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Objective: LRPPRC is a newly discovered N6-methyladenosine (m6A)

modification reader, which potentially affects hepatocellular carcinoma (HCC)

progression. PD-L1 in tumor cells is essential for tumor immune evasion. This

work investigated the LRPPRC-mediated m6A-modification effect on PD-L1

mRNA and immune escape in HCC.

Methods: Expression and clinical implication of LRPPRC and PD-L1 were

measured in human HCC cohorts. The influence of LRPPRC on malignant

behaviors of HCC cells was investigated through in vitro assays and xenograft

tumor murine models. The posttranscriptional mechanism of LRPPRC on PD-L1

and anti-tumor immunity was elucidated in HCC cells via RIP, MeRIP−qPCR, RNA

stability, immunohistochemical staining, and so forth.

Results: LRPPRC exhibited the notable upregulated in human HCC tissues, which

was in relation to advanced stage and worse overall survival and disease-free

survival. Impaired proliferative capacity and G2/M phage arrest were found in

LRPPRC-knockout cells, with increased apoptotic level, and attenuated migratory

and invasive abilities. In HCC patients and murine models, LRPPRC presented a

positive interaction with PD-L1, with negative associations with CD8+, and CD4+

T-cell infiltrations and chemokines CXCL9, and CXCL10. LRPPRC loss

downregulated the expression of PD-L1 and its m6A level in HCC cells.

Moreover, LRPPRC suppression mitigated tumor growth in murine models and

improved anti-tumor immunity and immune infiltration in tumors.

Conclusion: This work unveiled that LRPPRC may posttranscriptionally

upregulate PD-L1 partially with an m6A-dependent manner for heightening

mRNA stabilization of PD-L1 and provided a new mechanism for m6A

regulator-mediated immunosuppression in HCC.
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Introduction

Globally, hepatocellular carcinoma (HCC) remains one of the

most prevalent causes of cancer-associated deaths (~800,000 cases

per year) (1). Less than 20% of HCC patients survive over 1 year

following initial diagnosis (2). Liver transplantation brings the

optimal first-rank outcomes for patients who meet strict criteria

(3). Immunotherapy with checkpoint inhibitors has revolutionized

the clinical management of unresectable HCC. Single-agent anti-

programmed death-1 (PD-1) inhibitor has exhibited a promising

efficacy against HCC in early phase clinical trials (4). Atezolizumab

[anti-programmed death ligand 1 (PD-L1) antibody] in

combination with bevacizumab (anti-VEGF antibody) has gained

the approval as the first-line setting, which can improve overall

survival (5). Moreover, durvalumab (anti–PD-L1 agent) combined

with tremelimumab (anti-CLTA4 agent) has displayed the

superiority in prolonging overall survival time (6). Single-agent

pembrolizumab (anti–PD-1 antibody) (7) and the combination of

nivolumab (anti–PD-1 antibody) with ipilimumab (anti-CLTA4

antibody) (8) have been approved as the second-line therapeutic

options. While immunotherapy has achieved such major advances,

the molecular basis for controlling immune response and escape

remains indistinct.

N6-methyladenosine (m6A) remains the most abundant RNA

modification type in humans, which affects almost every process of

mRNA metabolism (9). This modification is installed via

methyltransferase complex and removed via demethylases (10,

11). In addition, the m6A reader proteins are capable of

recognizing the m6A-modified RNAs (12). Leucine rich

pentatricopeptide repeat containing (LRPPRC) is a newly

discovered reader of m6A modification, which is frequently

overexpressed in HCC tissue (13), and its overexpression is

related to unfavorable prognostic outcomes of HCC (14). As for

molecular mechanisms, LRPPRC can sustain Yap-P27–induced cell

ploidy and P62-HDAC6–controlled autophagy maturation as well

as attenuate genome instability and HCC progression (15). In

addition, through interacting with LRPPRC, lncRNA SNHG17

stabilizes c-Myc protein and facilitates G1/S transition and

cellular proliferation in HCC (16). Limited evidence proves that

LRPPRC enables to mediate immunity or immune response.

LRPPRC presents a negative correlation to most tumor-

infiltrating immune cells in lung adenocarcinoma (17). In

periodontitis, MHC molecules HLA-B and HLA-DOA can be
programmed death-1;

LRPPRC, leucine rich
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potentially affected by LRPPRC (18). In HCC, LRPPRC

upregulation correlates to decreased T cells, cytotoxic cells,

dendritic cells as well as cytolytic activity response (19). In

addition, it exhibits a positive relationship with PD-L1 (20). On

the basis of existing evidence, this work offers a novel

posttranscriptional mechanism by which LRPPRC facilitates

tumor progression as well as mediates immune evasion in HCC

through elevating m6A modification of PD-L1 mRNA, which might

offer a possible strategy for the immunotherapy against HCC via

utilizing LRPPRC as a therapeutic target.
Materials and methods

Bioinformatics analysis

Through uti l iz ing the TIMER2.0 platform (http://

timer.cistrome.org/) (21), pan-cancer analysis was conducted on

LRPPRC expression in tumors and control tissue specimens. Its

expression was also measured in HCC and control tissues via the

GEPIA2 web server (http://gepia2.cancer-pku.cn/#index) (22). The

difference in LRPPRC expression among distinct tumor stages was

assessed in HCC patients. Overall survival and disease-free survival

probabilities of patients with lowly or highly expressed LRPPRC

were plotted as Kaplan–Meier curves, followed by log-rank test.
Tissue specimens

In total, 30 paired HCC and adjacent normal tissues were

gathered from the Anhui Provincial Cancer Hospital (China).

These specimens were frozen and stored in liquid nitrogen before

analysis. Each patient was diagnosed as primary HCC without any

treatment prior to surgical resection. This work gained the approval

of the Ethics Committee of The Affiliated Bozhou Hospital of Anhui

Medical University (2022).
RNA extraction and reverse transcription
quantitative real-time polymerase chain
reaction

Total RNA was extracted by use of TRIzol reagent (St. Louis,

Missouri, USA: St. Louis, Missouri, USA: Sigma-Aldrich). RNA

content was tested utilizing a spectrophotometer. Samples with 260/

280 absorbance ratio > 2 ± 0.1 were removed. Afterward, RNA was

reverse transcribed into cDNA via reverse transcription kit (Dalian,

China: Takara), followed by quantitative polymerase chain reaction
frontiersin.org
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(qPCR) by SYBR Premix Ex Taq (Dalian, China: Takara). The

relative expression was computed with 2-DDCt. The primers included

LRPPRC, 5′-GCTCATAGGATATGGGACACACT-3′ (forward),

5′-CCAGGAAATCAGTTGGTGAGAAT-3′ (reverse); PD-L1, 5′-
TGGCATTTGCTGAACGCATTT-3 ′ (forward), 5 ′-TGC

AGCCAGGTCTAATTGTTTT-3′ (reverse); b-actin, 5′-CA
TGTACGTTGCTATCCAGGC-3 ′ ( forward) , 5 ′ -CTCC

TTAATGTCACGCACGAT-3′ (reverse).
Western blot

Total protein was prepared utilizing RIPA reagent, followed by

quantification with BCA assay kit (St. Louis, Missouri, USA: Sigma-

Aldrich). Next, the sample was separated via SDS-PAGE gel kit

(Wuhan, China: Elabscience). Being transferred onto PVDF

membrane, the membrane was exposed to LRPPRC (1:2000;

21175-1-AP; Wuhan, China: Proteintech), b-actin (1:5000; 81115-

1-RR; Wuhan, China: Proteintech), or PD-L1 (1:300; 28076-1-AP;

Proteintech) primary antibody at 4°C overnight. Next, incubation

with secondary antibody (1:5000; SA00001-2; Wuhan, China:

Proteintech) was conducted at room temperature lasting 2h. The

blots were imaged with enhanced chemiluminescence system,

which were quantified via ImageJ software.
Immunohistochemical staining

The section was cut into 3-mm thickness on paraffin-embedded

tissue specimens. After 4h heat at 50°C, deparaffinizion and

rehydration were implemented by the use of 100% xylene along

with a gradient of ethanol. The activity of endogenous peroxidase was

sealed utilizing 0.3% hydrogen peroxide lasting 15 min, followed by

antigen retrieval. After blocking non-specific binding, the section was

exposed to 100-ml blocking buffer lasting 25 min. Afterward, primary

antibody of LRPPRC (1:50; 21175-1-AP; Proteintech), PD-L1 (1:500;

28076-1-AP; Proteintech), CD8 (1:200; 66868-1-Ig; Proteintech),

CD4 (1:450; 67786-1-Ig; Proteintech), CXCL9 (1:50; 22355-1-AP;

Proteintech), or CXCL10 (1:50; 10937-1-AP; Proteintech) was added

to the section. After incubation overnight at 4°C, it was exposed to

secondary antibody lasting half an hour at room temperature.

Immunostaining was carried out by the use of the Envision System

with diaminobenzidine.
Cell culture

Human HCC-derived cell lines HepG2, Hep3B were acquired

from the American Type Culture Collection (Manzas, Virginia,

USA). These cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM; Thermo Fisher Scientific) plus 10% fetal bovine

serum (FBS; Sigma-Aldrich) and 1% penicillin/streptomycin

(Sigma-Aldrich) in a 5% CO2 environment at 37°C.
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Transfection

The lentivirus interference vector LV-1 (pGLVU6/GFP)

(GenePharma) was utilized for the expression of shRNAs against

LRPPRC (sh-LRPPRC). Lentivirus was produced following the

manufacturer’s protocols. The virus was utilized for infecting cells

under 8 mg/ml protamine sulfate.
EdU staining

Cells were planted into a 96-well plate (5 × 103 cells per well).

Cellular proliferation was measured by use of Cell-Light™ EdU

Apollo488 Imaging kit (Guangzhou, China: RiboBio) in line with

the manufacturer’s instructions.
Flow cytometric analysis

Cells were inoculated into a six-well plate (3 × 105 cells per

well). Flow cytometric analysis was adopted for measuring the cell

cycle distribution. In brief, cells were exposed to 5 mg/ml propidium

iodide (PI) at 4°C away from the light. Following half an hour, the

cellular DNA content was tested via flow cytometer (BD FACS

Calibur). In addition, the cell percentage of distinct phases was

assessed via FlowJo software.
TUNEL staining

After dewaxing, the slides were rehydrated with ethanol, and exposed

to 20 mg/ml protease K at 37° lasting 20 min, followed by administration

with endogenous peroxidase blocking reagent at room temperature lasting

20 min. TUNEL (Terminal Deoxynucleotidyl Transferase mediated

dUTP Nick-End Labeling) experiment was carried out on fixed cells by

use of TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP

Nick-End Labeling) apoptosis detection kit (California, USA: Abbkine).

Mount medium with 4′,6-diamidino-2-phenylindole (DAPI) was

adopted for mounting the slides. The stained slides were photographed

by use of a ZEISS microscope.
Wound healing assay

Cells were seeded onto a six-well plate. When the cells were

grown to 90% confluence, a 200-ml pipette tip was utilized for

making a wound. Afterward, each plate was washed with 1× PBS

buffer for discarding the detached cells and cultured with serum-

free medium. Wound healing images at 0h and 48h were

photographed, and migration rate was then calculated.
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Transwell assay

Matrigel (BD Biosciences) and serum-free medium were mixed

at a 1:6 ratio and added to Transwell chamber (8 mm; Waltham,

USA: Thermo Fisher Scientific). Following 1h, the suspended cells

(1 × 105) were seeded onto the upper chamber containing serum-

free medium, and the medium with FBS (700 ml) was added to the

lower chamber. At 24h, cells in the upper chamber were discarded.

The invasive cells were fixed in 4% polyoxymethylene and dyed

with crystal violet.
RNA immunoprecipitation

This assay was conducted utilizing Magna RIP™ RNA-binding

protein immunoprecipitation kit (Sigma-Aldrich). Cells were

dissolved in 100% RNA immunoprecipitation (RIP) lysis buffer

containing proteinase and RNase inhibitors, followed by exposure

to RIP buffer comprising magnetic beads conjugated to anti–PD-L1

or IgG antibodies (Proteintech). Following 24h, RNA/bead

complexes were resuspended in buffer composed of RNase-free

DNase and proteinase K. RT-qPCR was implemented on the

immunoprecipitated RNA for detect the enrichment.
MeRIP−qPCR

Total RNA extracted by Trizol reagent were exposed to RNase-

free DNase I (Waltham, USA: Thermo Fisher Scientific) for

depleting DNA contamination, followed by purification and

fragmentation of PolyA RNA. Afterward, 200 mg fragmented

RNA was exposed to 3 mg anti-m6A (Synaptic Systems) within

RIP reagent lasting 2h at 4°C and protein A/G magnetic beads for

additional 2h. Moreover, 50 ml of immunoprecipitation reagent

(Thermo Fisher Scientific) was utilized for eluting RNA. RT-

qPCR was implemented on the immunoprecipitated RNA for

detect the enrichment.
Global m6A quantification

Global m6A level was measured utilizing EpiQuik™ m6A RNA

Methylation Quantification Kit (Shanghai, China: Epigentek). After

combining 200-ng RNA with captured antibody in each well, which

was used for subsequent detection, m6A level was tested utilizing

colorimetric approach at 450 nm and computed in line with the

standard curves.
RNA stability assay

Cells were seeded onto a six-well plate and exposed to 5 mg/ml

actinomycin D (Shanghai, China: AbMole) for 0h, 2h, 4h, or 6h.

Extracted RNA from the cells was utilized for RT-qPCR.
Frontiers in Immunology 04
Immunofluorescent staining

Cells were planted onto glass slides at 37°C lasting 24h and fixed

with 4% paraformaldehyde for half an hour. The slides were

incubated with anti–PD-L1 (1:50; 28076-1-AP) antibody for 20

min at room temperature away from the light. Mount medium with

DAPI was utilized for mounting the slides. The stained slides were

photographed utilizing a ZEISS microscope.
Animal experiment

All animal care and procedures followed the National Institutes

of Health Guidelines for Laboratory Animal Care. Male BALB/c

nude mice (18–20 g weight, 6-week-old) were acquired from Beijing

Vital River Laboratory Animal Technology Co., Ltd. (China).

Xenograft tumors were produced through subcutaneously

injecting 2×105 control or sh-LRPPRC-transfected HepG2 cells

under the arm. Tumor growth was measured by use of slide

caliper every 3 days. Tumor volume was computed utilizing the

formula 1/2 × (length × width2). Following three weeks, all mice

were euthanized, the tumors were gathered for immunoblotting or

immunohistochemical staining. This animal study gained the

approval of the Animal Ethics Committee of The Affiliated

Bozhou Hospital of Anhui Medical University (2022).
Statistical analysis

All experimental data were analyzed by use of GraphPad Prism

8.0.1. Comparisons between groups were implemented via unpaired

Student’s t-test, or one- or two-way ANOVA. Through Pearson’s

correlation test, correlation analysis was carried out. P < 0.05

indicated statistical significance.
Results

LRPPRC is frequently upregulated in HCC
and correlates to patients’ tumor staging
and prognosis

In most cancer types, LRPPRC exhibited the notable

upregulation in tumors relative to normal tissues (Figure 1A).

Especially, it was frequently overexpressed in HCC tumors

(Figure 1B). Further verification was conducted for such

bioinformatics analysis findings. Thirty HCC and normal

specimens were gathered. As expected, upregulated LRPPRC was

confirmed in HCC versus controls in accordance with RT-

qPCR (Figure 1C), immunoblotting (Figures 1D, E), and

immunohistochemical staining (Figures 1F, G). In addition,

LRPPRC presented the higher level in advanced stage across The

Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma

(LIHC) patients (Figure 1H). This was indicative of the possible
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1144774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1144774
A B

D E

F G

IH J

C

FIGURE 1

Leucine rich pentatricopeptide repeat containing (LRPPRC) presents the frequent upregulation in hepatocellular carcinoma (HCC) and correlates to
patients’ tumor staging and prognosis. (A) The transcript level of LRPPRC in The Cancer Genome Atlas (TCGA) pan-cancer and matched normal
tissues. (B) LRPPRC level in HCC and control specimens across TCGA-LIHC patients. (C) RT-qPCR of the transcript level of LRPPRC in paired HCC
and control tissues. (D) Representative immunoblotting images of LRPPRC expression in such kinds of tissues. (E) Quantification of LRPPRC
expression in line with the immunoblotting gray value. (F) Representative immunohistochemical staining photographs of LRPPRC in HCC and
controls. (G) LRPPRC expression quantification in above tissues. (H) Difference in the transcript level of LRPPRC among distinct tumor stages of
TCGA-LIHC patients. (I, J) Overall survival and disease-free survival probabilities of patients with lowly or highly expressed LRPPRC. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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role of LRPPRC in HCC progression. The prognostic relevance was

then assessed. With the median expression of LRPPRC,

we categorized TCGA-LIHC patients as lowly or highly

expressed LRPPRC subsets. As illustrated in Figures 1I, J,

highly expressed LRPPRC subset possessed the worse overall

survival as well as disease-free survival relative to another subset,

indicating the contribution of LRPPRC overexpression to poor

prognostic outcomes.
Frontiers in Immunology 06
LRPPRC suppression mitigates proliferative
capacity and delays cell cycle progression
in HCC cells

For the assessment of LRPPRC function during HCC

progression, its expression was effectively knockout in HepG2 and

Hep3B cells through transfection of specific shRNAs (Figures 2A–C).

Afterward, cellular proliferative capacity was measured via carrying
A B

D

E

F

G

I

H J

K

C

FIGURE 2

Leucine rich pentatricopeptide repeat containing (LRPPRC) suppression mitigates proliferative capacity as well as delays cell cycle progression in
hepatocellular carcinoma (HCC) cells. (A–C) Immunoblotting of LRPPRC expression in HepG2 and Hep3B cells after LRPPRC was knockout. (D–G)
EdU staining for the evaluation of proliferative ability of HCC cell lines with LRPPRC deficiency. Bar, 20 mm. (H–K) Flow cytometric analysis for the
cell cycle distribution of LRPPRC-knockout HCC cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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out EdU staining. In comparison with controls, EdU-positive cells

presented the notable reduction in LRPPRC-knockout cells

(Figures 2D-G). This proved that LRPPRC was capable of affecting

HCC proliferation. In addition, cell cycle distribution was tested by

use of flow cytometric analysis. The proportion of G2/M was

prominently elevated by LRPPRC deficiency in two HCC cell lines

(Figures 2H-K), indicating the contribution of LRPPRC loss to G2/M

cycle arrest of HCC.
LRPPRC loss results in apoptosis of HCC
cells and attenuates migratory and invasive
abilities

In accordance with TUNRL staining results, after LRPPRC was

knockout, TUNEL (Terminal Deoxynucleotidyl Transferase

mediated dUTP Nick-End Labeling)-positive HepG2 and Hep3B

cells exhibited the prominent reduction (Figures 3A-D). This

showed that targeting LRPPRC can induce HCC apoptosis. As

shown in wound healing experiment, migratory level in HCC cells

was remarkably mitigated by LRPPRC deficiency (Figures 3E-H). In

addition, the impairment of invasive ability was observed in

LRPPRC-knockout HCC cells (Figures 3I-L). Such findings were

indicative that LRPPRC inhibition resulted in HCC cell apoptosis as

well as impaired migratory and invasive capacities.
LRPPRC presents a negative association
with anti-tumor immunity and immune
infiltration in HCC

Immunohistochemical staining demonstrated the remarkable

upregulation of PD-L1 in HCC tumor versus control specimens

(Figures 4A, B). HCC tumors exhibited the notably lower density of

CD8+ and CD4+ T-cell infiltration relative to normal tissues

(Figures 4C-F). CXCL9 and CXCL10 can be generated by

antigen-presenting cells (dendritic cells and macrophages) and by

tumor cells. Therefore, the two chemokines were measured by use

of immunohistochemical staining. As a result, such chemokines

were lowly expressed in HCC in comparison with normal

specimens (Figures 4G-J). Further analysis was indicative that

LRPPRC exhibited a positive relationship with PD-L1 across

HCC patients, while displayed negative correlations to CD8, CD4,

CXCL9, and CXCL10 (Figures 4K-O). Above data preliminarily

proved that LRPPRC was negatively associated with anti-tumor

immunity and immune infiltration in HCC.
LRPPRC elevates m6A modification of PD-
L1 mRNA in HCC cells

We firstly used the RM2Target platform (http://rm2t

arget.canceromics.org/) to predict the m6A modification role of
Frontiers in Immunology 07
LRPPRC in PD-L1 (23). Our prediction data demonstrated that PD-

L1 might be potentially modified by LRPPRC-mediated m6A

modification. This work assessed the regulatory effect of LRPPRC on

the overall m6Amodification in HepG2 andHep3B cells. Consequently,

LRPPRC deficiency lowered the global m6A modification in two HCC

cell lines (Figures 5A, B). Moreover, it was found that PD-L1 mRNA

level exhibited a prominent reduction by 3-deazaadenosine (3-DAA)

methylation inhibitor with a concentration-dependent manner

(Figures 5C, D). RIP-qPCR was implemented for examining the effect

of LRPPRC on posttranscriptional modification of PD-L1. It was found

the prominently lower LRPPRC enrichment with PD-L1 mRNA versus

IgG control (Figures 5E, F). Based upon MeRIP-qPCR results, PD-L1

mRNA exhibited the remarkable reduction in m6A-modified level by

LRPPRC deficiency (Figures 5G, H). In addition, LRPPRC loss resulted

in the decrease in mRNA stability of PD-L1, because the half-life of PD-

L1 transcript was lowered under exposure to actinomycin D (Figures 5I,

J). Altogether, LRPPRC showed a direct interaction with PD-L1 and can

modulate m6A modification of PD-L1 mRNA in HCC cells.
LRPPRC upregulates PD-L1 expression in
HCC cells partially with an m6A-
independent manner

As expected, PD-L1 exhibited the prominent upregulation in

HCC tumors relative to control specimens (Figures 6A, B). Its

transcript and protein levels were notably decreased by LRPPRC

deficiency in HepG2 and Hep3B cells (Figures 6C-G).

Immunofluorescent staining also proved the reduction in PD-L1

protein level in LRPPRC-deficient HCC cells (Figures 6H-K). Such

findings proved that LRPPRC enabled to upregulate PD-L1

expression in HCC cells partially with an m6A-independent manner.
LRPPRC suppression mitigates tumor
growth in HCC

HepG2 cel ls with LRPPRC knockout or not were

subcutaneously inoculated into BALB/c nude mice. Following 3

weeks, tumor specimens were dissected. It was observed that

LRPPRC-deficient group exhibited the lower tumor weight

(Figures 7A-C). In addition, tumor growth was notably slowed

down by LRPPRC knockdown (Figure 7D). In addition, Ki-67–

positive tumor cells displayed the remarkable reduction in

LRPPRC-deficient group (Figures 7E, F). Thus, LRPPRC

downregulation may mitigate tumor growth in HCC.
LRPPRC loss improves anti-tumor
immunity and immune infiltration in vivo

In the subcutaneous xenograft murine models, LRPPRC

presented the remarkable downregulation in LRPPRC-knockout
frontiersin.or
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group (Figures 8A, B). In addition, PD-L1 level was notably

attenuated by LRPPRC deficiency in tumors (Figure 8C).

Immunohistochemical staining also proven the downregulation of

LRPPRC and PD-L1 in the murine models injected with LRPPRC-

knockout HepG2 cells (Figures 8D-F). Moreover, CD8+ and CD4+ T
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cells exhibited the higher infiltration in tumors from LRPPRC-

knockout group (Figures 8G, H). The downregulation of CXCL9

and CXCL10 was also observed in this group (Figures 8I, J).

Altogether, LRPPRC deficiency strengthened anti-tumor immunity

and immune infiltration in vivo.
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FIGURE 3

Leucine rich pentatricopeptide repeat containing (LRPPRC) loss results in apoptosis of hepatocellular carcinoma (HCC) cells and attenuates
migratory and invasive abilities. (A–D) TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) staining for the assessment
of apoptotic level in LRPPRC-deficient HepG2 and Hep3B cells. Bar, 20 mm. (E–H) Wound healing test for investigating the migratory ability of HCC
cells under the knockdown of LRPPRC. Bar, 50 mm. (I–L) Evaluation of the invasive capacity of LRPPRC-knockout HCC cells by use of transwell
experiment. Bar, 100 mm. *p < 0.05; **p < 0.01; ***p < 0.001.
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Discussion

HCC remains a dominating global healthcare challenge (24).

Elements within the immune system exert an essential role in fighting

tumor cells (25). Although such elements make the determined

efforts into tumor elimination, tumor cells skillfully evade the

immune system’s monitoring process via employing a variety of

immune escape mechanisms, especially immunosuppression (26).

Immune checkpoint inhibitors are emerging as a potent therapeutic

option. Nonetheless, regulating the immune system with immune

checkpoint inhibitors still faces serious immunogenic side effects and

limited response (8, 27). Hence, the development of strategies to

stimulate anti-tumor immunity may bring novel perspectives for

HCC therapy.
Frontiers in Immunology 09
Both in TCGA-LIHC and our cohorts, LRPPRC exhibited the

frequent upregulation in HCC tumors, which was in relation to

advanced stage as well as poor prognostic outcomes, consistent with

previous findings (15, 16). Both in vitro and murine models,

LRPPRC suppression was capable of attenuating malignant

behaviors of HCC cells. Our evidence proposed LRPPRC as a

possible therapeutic target against HCC. However, as an m6A

modification reader, the role of LRPPRC in modulating m6A

modification remains indistinct.

PD-L1 is a main co-inhibitory immune checkpoint and the

PD1/PD-L1 signaling is capable of mitigating the killing role of

cytotoxic T cells within the tumor microenvironment, thus

contributing to tumor immune evasion (28, 29). Hence, further

research on the regulatory mechanisms of PD-L1 in HCC is
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FIGURE 4

Leucine rich pentatricopeptide repeat containing (LRPPRC) exhibits a negative correlation to anti-tumor immunity and immune infiltration in
hepatocellular carcinoma (HCC). (A–J) Representative immunohistochemical staining photographs and quantification results of (A, B) PD-L1, (C, D)
CD8, (E, F) CD4, (G, H) CXCL9, (I, J) CXCL10 in 30 paired HCC, and normal tissues. (K–O) Scatter plots illustrating the relationships of LRPPRC with
(K) PD-L1, (L) CD8, (M) CD4, (N) CXCL9, and (O) CXCL10. **p < 0.01; ***p < 0.001.
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FIGURE 5

Leucine rich pentatricopeptide repeat containing (LRPPRC) elevates m6A modification of PD-L1 mRNA in hepatocellular carcinoma (HCC) cells. (A, B)
the overall m6A modification in HepG2 and Hep3B cells with LRPPRC deficiency. (C, D) PD-L1 transcript level in LRPPRC-knockout HCC cells
following 3-DAA exposure. (E, F) RIP-qPCR for the evaluation of the interactions of LRPPRC with PD-L1 mRNA in HCC cells with LRPPRC deficiency.
(G, H) The relative m6A level in PD-L1 mRNA in LRPPRC-knockout HCC cells. (I, J) PD-L1 transcript level in LRPPRC-deficient HCC cells following
actinomycin D administration. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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required. This work demonstrated that LRPPRC upregulated PD-

L1 mRNA in HCC with an m6A-independent manner. In addition,

both in HCC patients and murine models, LRPPRC exhibited a

positive interaction with PD-L1, with negative correlations to CD8

+, and CD4+ T-cell infiltrations and chemokines CXCL9, and

CXCL10, indicating the possible role of LRPPRC in modulating
Frontiers in Immunology 11
anti-tumor immunity and immune infiltration. The m6A

modification of PD-L1 have been reported. For instance,

METTL3 posttranscriptionally upregulates PD-L1 expression in

an m6A-IGF2BP3–mediated manner for enhancing stabilization

of PD-L1 mRNA in breast carcinoma (30). In bladder carcinoma,

JNK pathway facilitates immune evasion through upregulating
frontiersin.or
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FIGURE 6

Leucine rich pentatricopeptide repeat containing (LRPPRC) upregulates PD-L1 expression in hepatocellular carcinoma (HCC) cells with an m6A-
independent manner. (A, B) Immunoblotting of PD-L1 level in HCC tumors and control specimens. (C, D) Transcript level of PD-L1 in LRPPRC-
knockout HepG2 and Hep3B cells. (E–G) PD-L1 protein level in HCC cells with LRPPRC loss. (H–K) Representative immunofluorescent staining
photographs and quantification data of PD-L1 in LRPPRC-knockout HCC cell lines. Bar, 10 mm. *p < 0.05; **p < 0.01; ***p < 0.001.
g
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METTL3-independnet m6A modification of PD-L1 (31). Tumor-

intrinsic ALKBH5 attenuates the expansion and cytotoxicity of T

cells through maintaining PD-L1 expression with YTHDF2-inde

pendnet m6A modification in intrahepatic cholangiocarcinoma

(32). ALKBH5 is capable of facilitating the recruitment of PD-L1

+ macrophages as well as accelerating HCC growth and metastases

(33). In murine models, YTHDF1 deficiency can enhance antigen-

specific CD8+ T-cell anti-tumor response as well as improve the

therapeutic efficacy of anti–PD-L1 antibody (34). Our work
Frontiers in Immunology 12
proposed a novel mechanism of LRPPRC in mediating m6A

modification of PD-L1 mRNA during HCC, which might further

the present molecular understanding of immunosuppression and

offer more effective immunotherapeutic regimens.

Altogether, our work on LRPPRC-mediated m6A modification

of PD-L1 mRNA and anti-tumor immunity offered a new

mechanism for m6A regulator-mediated immunosuppression in

HCC. Thus, LRPPRC might possess a possible application as a

new therapeutic target in combined with immunotherapy.
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FIGURE 7

Leucine rich pentatricopeptide repeat containing (LRPPRC) suppression mitigates tumor growth in hepatocellular carcinoma (HCC). (A)
Representative photographs of BALB/c nude mice injecting 2 × 105 HepG2 cells with LRPPRC knockout or not. (B) Representative photographs of
tumors from the indicated BALB/c nude mice. (C, D) Tumor weight and tumor growth curves. (E, F) Representative photographs and quantified data
of immunohistochemical staining of Ki-67 in tumors. Bar, 50 mm. **p < 0.01; ****p < 0.0001.
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Conclusion

Collectively, this work uncovered the m6A modification role of

LRPPRC in PD-L1 mRNA stabilization in HCC cells and broadened
Frontiers in Immunology
 13
the knowledge of a novel posttranscriptional regulation mechanism

of PD-L1 expression and the functional significance of LRPPRC in

anti-tumor immunity. This may have a possible implication for a

novel and effective treatment option in HCC immunotherapy.
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FIGURE 8

Leucine rich pentatricopeptide repeat containing (LRPPRC) loss improves anti-tumor immunity and immune infiltration in vivo. (A–C)
Immunoblotting of LRPPRC and PD-L1 expression in tumors from BALB/c nude mice injected with LRPPRC-knockout or not 2 × 105 HepG2 cells.
(D) Representative immunohistochemical staining photographs of LRPPRC, PD-L1, CD8, CD4, CXCL9, and CXCL10 in tumor specimens. Bar, 50 mm.
(E–J) Quantified data of (E) LRPPRC, (F) PD-L1, (G) CD8, (H) CD4, (I) CXCL9, and (J) CXCL10 in tumors in accordance with immunohistochemical
staining. *p < 0.05; **p < 0.01; ***p < 0.001.
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