression levels of the

ligands and receptors in MK pathway are showed in Figure 4G.

Midkine (MK, MDK) was mainly expressed in epithelial cells and

ciliated cells, and nucleolin (NCL) was expressed in all 9 type of cells.
Interaction between epithelial cells and
endothelial cells

We further analyzed the communications between subclusters of

epithelial cells and endothelial cells. We found cluster 1 of epithelial
Frontiers in Immunology 05
cells (Ep. 1) emitted the strongest signals, and cluster 0 of endothelial

cells (En. 0) received more signals than other clusters (Figures S3A–C).

MK was also the top one pathway involved in the communication

between epithelial cells and endothelial cells. MDK – NCL was still the

top one L-R pairs (Figures S3D).
Niche interactions

We also analyzed the communications between spatial

neighbors using NICHES with ST data. Totally, 6.6 million UMIs

and 33,538 genes were detected in 1,351 spots. In one spot, about

4,911 UMIs and 2,403 unique genes were detected. We analyzed

and integrated ST data with the scRNA-seq datasets, and 7 type of

cells detected in scRNA-seq were mapped to EC tissue slice
A B

C

E F

D

FIGURE 2

Endothelial cell clusters. (A) Uniform manifold approximation and projection (UMAP) plot of 3,736 endothelial cells, color-coded by their
corresponding patient (left) or associated cluster (right). (B) UMAP plot color-coded for expression (blue to gray) of marker genes for blood and
lymphatic endothelial cells. (C) Violin plots of selected genes involved in angiogenesis. (D) Differences in pathway activities scored per cell by GSVA
between the different clusters. Shown are t values from a linear model. (E) Average expression of the marker genes for endothelial cells from each
cluster in TCGA samples from endometrium (EM, n = 35), serous cystadenocarcinoma (SCC, n = 133) or endometrioid adenocarcinoma (EAC, n =
401). (F) The three marker genes associated with overall survival of endometrial carcinoma patients in TCGA.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1145300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1145300
(Figures 5A, B). We used spatial scatter pie plot to show the

distributions and proportions of the 7 type of cells (Figures 5A),

and epithelial cells were the predominant cells. Then we

investigated cellular niche using NICHES, which estimates

local microenvironment in ST data. We could see, from UMAP

plot in Figure 5C, some notable overlaps between the

microenvironments of the 8 clusters, and the overlaps implied

existence of interactions between them. We calculated row

sums for all L-R pairs in “NeighborhoodToCell” assay, and then

order the sums decreasingly. The top 20 L-R pairs are listed

in Figure S4. We found MDK was presented in 5 of the top 20

L-R pairs, including MDK-NCL. We further plotted MDK,

NCL as well as niche interactions of MDK-NCL to the tissue

regions (Figure 5D).
Frontiers in Immunology 06
Immunosuppressive environment induced
by MDK – NCL pathway

To explore the roles of MK pathway in EC, we analyzed the

expression levels of the ligands and receptors in this pathway with

the data from TCGA. All ligands and receptors were differentially

expressed between SCC and EM or between EAC and EM

(Figure 6A). MDK had a higher expression level in SCC and EAC

than EM. NCL only had a slight difference between SCC and EM. In

our cohort, both MDK and NCL had higher expression levels in EC

tissues than in normal tissues (Figure 6B).

We calculated ImmuneScore, StromalScore and ESTIMATEScore

using estimate package with TCGA cohort and assessed their

relationships with the genes in MK pathway. The significant
A

B

D

C E

FIGURE 3

Epithelial cell clusters. (A) Uniform manifold approximation and projection (UMAP) plot of 5,586 epithelial cells, color-coded by their corresponding
patient (left) or associated cluster (right). (B) Expression of represent marker genes for each cluster. (C) Differences in pathway activities scored per
cell by GSVA between the different clusters. Shown are t values from a linear model. (D) Average expression of the marker genes for endothelial cells
from each cluster in TCGA samples from endometrium (EM, n = 35), serous cystadenocarcinoma (SCC, n = 133) or endometrioid adenocarcinoma
(EAC, n = 401). (E) Forest plot showing HR (95% CI) of the marker genes in TCGA.
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associations are showed in Figure 6C. We noted that most genes

showed a reverse correlation with the scores (Figures 6C) and NCL

was inversely correlated with all three scores (Figures 6D). After

analyzing GSE120490, we further confirmed the findings in TCGA

dataset (Figures S5), thus EC cells may suppress immune cell

responses in TME by MK pathway through MDK-NCL signaling.
Frontiers in Immunology 07
Discussion

In the present study, we analyzed scRNA-seq data for EC and

presented the transcriptional and regulatory landscape of EC at

single-cell resolution, revealing great heterogeneity in both cancer

cells and stromal cells.
A

B

D

E

F G

C

FIGURE 4

Cell-cell communication. (A) The dot plot showing the comparison of outgoing signaling patterns of secreting cells. (B) The dot plot showing the
comparison of incoming signaling patterns. (C) Circle plot showing the communication strength between interacting cells. (D) Outgoing and incoming
interaction strength of the cells. (E) Comparison of the significant ligand-receptor pairs between cells, which contribute to the signaling from
fibroblasts, epithelial cells, endothelial cells, macrophage and ciliated cells to T cells, NK cells, Mast cells and B cells. (F) Chord plot showing inferred
intercellular communication network of MK signaling. (G) Violin plots showing the expression of the 8 genes involved in MK signaling network.
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In our study, the cells were classified into 9 clusters with a slightly

different from the original study by Regner et al. (20). We found the

five datasets had potential batch effects, because several clusters were

from one patients. However, Regner et al. did not correct the batch

effects, which may contribute to the difference. We found the cancer

cells from the five EC patients were derived originally from epithelial

cells and ciliated cells. More transcripts were detected in cancer cells

than other cells, suggesting high activity of cancer cells. In the original

study by Regner et al. (20), all five EC patients were diagnosed as

EAC, which accounts for approximately 80% of endometrial epithelial

malignancies (25). The patients 3 had the highest proportion of

cancer cells, and the patients 1 had the lowest proportion, showing an

inter-tumoral heterogeneity in EC. Besides malignant ciliated cells,

the malignant epithelial cells were further classified into 5 clusters,

showing an intra-tumoral heterogeneity in EC. With regard to

stromal cells, we re-clustered endothelial cells into 3 clusters, two

clusters of blood endothelial cells and one cluster of lymphatic

endothelial cells, indicating a heterogeneity in stromal cells of EC.

Cancer cells communicate with surrounding cells mainly by MK

signal pathway in the TME of EC. MDK, a heparin-binding growth

factor, promotes cell growth, survival, migration, angiogenesis,

cytokine expression, differentiation and other activities of target

cells (26, 27). In the present study, scRNA-seq showed that MDK

was highly expressed in epithelial cells and ciliated cells, and TCGA

indicated that MDK had a higher expression level in SCC and EAC

than EM, thus MDK may be served as a biomarker for EC. Further

analyses showed that MDK-NCL was the top one L-R pairs involved
Frontiers in Immunology 08
in the communication in TME of EC. NCL is one the most abundant

proteins of the nucleolus and plays a central role in polymerase I

transcription (28, 29). NCL is also found in the nucleoplasm,

cytoplasm and on the cell membrane (30, 31). At the cell

membrane, NCL was found to interact with several ligands

involved in cell proliferation, apoptosis and angiogenesis (29). We

found the expression levels of NCL was inversely correlated with both

ImmuneScore and StromalScore, suggesting EC cells may inhibit

immune cells in the TME by MDK-NCL signal. We also found Ep. 1

and Ep. 2 emitted the strongest signals, and En. 0 received more

signals than other clusters. The pathway analyses showed that En. 0 as

well as Ep. 1 and Ep. 2 were involved in more pathways than other

clusters. Ep. 1 and Ep. 2 may more malignant than other subclusters

of epithelial cells. En. 0 may be educated by Ep. 1 and Ep. 2 and

acquired malignant phenotype. ST data further confirmed the signal

of MDK-NCL in EC. It has been shown that MDK-NCL was

associated with immune environment and progression of tumors.

For example, MDK was reported to reconstruct immunosuppressive

environment in melanoma and gallbladder cancer (32, 33). MDK was

found to support progression of gastric cancer (34), and increased

EGFR signaling under hypoxia through interaction with NCL (35).

Taken together, EC cancer cells may shape TME by inhibiting

immune cells and “educating” stromal cells via MDK-NCL signal.

There are several limitations of the present study. First, because

of lacking enough reference data for EC, the subclusters of epithelial

cells and endothelial cells were unable to annotate to known cell

types. Second, we did not validate the roles of MDK-NCL signal in
A B

DC

FIGURE 5

Cell type mapping on endometrial carcinoma tissue slice. (A) Spatial scatter pie plot representing the proportions of the cells from the reference
atlas within capture locations in the endometrial carcinoma tissue. (B) Predicted proportion within each capture location for the cell types.
(C) Unbiased clustering of spatial transcriptomic (ST) spots (left) and local microenvironment estimated from ST dataset by limiting cell-cell
interactions to those within local neighborhoods, yielding a ‘niche’ atlas for each transcriptomic spot (right). (D) MDK-NCL signaling atlas.
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EC with in vitro or in vivo experiments. Third, we only included 32

EC tissues and 19 normal endometrial tissues, and the sample size

was relative small. Further studies should validate our results in

larger sample of patients, and confirm the roles of MDK-NCL signal

with both in vitro and in vivo experiments.

In conclusion, our study revealed tumoral heterogeneity in the

cellular composition and molecular phenotype of the TME in EC.

EC cells can confer malignant phenotype to endothelial cells by

MDK-NCL signal, and NCL is associated with suppressed immune

activity. EC cells may shape TME by inhibiting immune cells and
Frontiers in Immunology 09
“educating” stromal cells via MDK-NCL signal. Blocking MDK-

NCL signal might help to inhibit the progression of EC. Our results

provided new potential targets for EC therapy.
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A

B

DC

FIGURE 6

The expression of the 8 genes involved in MK signaling network. (A) Boxplot showing the expression levels of the 8 genes in TCGA samples from
endometrium (EM, n = 35), serous cystadenocarcinoma (SCC, n = 133) or endometrioid adenocarcinoma (EAC, n = 401). (B) Boxplot showing the
expression levels of the 8 genes in 32 endometrial carcinoma (EC) tissues and 19 normal endometrial tissues. (C) Lollipop chart showing the
significant associations between the 8 genes and the scores estimated by “estimate” package with the TCGA data. ***P<0.001. (D) Scatter plots
showing the Spearman’s correction between NCL and ImmuneScore or StromalScore.
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SUPPLEMENTARY FIGURE 1

The outgoing signals from each cell type. The line width repents the strength
of the signal.

SUPPLEMENTARY FIGURE 2

MDK-NCL transfers the strongest signal. (A) Comparison of the significant
ligand-receptor pairs between cells, which contribute to the signaling from

fibroblasts, epithelial cells, macrophage and ciliated cells to T cells,

endothelial cells, NK cells, Mast cells and B cells. (B) Comparison of the
significant ligand-receptor pairs between cells, which contribute to the

signaling from epithelial cells and ciliated cells to fibroblasts, T cells,
endothelial cells, NK cells, macrophage, Mast cells and B cells. (C)
Contribution of each Ligand-Receptor (L-R) pairs in the communication
between the cells.

SUPPLEMENTARY FIGURE 3

Interaction between epithelial cells and endothelial cells. (A) Outgoing and

incoming interaction strength of the subclusters of epithelial cells and
endothelial cells. En. 0–En. 2, subclusters 0–2 of endothelial cells; and Ep.

0–Ep. 4, subclusters 0–4 of epithelial cells; (B) Heatmaps showing outgoing
and incoming interaction strength as well as involved pathways. (C)
Contribution of each Ligand-Receptor (L-R) pairs in the communication

between the subclusters of epithelial cells and endothelial cells.

SUPPLEMENTARY FIGURE 4

Signaling atlas of the top 20 Ligand-Receptor pairs.

SUPPLEMENTARY FIGURE 5

Validation of MK signaling in GSE120490. (A) Lollipop chart showing the

significant associations between the 8 genes and the scores estimated by
“estimate” package. *, P<0.05; **, P<0.01; ***, P<0.001. (C) Scatter plots

showing the Spearman’s corrections between NCL/MDK and ImmuneScore.
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