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Functionally distinct regions of
the locus Leishmania major
response 15 control IgE or IFNg
level in addition to skin lesions
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Valeryia Volkova1, Iryna Kurey1, Jarmila Vojtı́šková1,
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Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more

than 1 billion people living in endemic countries and has three clinical forms:

cutaneous, mucocutaneous, and visceral. Understanding of individual differences

in susceptibility to infection and heterogeneity of its pathology is largely lacking.

Different mouse strains show a broad and heterogeneous range of disease

manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased

serum levels of immunoglobulin E and several cytokines. Genome-wide mapping

of these strain differences detected more than 30 quantitative trait loci (QTLs) that

control the response to Leishmaniamajor. Some control different combinations of

disease manifestations, but the nature of this heterogeneity is not yet clear. In this

study, we analyzed the L. major response locus Lmr15 originally mapped in the

strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the

genetic background of the susceptible strain BALB/c. For this analysis, we used the

advanced intercross line K3FV between the strains BALB/c and STS. We confirmed

the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed

genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the

interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-

derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32

and 17.4 Mbp, respectively, and analyzed their response to L. major infection.

These experiments revealed at least two linked but functionally distinct

chromosomal regions controlling IFNg response and IgE response, respectively,

in addition to the control of skin lesions. Bioinformatics and expression analysis

identified the potential candidate gene Top3a. This finding further clarifies the

genetic organization of factors relevant to understanding the differences in the

individual risk of disease.

KEYWORDS

Leishmania major, susceptibility to infection, quantitative trait locus, advanced
intercross line, recombinant mapping, bioinformatics analysis, fine mapping,
functional heterogeneity
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Introduction

More than 1 billion people living in endemic countries (1–3) are

endangered by leishmaniasis, a disease with no reliable vaccine to

prevent it in humans. Moreover, treatment of leishmaniasis has

serious side effects (4, 5).

The disease is caused by kinetoplastid parasites of the genus

Leishmania that are transmitted to mammalian hosts by a bite of

the vector, phlebotomine sand flies (Diptera). In the infected

mammalian organism, Leishmania parasites invade “professional

phagocytes,” including monocytes, macrophages, and neutrophils,

and can also reside in dendritic cells and many other cell types such

as fibroblasts (6) and adipocytes (7). The disease has three main

forms: cutaneous, mucocutaneous, and visceral. The clinical form

and the susceptibility to leishmaniasis depend on parasite species,

pathogen transmission vector, immune status, nutrition, age, sex,

microbiome and genotype of the host, and also on multiple

environmental and social factors and co-infections (8–13).

These multiple factors are difficult to control in the analysis of

susceptibility to leishmaniasis in humans and are easier to control in

animal models, even if they cannot cover all the variabilities of

human leishmaniasis. A broad range of disease manifestations such

as skin lesions, splenomegaly, hepatomegaly, parasite infiltration

into the organs, eosinophil infiltration into the lymph nodes, and

increased levels of immunoglobulin E and cytokines in the serum

were described in different mouse strains (14–17) and animal

models proved to be invaluable in revealing the mechanisms (18–

22) and genetic architecture (8, 9, 13, 18) of response to

leishmaniasis. In mouse, the most detailed information was

obtained in the studies of infection with L. major (8, 9, 13).

Genome-wide mapping detected more than 30 quantitative trait

loci (QTLs), revealing the multigenic control of disease

susceptibility and manifestations (23–25).

Some of these QTLs control different combinations of disease

manifestations, but the nature of this heterogeneity is not yet clear.

Moreover, the controlling genes are involved in one or more genetic

interactions, functioning as a network (13, 25, 26). Although the

system of recombinant congenic strains (RCS) allows by mapping

in F2 hybrids to localize some QTLs to a short segment up to 1.78

Mb/<1 cM (cora1) (27), the majority of QTLs detected in RCS and

other types of crosses are mapped to segments of 20 cM or more

(23–25) that have to be further shortened to identify the controlling

gene. Only one candidate gene Fli1 controlling the susceptibility to

L. major in mouse has been identified until now in a genome-wide

search (28).

In this study, we analyzed four out of eight already mapped loci

controlling the response to L. major in the RC strain CcS-9

(Table 1) (17, 29) using the advanced intercross line K3FV. The

strongest linkage was observed to the Lmr15 on chromosome 15.
Abbreviations: AIL, advanced intercross line; C allele, allele (gene variant)

derived from the strain BALB/c; Lmr, Leishmania major response (QTL); Mbp,

mega base pair; RCS, recombinant congenic strains; S allele, allele (gene variant)

derived from the strain STS; QTL, quantitative trait locus.
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We prepared interval-specific strains covering the peak of this

linkage. The analysis led to the confirmation, precise mapping,

and identification of potential candidate genes in the locus Lmr15.
Materials and methods

Mice

We have used in these studies the genetic combinations of

genomes of the strain BALB/c that is widely used in research and

the strain STS that originated from Swiss albino mice in 1955 (30).

The strain STS is resistant to infection with L. major (31),

Leishmania tropica (16), and tick-borne encephalitis virus (32).

STS is resistant to mammary tumor induction by hypophysial

isografts (33) and highly susceptible to the induction of colon

tumors by 1,2-dimethylhydrazine (34). STS thymocytes were

more resistant to radiation-induced apoptosis than BALB/c

thymocytes (35), whereas STS mice were more susceptible to

radiation-induced apoptosis in the colon than BALB/c (36). The

splenocytes of STS show a higher proliferative response to IL-2 than

BALB/c (37) but a lower response to anti-CD3 (37) and ConA (27)

than BALB/c. STS exhibited a higher proliferative response in the

mixed lymphocyte culture than BALB/c when tested with cells from

11 other mouse strains with 10 MHC types (38).

Advanced intercross line
The advanced intercross line (AIL) K3FV was established from

a susceptible strain BALB/c and a resistant strain STS. It contained

STS-derived segments on chromosomes 1, 2, 4, 5, 7, 8, 10, 11, 16, 17,

and 18. Chromosomal segments containing the Lmr loci detected in

F2 hybrids between K3FV and BALB/c were typed using the

following markers: D4Nds3, D4Mit108, D4Mit53, D4Mit139,

D4Mit7, D4Mit152, D11Mit20, D11Mit139, D11Mit141,

D11Mit274, D11Mit26, D11Mit242, D11Nds18, D11Mit37,

D16Mit19, D16Mit94, D16Mit155, D17Mit66, D17Mit139,

D17Mit20, D17Mit3, D17Mit120, D17Mit38, D17Mit72,

and D17Mit129.

For the current analysis, we selected sublines that did not carry

STS-derived segments in the Lmr loci on chromosomes 1, 2, 7, 8, 10,

and 18. The F4 generation of the (STS×BALB/c) AIL mice with

recombination in Lmr24 (chromosome 4), Lmr15 (chromosome

11), Lmr18 (chromosome 16), and Lmr27 (chromosome 17) regions

was used in the present study. We used F4 (STS×BALB/c) AIL

(K3FV) that was backcrossed to BALB/c mice once (N1—

experiment 1) or twice (N2—experiment 2). The length of the

obtained individual regions was approximately 5 cM.

F2 hybrids between BALB/c and K3FV (n = 138, 68 males and

70 females) were infected at the age of 8 to 14 weeks (the mean age is

11 weeks; the median age is 11 weeks) and characterized for the

immunological and pathological changes after L. major infection.

They were tested in two subsequent experimental groups (F2N1, n =

34—experiments 1; F2N2, n = 104—experiment 2). During the

experiments, male and female mice were placed in separate rooms

and males were caged individually.
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Interval-specific congenic strains
The interval-specific congenic strains 6232HS1 and 6229FUD

with recombinant haplotype in Lmr15 were produced from the

recombinant congenic strains CcS-4 and BALB/c using marker-

assisted breeding (39). F2 mice from the cross between CcS-4 and

BALB/c were genotyped, and mice that contained STS alleles at

Lmr15 and BALB/c alleles at the other STS-derived segments were

backcrossed to BALB/c and genotyped again. This resulted in the

establishment of the interval-specific strains 6232HS1 and

6229FUD, which carried STS-derived segments on chromosome

11 at the Lmr15 region on the genetic background of BALB/c. Mice

were cleaned by embryo transfer.

F2 hybrids between BALB/c and 6232HS1, 150 females, were

infected at the age from 9 to 16 weeks (mean age = 12.8 weeks;

median age = 12 weeks). Mice were tested in a single experimental

group. The microsatellite marker D11Mit316 was used for typing of

the Lmr15 region.

F2 hybrids between BALB/c and 6229FUD, 150 females, were

infected at the age from 8 to 12 weeks (mean age = 11 weeks;

median age = 11.4 weeks). Mice were tested in a single experimental

group. The microsatellite marker D11Mit242 was used for typing of

the Lmr15 region.

All experiments were approved by the Ethical Committee of the

Institute of Molecular Genetics.
Genotyping of AIL and
interval-specific mice

DNA was isolated from the tails using a standard proteinase K

procedure (40). Microsatellite and single nucleotide polymorphism

(SNP) markers (Generi Biotech, Hradec Králové, Czech Republic)

were genotyped as described elsewhere (41, 42). The products were

electrophoresed in 3% agarose gel containing 80% of MetaPhor®

Agarose (Cambrex Bio Science Rockland, Inc., Rockland, ME, USA)

and 20% of UltraPure™ Agarose (Invitrogen, Carlsbad, CA, USA)

for 20 min to 2 h at 150 V.
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Parasites

Leishmania major LV 561 (MHOM/IL/67/LRC-L137 JERICHO

II) was maintained in rump lesions of BALB/c females. Amastigotes

were transformed to promastigotes using SNB-9 (43), and 107

promastigotes from 6-day-old subculture 2 were inoculated in 50

ml of sterile saline s.c. into mouse rump (25). This procedure results

in approximately 17% of metacyclic promastigotes in the

inoculum (44).
Disease phenotype

The size of the primary skin lesions was measured weekly using

a Vernier caliper gauge. The mice were killed 8 weeks after

infection, and body, spleen, and liver weights were recorded. The

blood, spleen, skin, lymph nodes, and liver (in interval-specific

strains only) were collected for further analysis.
IgE and IFNg levels

IgE and IFNg levels in the serum were determined using

the primary and secondary monoclonal antibodies (IgE: R35-72,

R35-118; IFNg: R4-6A2, XMG1.2) and standards from Pharmingen

(San Diego, CA, USA) (purified mIgE: C38-2 and recombinant

mouse IFNg). The enzyme-linked immunosorbent assay

(ELISA) was performed as recommended by Pharmingen. The

IFNg and IgE levels were estimated using the curve fitter program

KIM-E.
Measurement of parasite load
in the organs

Total DNA was isolated from frozen lymph nodes and liver

samples, and parasite load was measured using PCR-ELISA
TABLE 1 Loci controlling response to Leishmania major in the strain CcS-9.

Chromosome Locus Controlled trait Reference

2 Lmr14 Parasite load in the lymph nodes (males main; both sexes int. Lmr25, int. Lmr24); parasite load in the liver int. Lmr27;
IL-13 in the serum; eosinophil infiltration into the lymph nodes

(17, 29)

4 Lmr24 Skin lesions; splenomegaly; parasite load in the lymph nodes—int. Lmr14; IL-4 and IFNg in the serum; IL-10 in the
serum—int. Lmr4

(29)

5 Lmr25 Parasite load in the lymph nodes—int. Lmr14; eosinophil infiltration into the lymph nodes; parasite load in the liver int.
Lmr27

(17, 29)

6 Lmr4 Parasite load in the lymph nodes—males—int. Lmr27; IL-10 in the serum (29)

9 Lmr26 Eosinophil infiltration into the lymph nodes int. Lmr15 (17)

11 Lmr15 Skin lesions (main and int. Lmr18); splenomegaly; hepatomegaly; parasite load in the lymph nodes (main, int. Lmr27 in
males); parasite load in the liver; eosinophil infiltration into the lymph nodes int. Lmr26; IL-4 and IgE in the serum

(17, 29)

16 Lmr18 Skin lesions int. Lmr15 (29)

17 Lmr27 Parasite load in the lymph nodes—males—main, int. Lmr15, int. Lmr4; parasite load in the liver—int. Lmr14 (29)
f

int., interaction.
main; main effect.
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according to the previously published protocol (45). Briefly, total

DNA was isolated using a standard proteinase K procedure (40).

For the detection of the Leishmania parasite DNA in total DNA,

PCR was performed using two primers: digoxigenin-labeled F 5′-
ATT TTA CAC CAA CCC CCA GTT-3′ and biotin-labeled R 5′-
GTG GGG GAG GGG CGT TCT-3′ (VBC Genomics Biosciences

Research, Austria). The 120-bp fragment within the conserved

region of the kinetoplast minicircle of the Leishmania parasite

was amplified. In each PCR reaction, 50 ng of extracted total

DNA was used. As a positive control, 20 ng of L. major DNA per

reaction was amplified as the highest concentration of the standard.

A 26-cycle PCR reaction was used for the quantification of parasites

in the lymph nodes and liver. Parasite load was determined by

measurement of the PCR product with the modified ELISA protocol

(Pharmingen, San Diego, USA). The concentration of Leishmania

DNA was measured using the ELISA Reader from Tecan with the

curve fitter program KIM-E (Schoeller Pharma, Prague, Czech

Republic) using least squares-based linear regression analysis

(45, 46).
RNA isolation and RT-PCR analysis

RNA was prepared by lysing skins and spleens stored at −80°C

with the TRI reagent (Sigma-Aldrich, Missouri, United States) and

analyzed as described in (47). One microgram of RNA was treated

with DNase (Promega, Wisconsin, United States, M6101) and then

reverse-transcribed using 100 units of M-MLV Reverse

Transcriptase (Sigma, M1302) with 1×MLV reverse transcriptase

buffer, 1.4 µM of random hexamers (Thermo Fisher, Massachusetts,

United States, N8080127), 2.5 units of ribonuclease inhibitor

(Thermo Fisher, 15518012), and 5 mM of each dNTP (Sigma,

DNTP100) per sample to obtain cDNA. cDNA was then diluted five

times and 3 µl was used for amplification by 45 cycles of PCR: 2 min

denaturation at 95°C, 15 s denaturation at 95°C followed by 20 s

annealing at 60°C and 30 s extension at 72°C with a single

fluorescence acquisition point repeated 45 times, and a melt curve

program of 55°C to 95°C with 0.5°C increment with continuous

fluorescence acquisition using primers for the genes of interest and

SYBR® Green JumpStart™ Taq ReadyMix™ (Sigma-Aldrich,

S4438) for quantification. GAPDH was used as an internal

control. Reactions were performed in a 384-well plate in Roche

light cycler LC480II (Roche Molecular Systems, Inc., Basel,

Switzerland). Forward and reverse sequences of primers for the

genes of interest were designed by QuantPrime (48) and purchased

from Generi Biotech (Hradec Králové, Czech Republic). The

sequences of the forward (F) and reverse (R) primers used were

as follows: Top3a_F: GTGGCGAAGGCAAAGAAGTTGG;

Top3a_R : TCTTCTTGCTGGGCCATCTCTG; Aloxe3_F :

AGCCCGCCAAGAATGTTATCGC; Aloxe3_R : TCCT

GAAAGCTGCTGACATCCAC; Arhgap44_F: TGACATGA

GTGGCGCAGTGTTG; Arhgap44_R : GGGACATCAA

AGTGGACGAGATCC; Gapdh_F: AACTTTGGCATTGT

GGAAGG; Gapdh_R: GTCTTCTGGGTGGCAGTGAT.
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Detection of polymorphisms that change
RNA stability and the functions of genes

We have sequenced the genomes of the strains BALB/c and STS

using the next-generation sequencing (NGS) system HiSeq 2500

(Illumina, California, United States) (12× coverage) and analyzed

them as described in (49, 50). In detail, NGS data were preprocessed

using the software Trimmomatic (51), and overlapping pair reads

were joined by the software Flash (52). Alignment-reference mouse

sequence mm10 (build GRCm38) was performed using the

Burrows–Wheeler Aligner (BWA) program (53). Mapped reads

were sorted and indexed, and duplicated reads were marked. Local

realignment around indels, base recalibration, and variant filtration

were performed using the software Genome Analysis Toolkit

(GATK) (54). The Integrated Genome Viewer (IGV) (55) was

used for the visualization of results. Variant annotation and effect

prediction was performed by the software SnpEff (56). Protein

variation effect predictions were performed by the software

Protein Variation Effect Analyzer (PROVEAN) (57). Analysis of

conservation scores was performed using the ConSurf software

(58–60).
Statistical analysis

Peaks of linkage (association) for different parameters in the

strain K3FV were estimated using an open-source PLINK program

(https://zzz.bwh.harvard.edu/plink/plink2.shtml; http://

pngu.mgh.harvard.edu/~purcell/plink/) by Shaun Purcell at the

Center for Human Genetic Research, Massachusetts General

Hospital, and the Broad Institute of Harvard & MIT (61).

Interval-specific congenic strains HS1 and FUD. The role of

genetic factors in the control of skin and organ pathology, parasite

load in the lymph nodes and liver, and also IgE or IFNg level in the

serum was examined with one-way analysis of variance followed by

Bonferroni’s multiple comparison test using GraphPad Prism

version 5.04. When necessary, the original values of an analyzed

parameter were transformed for normalization of the distribution

as described in the legends to the figures.
Results

Analysis using AIL K3FV confirmed
the presence of the previously
detected Lmr loci

We have tested the association of skin lesions, splenomegaly,

hepatomegaly, and IFNg and IgE levels in the serum to the Lmr loci

on chromosomes 4, 11, 16, and 17 using AIL K3FV (Figure 1).

The strongest linkage was detected to Lmr15 on chromosome

11, and the peak of linkage to lesion size was observed between

D11Mit242 and D11Nds8, whereas the peak of linkage to IgE level

was found between D11Mit26 and D11Nds18 (Figure 1A).
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We have detected the linkage of skin lesions, splenomegaly, and

IgE level to Lmr27 (Figure 1B). However, the AIL K3FV covers not

only Lmr27 on the distal part of chromosome 17 but also more

proximal segment between 45 and 67 Mbp that is absent in CcS-9.

We have detected a linkage to this segment that was associated with

the controls of skin lesions, splenomegaly, hepatomegaly, and IgE

level in the serum; a peak of linkage was observed around

D17Mit139 (52.9 Mbp) (Figure 1B). This newly detected locus

was named Lmr34.

Linkage to splenomegaly was detected on chromosome 16

(Lmr18) (Figure 1C), whereas on chromosome 4 (Lmr24), only

linkage to IFNg level reached the significance threshold (Figure 1D).
Analysis of interval-specific congenic
strains confirmed the linkage to Lmr15 and
revealed the presence of at least two
functionally distinct loci

Locus Lmr15 on chromosome 11 was selected for further

analysis because the linkage to this locus has been robust and

because its control of the phenotype was stable. We have prepared

two interval-specific congenic strains, 6232HS1 (HS1) and

6229FUD (FUD) (Figure 2), that overlap in a short segment of

0.77 Mbp spanning from rs62527257 (62.52 Mbp) to D11Mit350

(63.29 Mbp).
Frontiers in Immunology 05
The strain HS1 carrying more proximal STS segment (maximal

length 6.32 Mbp, minimal length 4.47 Mbp) controls skin lesion size

(P = 0.013) and IgE level in the serum (P = 0.020) (Figure 3). The

linkage to skin lesions was observed in the cross between HS1 females

and BALB/c males (P < 0.0001) and in the group comprising both

crosses (P = 0.013), and linkage to IgE was observed in the group

comprising both crosses (P = 0.020) and in the cross between BALB/c

females and HS1 males (P = 0.0375). Larger lesions and higher IgE

levels are controlled by the BALB/c allele.

The strain FUD carrying the more distal STS-derived segment

(maximal length 17.40 Mbp, minimal length 13.99 Mbp) (Figure 2)

controls skin lesion size (P = 0.0032) and IFNg level (P = 0.0021) in

the cross between FUD females and BALB/c males. FUD controls

IFNg level also in the group comprising both crosses (0.0295)

(Figure 4). Larger lesions were controlled by the C allele, whereas

the highest IFNg levels were observed in heterozygotes.

Lmr15 controls parasite load in the lymph nodes and liver in the

cross between CcS-9 and BALB/c (29), but we did not observe

linkage to parasite load in these organs neither in HS1 or FUD.
Potential candidate genes

Bioinformatics analysis revealed three potential candidate genes

(Table 2). One of these genes Top3a [topoisomerase (DNA) III

alpha] is localized in the strain HS1, whereas the two other genes,
D

A B

C

FIGURE 1

Mapping in the advanced intercross line K3FV. P-values organized by marker chromosomal locations on chromosome 11 (A), chromosome 17
(B), chromosome 16 (C), and chromosome 4 (D). IFNg – IFNg level in serum 8 weeks after infection; IgE - IgE level in serum 8 weeks after infection.
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Arhgap44 (Rho GTPase activating protein 44) and Aloxe3

(arachidonate lipoxygenase 3), are situated in the strain

FUD (Figure 2).

The gene Top3a exhibited differential expression both in the

skin and spleen (Figure 5). The CC homozygotes in the marker

D11Mit316 exhibited the highest expression, whereas the SS

homozygotes exhibited the lowest expression in both crosses and

in the cross between HS1 females and BALB/c males, in which

linkage to skin lesions was observed (Figure 3). In the spleen,

differential expression was observed in both crosses and in the cross

between BALB/c females and HS1 males. The lowest expression was

observed in heterozygotes.

No differential expression of the genes Arhgap44 and Aloxe3,

situated in the segment FUD, was observed (Figure 6).
Frontiers in Immunology 06
Discussion

Mapping in AIL confirmed the linkages of the loci Lmr15, Lmr27,

Lmr24, and Lmr18 that were previously detected in F2 hybrids between

BALB/c and CcS-9 (Table 1). We tested the linkage to skin lesions,

splenomegaly, hepatomegaly, and IFNg and IgE levels in the serum. In

the next paragraphs, we will concentrate on the comparison of detection

of the five phenotypes of the Lmr15 locus in F2 hybrids and in AIL.

Lmr15 was previously detected on chromosome 11 in two

recombinant congenic strains: CcS-9 (17, 29) (maximal length 21.03

Mbp) and CcS-16 (26, 62) (maximal length 23.04 Mbp) (Figure 1).

Lmr15 detected in CcS-9 controls skin lesions, splenomegaly,

hepatomegaly, and IL-4 and IgE in the serum, as well as parasite

load in the lymph nodes and liver and eosinophil infiltration into the
FIGURE 2

Maps of recombinants in Lmr15 on chromosome 11. The regions of STS and BALB/c are represented as black and white, respectively; the boundary
regions of undetermined origins are shaded. Red—potential candidate gene. Red, underlined—gene with alleles exhibiting differential expression.
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lymph nodes (17, 29). The STS-derived segment on chromosome 11

present in the strain CcS-16 (Figure 1) controls hepatomegaly (62)

and IFNg in the serum (26). Analysis of AIL K3FV also confirmed the

position of Lmr15. AIL mapping detected on chromosome 11 the

linkage to skin lesion size and IgE level in the serum and a weak

linkage to splenomegaly, hepatomegaly, and IFNg. Thus, this linkage
is robust and operates across different genetic backgrounds. Partial

differences between linkages to phenotypes detected in F2 mapping

and in AIL described in this paper might be caused by differences in

undetected gene interactions present in F2 hybrids and in AIL.
Top3a is a potential candidate gene
controlling skin lesions and IgE level in the
segment HS1

The segment HS1 controls skin lesions in pooled crosses and in

the cross HS1 × BALB/c (Figure 3). Significant differences in the

expression of the potential candidate gene Top3a were also observed

in pooled crosses and in the cross HS1 × BALB/c (Figure 5) and are

similar to the differences observed in skin lesion size. Top3a is also

differentially expressed in the spleen; the pattern of expression is

different from those observed in the level of IgE in the serum.
Frontiers in Immunology 07
TOP3A belongs to the eukaryotic type IA topoisomerases,

TOP3A and TOP3B. Transcription and replication constantly

change DNA topology, and topoisomerases are needed to relax

supercoiling. TOP3A operates in both the nucleus and

mitochondria and is involved in relaxing single-stranded DNA

and RNA. TOP3A can couple its activity with different enzymes

such as BLM (the Bloom syndrome DNA helicase) in dissolvasome,

FANCM (Fanconi anemia group M protein) at replication forks,

and PICH (an SNF2 family DNA translocase) during mitosis (63).

Both FANCM (64) and BLM (65) are connected with the

impairment of immune functions both in mouse and human.

TOP3A was described to have a direct influence on T‐cell

development in zebrafish (66). Thus, Top3a might be indirectly or

directly involved in the immune response against leishmaniasis.
None of the potential candidate genes
in the segment FUD exhibited
differential expression

The segment FUD controls skin lesions and serum IFNg level.
Bioinformatics analysis indicated two potential candidate genes:

Arhgap44 (Rho GTPase activating protein 44) and Aloxe3
FIGURE 3

Genetic influence on skin lesions and serum IgE level 8 weeks after infection. Individual F2 hybrid mice between the strains HS1 and BALB/c are
shown. Means ± standard error mean (red lines) and P-values were calculated by analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparison test. In order to obtain normal distribution of IgE values required for ANOVA, the absolute value of the logarithm of IgE (ng/ml) was
used. Values of skin lesions had a normal distribution. The image shows untransformed values. C and S indicate the presence of the BALB/c and STS
alleles, respectively. NS, not significant. *P < 0.05; ****P < 0.0001.
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(arachidonate lipoxygenase 3). ARHGAP44 acts as a GTPase-

activating protein (GAP) that stimulates the GTPase activity of

Rho-type GTPases. It functions as a GAP for CDC42 (cell division

cycle 42) and RAC1 (Rac family small GTPase 1) (67). CDC42 is

involved in multiple cell functions including Th17 cell development

(68) and regulation of neutrophil functions (69). ALOXE3 is

expressed in the skin and belongs to 2-lipoxygenases that regulate

tissue inflammation (70). Thus, both Arhgap44 and Aloxe3 have the

potential to modify susceptibility to leishmaniasis, but none of them

exhibited differential expression in the skin or spleen. We cannot

exclude that they might influence susceptibility by the different

activities of polymorphic proteins; however, the proof of this

possibility is beyond the scope of this study.
Overlap between HS1 and FUD unlikely
controls any tested phenotype

A short overlap between HS1 and FUD (maximal length 0.77

Mbp) contains multiple regulatory elements (71). We did not detect

any gene polymorphism that could influence gene functions and/or

RNA stability. The distinct control of IgE and IFNg levels by HS1 and

FUD, respectively, implicated that these phenotypes are not controlled
Frontiers in Immunology 08
by this overlap. A comparison of the influence of C and S alleles on

skin lesion size in HS1 and FUD seems to exclude the control of

lesions by this segment. In HS1 (cross HS1 x BALB/c), the influence of

the C allele is dominant (Figure 3), whereas in FUD (cross FUD x

BALB/c), the S allele is dominant to the C allele (Figure 4).
Lmr15 and its co-localization with multiple
disease-modifying QTLs

Lmr15 overlaps with several loci involved in immune response,

such as Cinda1 (cytokine-induced activation 1) (72), Tria1 (T-cell

receptor-induced activation 1) (73), and Mol4 (modifier of LPS-

response 4) (74); loci that participate in response to malaria—Char8

(P. chabaudi malaria resistance QTL 8) (75) and control the

composition of the microbiome—Micab14 (microbial abundance

of Bacteroidales Bacteroidaceae Bacteroides 14) (76), and the

susceptibility to autoimmunity comprising Eae6 (experimental

al lergic encephalomyel i t is susceptibi l i ty) (77) , Eae45

(experimental allergic encephalomyelitis susceptibility 45) (78),

and Acigg5 (anti-COL7 IgG2a/c antibody 5) (79). The question

whether these loci are controlled by distinct or identical gene(s)

could be answered after their identification.
FIGURE 4

Genetic influence on skin lesions and serum IFNg level 8 weeks after infection. Individual F2 hybrid mice between the strains FUD and BALB/c are
shown. Means ± standard error mean (red lines) and P-values were calculated by analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparison test. In order to obtain normal distribution of IFNg values required for ANOVA, the logarithm of IFNg (ng/ml) was used. Values of skin
lesions had normal distribution. The image shows untransformed values. C and S indicate the presence of the BALB/c and STS alleles, respectively.
NS, not significant. *P < 0.05; **P 0.01.
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The strong influence of genetic
background on the loci Lmr18, Lmr24,
and Lmr27

AIL analysis of Lmr15 confirmed both the linkages and

phenotypes detected in F2 mapping, although linkages to some

phenotypes did not reach the level of significance (Figure 1A;

Table 1). The linkages to skin lesion size, IgE and IFNg levels

were further confirmed by recombinant mapping (Figures 3, 4).

In AIL mapping of Lmr18, Lmr24, and Lmr27, the linkages to L.

major response were confirmed, but these loci controlled the

phenotypes that were different from those detected in F2 mapping

(Figures 1B–D; Table 1).

Locus Lmr15 and loci Lmr18, Lmr24, and Lmr27 likely contain

genes that are differently influenced by the genetic background.

Similar variations in the alterations of gene effects by genetic

background have been observed in other experimental designs and

in human diseases. The underlying genetic basis is often unknown

(80). In some cases, the phenotype of mice is entirely controlled by a

mutation at the causative gene/locus, such as Tyr (tyrosinase); in

others, for example, Lep (leptin), Lepr (leptin receptor), or Fgfr2

(fibroblast growth factor receptor 2), this background has a dramatic

effect on gene function. In more detail, the lack or mutation in Tyr

invariantly leads to a white coat in mouse (81). On the other hand,

the influence of Fgfr2 on craniosynostosis is observed in C57BL/6,

but not in BALB/c genetic background (82). Leptin-deficient BALB/

cJ mice have a higher reduction in body weight and adiposity than

leptin-deficient C57BL/6J mice, but they developed severe diabetes.

C57BL/6J were sterile, whereas BALB/cJ were fertile (83). Lepr

deficiency induces hyperglycemia and obesity in C57BL/6J mice

but strong diabetes in the closely related strain C57BL/KsJ (84).

Thus, a similar situation might take place in the interaction of

Lmr18, Lmr24, and Lmr27 with different genetic backgrounds.
Newly detected locus on chromosome 17

AIL mapping detected the new locus Lmr34 on chromosome 17

with a peak of linkage D17Mit139 (52.9 Mbp) that controls IgE level

in the serum, skin lesion size, splenomegaly, and hepatomegaly

(Figure 1B), which is probably distinct from Lmr1 that spans from

10 to 86 Mbp and is linked to H2 (35 Mbp) (24).

Lmr34 encompasses several genes that participate in responses to

L. major [CD70 (CD70 antigen)] (85) and to other Leishmania

species [SATB1 (special AT-rich sequence binding protein 1) (86)

andDPP9 (dipeptidylpeptidase 9) (87)] or genes that are components

of pathways generally involved in response to Leishmania spp. {Kat2b

[K(lysine) acetyltransferase 2B] (88), Gtf2f1 [general transcription

factor IIF, polypeptide 1] (89), Ticam1 (TIR [Toll/IL-1 receptor]

domain containing adaptor molecule 1) (90)}.

CD70 is a component of the IL-12-independent pathway,

whereby a subset of dendritic cells induces IFNg-secreting CD4+

T cells (85). SATB1 is a gene with pleiotropic functions that include

tissue repair. Patients suffering from cutaneous leishmaniasis with

molecular evidence of persistence of Leishmania (Viannia) species

in the nasal mucosa have a higher expression of SATB1 in the nasal
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FIGURE 5

Expression of mRNA of the gene Top3a in the skins and spleens of F2 mice between HS1 and BALB/c 8 weeks after infection. Relative expression of
a target gene versus the reference gene Gapdh is shown. C and S indicate the presence of the BALB/c and STS alleles, respectively. NS, not
significant. Statistical analysis was performed by ANOVA followed by Bonferroni’s multiple comparison test. P-values are as indicated. Bars represent
the average ± SEM. *P < 0.05; **P < 0.01.
A

B

FIGURE 6

Expression of mRNA of the genes Arhgap44 (A) and Aloxe3 (B) in the skins of F2 mice between FUD and BALB/c 8 weeks after infection. Relative
expression of a target gene versus the reference gene Gapdh is shown. C and S indicate the presence of the BALB/c and STS alleles, respectively.
NS, not significant. Statistical analysis was performed by ANOVA followed by Bonferroni’s multiple comparison test. Bars represent the average ± SEM.
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mucosa in comparison with patients with cutaneous leishmaniasis

in which Leishmania was not detected (86). DPP9 represses the

activation of the inflammasome NLRP1(NLR Family Pyrin Domain

Containing 1) (87), which is involved in skin inflammation (91) and

promotes susceptibility to experimental L. braziliensis infection

(92). Kat2b [K(lysine) acetyltransferase 2B] participates in the

epigenetic regulation of IL-10 (88). Gtf2f1 (general transcription

factor IIF, polypeptide 1) is involved in the pathway regulating

CD4+ T-cell quiescence and exhaustion (89). Ticam1 is a

component of the TLR pathway that participates in the

inflammatory response to Leishmania parasites (90).

Lmr34 overlaps with QTLs controlling the response to other

infectious diseases such as Hbnr7 (Heligmosomoides bakeri

nematode resistance 7) (peak 43–51.7 Mbp) (93), Ari1 (antibody

response to influenza 1, day 7, IgG2a+IgG2c) (peak 47.3–54.7 Mbp)

(94), and Plgr1 (plague resistance locus 1) (peak 48 Mbp) (95). This

implies the presence either of clusters of functionally related genes

or of gene(s) that participates in the control of several infections.
Conclusion

The results indicate multidimensional analysis using RCS, AIL,

interval-specific congenic strains, and bioinformatics tools as a novel

approach in the fine mapping of genetic susceptibility of diseases.

We confirmed the previously detected loci Lmr15, Lmr18,

Lmr24, and Lmr27 and mapped one novel locus Lmr34. Genetic

dissection of the effects of Lmr15 on chromosome 11 revealed at

least two linked but functionally distinct chromosomal regions

controlling IFNg response and IgE response, respectively, in

addition to the control of skin lesions. Bioinformatics and

expression studies led to the identification of the candidate gene

Top3a that might influence resistance to leishmaniasis and, for the

first time, highlighted the potential role of this gene in infection

biology. We have also shown that the functional effects of the loci

Lmr18, Lmr24, and Lmr27 depend on genetic background. Thus,

these experiments led to a better understanding of the genetic

architecture of response to leishmaniasis, even if the mouse model is

not completely transferable to human leishmaniasis.
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of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by
locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics (1999) 49
(2):134–41. doi: 10.1007/s002510050472

28. Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, Lopaticki S,
et al. Fine mapping of Leishmania major susceptibility locus lmr2 and evidence of a role
for Fli1 in disease and wound healing. Infect Immun (2010) 78(6):2734–44.
doi: 10.1128/IAI.00126-10
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42. Sohrabi Y, Havelková H, Kobets T, Šıḿa M, Volkova V, Grekov I, et al. Mapping
the genes for susceptibility and response to Leishmania tropica in mouse. PloS Negl
Trop Dis (2013) 7(7):e2282. doi: 10.1371/journal.pntd.0002282
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Genetic influence on frequencies of myeloid-derived cell subpopulations in mouse.
Front Immunol (2022) 12:760881. doi: 10.3389/fimmu.2021.760881

51. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics (2014) 30(15):2114–20. doi: 10.1093/bioinformatics/
btu170
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