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in anti-tumor immunity
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The small nucleolar RNA host genes (SNHGs) are a group of genes that can be

transcript into long non-coding RNA SNHG (lncSNHG) and further processed

into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well

established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs

regulate the immune cell behavior and function to mediate anti-tumor immunity

remains further illustrated. Certain immune cell types carry out distinct roles to

participate in each step of tumorigenesis. It is particularly important to

understand how lncSNHGs and snoRNAs regulate the immune cell function to

manipulate anti-tumor immunity. Here, we discuss the expression, mechanism

of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating

different types of immune cells that are closely related to anti-tumor immunity.

By uncovering the changes and roles of lncSNHGs and snoRNAs in different

immune cells, we aim to provide a better understanding of how the transcripts of

SNHGs participate in tumorigenesis from an immune perspective.
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Introduction

Non-coding RNAs (ncRNAs) regulate gene expression at the transcriptional, RNA

processing, and translation levels (1). Small nucleolar RNAs (snoRNAs) are a class of

ncRNAs ranging from 60 to 300 nt in length and are closely associated with the splicing and

processing of ribosomal RNA (rRNA) precursors, post-transcriptional modification

processes, and ribosome biosynthesis (2). Most snoRNAs are encoded in introns of

protein-coding and non-protein-coding genes, called Small Nucleolar RNA Host Genes

(SNHGs). The primary SNHGs RNA transcripts, which include all exons and introns and

their snoRNAs, are cleaved into different parts: introns are processed into snoRNAs and

mainly function in the nucleolus, exons are re-spliced and function in the cytoplasm, and
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the full-length transcript, including exons, is retained and functions

as Long Non-Coding RNA SNHGs (lncSNHGs) (3–6).

The dysregulation of snoRNAs and lncSNHGs in a variety of

cancers has attracted increasing interest, as they affect tumor

development through multiple mechanisms and can be linked to

clinic pathology. From a tumorigenesis perspective, the risk of

developing tumors increases due to the mutations in snoRNAs

and upregulation of lncSNHGs expression (7–9). From the

perspective of tumor development, snoRNAs and lncSNHGs are

involved in regulating the malignant biological behavior of tumor

cells such as Epithelial-Mesenchymal Transition (EMT), cell cycle

progression, proliferation, invasion, and evasion of apoptosis (10–

14). From a clinicopathological point of view, snoRNA and its

derived fragments as well as lncSNHG are associated with clinical

outcomes in patients (15–17).

The immune system is also closely involved in tumor

development. Studies have shown that snoRNAs and their host

genes play a crucial role in anti-tumor immunity. As the

understanding of the involvement of snoRNAs and their host

genes in the immune regulation of tumors continues to improve,

the use of snoRNAs and lncSNHGs in immunodiagnosis, especially

in the prognosis of clinical patients, and in immunotherapy is

becoming widespread (18–21).

In this paper, we review the expression and key roles of snoRNA

and lncSNHG in distinct immune cell types. By summarizing the

up-to-date research on snoRNA and lncSNHG in immune cells and

immune modulation, we further discuss the roles of these two

ncRNAs in anti-tumor immunity. In addition, we have further

reviewed the clinical implications of snoRNAs and lncSNHGs on

patient prognosis and discussed the potential clinical applications of

snoRNA and lncSNHG as therapeutic and diagnostic targets in

patients with cancer.
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SNHG transcripts: snoRNA
and lncSNHG
SNHG encodes for the production of full-length transcripts,

including exons and introns, which play a vital role in tumor

proliferation, migration, and infiltration (5). The transcripts

containing all exons and introns of SNHGs without coding

potentials are referred to as lncSNHG, which is transported into

cytoplasm and regulates multiple bioprocesses. The nuclear

transcripts of SNHG, mostly the introns, were further processed

into smaller molecules with a length between 65 to 300 nt, which is

defined as snoRNA (Figure 1).

LncSNHG is an emerging class of regulators of gene

transcription that plays key roles in the development and

progression of cancer, acting as oncogenes or tumor inhibitors

(22, 23). It is reported that lncSNHGs are overexpressed in human

tumors and can induce proliferation, invasion, and metastasis (24).

SNHG1, SNHG3, SNHG4, SNHG6, SNHG7, SNHG12, SNHG14,

SNHG16, SNHG17, SNHG20 and SNHG22 act as oncogenes to

promote tumor growth, while SNHG9 acts as a tumor suppressor

gene. In addition, SNHG5 and SNHG15 play a dual role (6).

LncSNHGs participate in cancer regulation mainly through five

molecular mechanisms of action (Figure 2A): 1) affecting DNA

methylation, 2) interacting with transcription factors, 3) acting as

competing endogenous RNAs (ceRNAs), 4) directly binding to

mRNAs and inhibiting translation, 5) interacting with proteins to

prevent protein ubiquitination (25). The mechanisms of lncSNHGs

rely on their cellular localization, while the nuclear localization of

lncSNHGs mainly influences DNA methylation and transcription,

and the cytoplasm localization mainly influences the bioactivity of

mRNA and protein (25).
FIGURE 1

The scheme of relationship between SNHG, snoRNA and lncSNHG. The majority of small nucleolar RNA host genes (SNHGs) are protein-coding and
non-protein-coding Genes. SNHGs are transcript into the primary SNHG transcripts at nucleus. The primary SNHG transcripts containing all exons
and introns with their snoRNAs are cut into different exons and introns. Exons are then re-spliced and translocated into cytoplasm to function as
protein coding mRNA or non-coding RNA (lncSHNG). Intronic sequences are further processed into mature snoRNA and then assembled into small
nucleolar ribonucleoprotein particles (snoRNPs), which is followed by localization to Cajal bodies and nucleolus. Exon, mRNA or lncRNA exons;
intron, mRNA introns that contains the intronic snoRNA.
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SnoRNAs are predominantly released from the intronic

sequences of SNHGs by splicing, while a minority of snoRNAs

are derived from intergenic regions (26). A growing number of

research reported that snoRNA originate from the introns of

ribosomal protein-coding genes such as the C/D box snoRNA

family arising from RPL10(U70) (27), RP113A(U32 toU35),

RPL17A(U36), RPS8(U38 to U40) (28), and from other protein-

coding genes such as EEF2(U37) (28), NSD2(ACA11) (29). To date,

there are 232 SNHGs found in the human genome that host the

snoRNAs, among which 15 of these host genes are non-protein

coding (30). It was reported that a specific lncSNHG is usually

positively correlated with the corresponding snoRNA (31), the

correlation between lncSNHGs and snoRNA is summarized

in Table 1.

According to the presence of conserved sequences(“box”),

snoRNAs are generally classified into three classes, namely C/D

box snoRNA (SNORD), H/ACA box snoRNA (SNORA), and

scaRNA (SCANRA) (48). SNORDs contain a box C (motif

RUGAUGA) and a box D (motif CDGA) and a less conserved

box C’ and box D’ (49). The SNORDs form a closed loop and bind

to fibrillarin, NOP56 (NOL5A), NOP5/NOP58, and NHP2L1 to

form small nucleolar ribonucleoparticles (snoRNPs) (20, 27, 50).

The majority of SNORDs carry specific sequences which are

complementary to other RNAs and thus can guide 2-O’-

methylation (box C/D) to the targeted RNA (51). The SNORAs

contain the H box (motif ANANNA, N represents any NT) and the

ACA box (trinucleotide ACA). The box H/ACA snoRNAs form two
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stem loops and bind with dyskerin, GAR1 (NOLA1), NHP2

(NOLA2), and NOP10 (NOLA3) to form stable snoRNPs (50).

SNORAs guide pseudouridylation (box H/ACA) to the targeted

RNAs by the sequences that are complementary to other RNAs thus

regulating rRNA and small nuclear RNAs (snRNA) modification

(51). SNORDs with a long UG repeat and SNORAs with an

additional CAB box(motif UGAG) are classified into the third

class of snoRNAs, which is the Cajal body–specific RNAs

(scaRNAs) and involved in the 2’-O-ribose methylation and

pseudouridylation of small nuclear RNAs of the spliceosome (52,

53). In addition, there is also a subclass of C/D box snoRNA that has

no target RNA and does not recognize specific sequences in a base-

paired manner, which is known as orphan snoRNA and plays an

important role in a variety of physiological and pathological

processes (54, 55). Although these orphan snoRNAs seem not to

match any other RNAs, they can still function to carry out

regulatory functions via pre-mRNA splicing, regulation of

polyadenylation site (PAS) recognition, disturbing ribosome and

snRNA formation, serving as chromatin-associated RNAs, and

processing to miRNAs or Piwi-interacting RNAs (piRNAs) (49, 56).

SnoRNAs exert their function via canonical and non-canonical

mechanisms (Figure 2B). The canonical mechanism of snoRNA is

mainly involved to guide the chemical modification of ribosomal

RNAs, transfer RNAs, and small nuclear RNAs, which play critical

roles in ribosome biogenesis and post-transcriptional modifications

of RNAs (57). Beyond the canonical functions, snoRNAs can also

function via non-canonical mechanisms, which include: 1)
A

B

FIGURE 2

Scheme of the mechanism of action of lncSNHG and snoRNA. (A) The 5 most studied mechanism of lncSNHGs to exert their regulatory functions.
Ub, ubiquitination; Me, methyl. (B) The canonical and non-canonical mechanisms underlying snoRNA-mediated bioactivities. Green boxes show the
canonical mechanisms of snoRNA to regulate the biosynthesis and modification of rRNA, tRNA, and snRNA. The orange boxes show the non-
canonical mechanisms of snoRNA. Ac, acetyl; Me, methyl; Y, pseudouridylic acid.
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snoRNA-guided rRNA acetylation, 2) snoRNA-guided tRNA

methylation, 3) regulation of piRNA biogenesis, 4) regulation of

mRNA abundance, 5) snoRNA-derived miRNA, 6) regulation of

alternative splicing, 7) chromatin compaction and accessibility (57).

In the following section, we will discuss how snoRNA exerts its

functions to regulate the immune cell function, thus influencing

anti-tumor immunity.
snoRNA-mediated immune
cell function to participate
in tumor immunity

As a pivotal non-coding RNA type, snoRNA was found to play

key roles in tumorigenesis and tumor immunity (57, 58).

Dysregulation of snoRNA expression was found in cancer

patients to exacerbate tumorigenesis. The comprehensive

functions of snoRNAs were reviewed elsewhere (59). It is well

established that snoRNAs can be oncogenic and tumor suppressive,

the function relies on their role in different oncogenic pathways.

SNORD126 is reported to be up-regulated and activates the PI3K-

AKT pathway to promote tumor growth (60), and SNORD50A and

SNORD50B function as tumor suppressors via repressing the

activity of K-Ras pathway (61). SnoRNAs are also found to bind

with the rRNA complex to regulate cancer-related gene expression.

SNORA18L5 was reported to change the localization of RPL5 and

RPL11 to regulate p53-dependent tumorigenesis (62). It was

reported that substantial downregulation or upregulation of

snoRNAs in meningiomas, and the differentially expressed

snoRNA are involved in the control of cell survival by inducing

or sensitizing cells to apoptosis (63–65). As key players in
Frontiers in Immunology 04
tumorigenesis and tumor microenvironment (TME), snoRNAs

also mediate the functions of many types of immune cells. Here,

we discuss the roles of snoRNAs in regulating the behaviors and

functions of different immune cells (Figure 3).
T cell

SnoRNA has been found to play an important role in T

lymphocyte activation, proliferation, development, and gene

expression. Activation of the T cell receptor (TCR) causes

massive mRNA expression and ribosome biogenesis that drives

metabolic reprogramming, rapid proliferation and differentiation to

generate effector populations. Galloway et al. reported that TCR

activation results in the m7G cap methyltransferase, RNMT,

upregulation to induce snoRNA and rRNA production to regulate

ribosome biogenesis and gene translation, thereby regulating CD4+

T cell activation and proliferation (66). SnoRNA U50 is reduced in

lymphocytes upon PHA stimulation, and its role in cell

proliferation and rRNA transcription is mediated by the

methylation of C2848 in 28S rRNA (67) lncSNHG2(GAS5) blocks

the T-cell cycle, which is caused by snoRNA GAS5 mediated

glucocorticoid receptor transcriptional activity via its decoy RNA

“ glucocorticoid response element “ and mTOR activity (68).

SNORA12 expression is downregulated in T cells from systemic

lupus erythematosus (SLE) patients and regulates the expression of

CD69, HIST1H4K by promoting interferon production of T cells

(69). Zhong et al. showed that SnoRNA63 was increased and

derived into piRNA(piR30840) to inhibit Th2 T cell development

by downregulating IL-4 expression via sequence complementarity

binding to pre-mRNA intron and mRNA decay (70). Beside the

function in the T cell itself, SNORD116 and SNHG10 are found to
TABLE 1 SnoRNA in relation to SNHG.

SNHG snoRNA

SNHG1 SNORD22 (32) SNORD25, SNORD26, SNORD27, SNORD28, SNORD29, SNORD30, SNORD31 (3)

SNHG2(GAS5) U44, U47, U74, U75, U76, U77, U78, U79, U80, U81 (33)

SNHG3 SNORD17 (34)

SNHG4 SNORA74A, SNORA74 (35)

SNHG5 SNORD 50, SNORD50′ (36)

SNHG6 U87 SNORD (37), U88 small Cajal bodies (38)

SNHG7 SNORA17 and SNORA43 (39)

SNHG8 SNORA24 (40)

SNHG11 SNORA71E, SNORA39 (41)

SNHG12 SNORA44, SNORA61, SNORA16A, and SNORD99 (42)

SNHG14 SNORD116 (43)

SNHG15 SNORA 9 (44)

SNHG16 snoRD1A, snoRD1B, and snoRD1C (45)

SNHG17 SNORA71A (46)

SNHG20 SCARNA16 (47)
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be secreted by T cells in the CD47+ extracellular vesicles and

therefore participate in cell communications between T cells

(71, 72).

On the other hand, several lncSNHGs are reported to be

upregulated during T cell activation, such as lncSNHG7,

lncSNHG2 function as ceRNA to regulate T cell proliferation and

activation (73, 74). Since these lncSNHGs are reported to be

specifically correlated with the expression of certain snoRNA(s)

(see Table 1), it is reasonable to suspect that the corresponding

snoRNA(s) may play pivotal roles in regulating T cell function.

However, there is rare research focused on the expression and

regulation of snoRNA in T cell function, which could be an

important issue to be addressed in the future. In addition, Chow

et al. report that snoRNA-derived RNAs are significantly correlated

with CD8+ T cell infiltration and cytolytic T cell activity (75),

implying another critical role of snoRNAs in regulating T cell

function via its downstream products.

At present, the expression of snoRNA in T cells in different

physiological or pathological states, as well as in different T cell

subtypes, is still unclear, especially the expression of snoRNA in

tumor-infiltrated T cells and in malfunctioning T cells and their

mechanisms of action are yet to be understood.
B cell

SnoRNA plays important roles in the functional regulation of B

cells. Compared to Germinal center, naïve, marginal zone and

memory B-cells, peripheral blood B cells express a distinct

snoRNA pattern with reduced SNORD116-1, SNORD116-23,

SNORD116-29, SNORD94, and SNORA36A expression (76),

indicating these snoRNAs may play a key role in B cell

maturation and function. SnoRNAs derived from the DLK-DIO3

locus(containing 41 snoRNAs) were reduced whereas the

expression of SNURF/SNRPN snoRNAs remained high in

different types of B-cell malignancies compared to healthy B-cells

(77). SNORA25 was reported to target 18S rRNA subunit (18S-801
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and 18S:U814) and mediate the pseudouridylation of these residues

(78). B cells are capable of secreting extracellular RNA, which is

closely related to snoRNA content. In addition, Box C/D snoRNAs,

SNORD123 and SNORD1a, were reported to be upregulated in B

cells of aged mice and the implicated pathways including EIF2,

mTOR signaling, p53, Paxillin, and Tec kinase signaling pathways,

and cell cycle checkpoint, revealing the importance of snoRNA in B

cell functions (79). In a study on chronic B-cell lymphocytic

leukemia (CLL), 20 signature snoRNAs including SNORA80,

SNORD1A, SNORD35B, SNORD71, SNORD116-11 and

SNORD116-25 were found to be dysregulated in response to

proliferation in CLL (80), confirming that snoRNAs play a crucial

role in the functional regulation of B cells, and more importantly,

function as biomarkers to discriminate between normal B-cells and

CLL cases. To date, the vast majority of research focused on the

expression profile of snoRNAs in B cells in both physiological and

pathological conditions, although the expression pattern and

clinical relevance of snoRNA in B cells are reported, the detailed

mechanism of snoRNA in regulating B cell function and its immune

modulating function remain not fully understood.
Dendritic cell

As a professional antigen-presenting cell, DC is playing a

pivotal role in tumor immunity. Rahmatpanah et al. found an

enhanced DC activation state in healthy-aged individuals compared

to young individuals. In these DCs, SNORA and SNORD were

substantially upregulated from senescence onwards (81). Driedonks

et al. found that immune-activating or inhibiting stimuli applied to

primary DCs increased the levels of SNORD65 and SNORD68

snoRNA within extracellular vesicles (EVs). These findings

demonstrated that DC-derived snoRNAs contribute to the

communication of genetic information through EVs (82). In a

melanoma model, snoRNA derived nuclear RNA3 (sdnRNA3)

was found to be induced in DCs and may function to regulate

iNOS expression via histone modification H3K27me3 at Nos2 gene
FIGURE 3

SnoRNA regulates varieties of immune cells (e.g. T lymphocytes, B lymphocytes, dendritic cell, macrophage) as well as cytokine like IL-10 to
influence tumorigenesis and tumor immunity. Red arrow, upregulation, black arrow, down regulation.
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promoter (83). At present, it is not clear whether environmental

factors imposed on cells cause specific changes in a wide range of

EV-associated snoRNAs. SnoRNA’s functional properties for EV in

cellular communication and as a potential EV-RNA-based indicator

of the immune status of EV-producing cells remain to be

further investigated.
Macrophage

SnoRNAs play important roles in macrophage polarization,

activation, and intercellular communication. Ma et al. applied

high-throughput sequencing and revealed that 121 snoRNAs

were differentia l ly expressed during M1 macrophage

polarization and whereas 16 snoRNAs were significantly changed

during M2 macrophage polarization. Particularly, snoRNA

ENSMUST00000158683.2 was shown to inhibit the expression of

TNF-a in macrophages. These findings suggest that snoRNA may

be involved in the regulation of macrophage polarization and

cytokine production (84). SnoRNAs affect tumorigenesis by

regulating macrophage function through epigenetic modification

of genes. Shi et al. identified a new sdnRNA, sdnRNA3, derived

from snoRNA in M1 and M2 tumor-associated macrophages

(TAMs). By recruiting the repressive chromatin-remodeling

regulator Mi-2 and the repressive histone modification

H3K27me3 at Nos2 gene promoter, sdnRNA3 represses the

transcription and expression of iNOS by repressing chromatin

accessibility at the promoter of iNOS gene (83).Since TAMs are

well-established to suppress anti-tumor immunity, these findings

suggest nicely that snoRNA and sdnRNA3 could play pivotal roles

in the formation of an immunosuppressive microenvironment.

Although Chen et al. reported that lncSNHG2(GAS5) regulates

apoptosis of macrophages after oxLDL treatment (85), it is unclear

whether the corresponding snoRNAs have the same function

in macrophages.

SnoRNA was also found to regulate the function of

macrophages via vesicle-mediated intercellular communication.

Rimer et al. reported that Rpl13a snoRNAs U32a (SNORD32a),

U33 (SNORD33), U34 (SNORD34), and U35a (SNORD35a) were

secreted by cultured mice and human macrophages upon

activation. These snoRNAs were co-segregated with EVs and were

taken up by recipient cells and direct new 2’-O-methylation on the

18S and 28S rRNAs in the recipient cell (86). These findings support

a previously unappreciated link between inflammation and

snoRNA secretion and reveal a potential role for secreted

snoRNAs in intercellular communication. In addition, H/ACA

small nucleolar ribonucleic acid protein particles (snRNPs) were

found to be markedly expressed and regulate the growth arrest and

differentiation of U937, a macrophage cell line, via down-regulation

of NHP2 (87), suggesting a key role of snoRNA in the cell fate

determination of macrophage.

Beside the immune cells, snoRNAs also act as a key player in

cancer immunity via their regulation of immune checkpoint

molecules. Programmed death (PD)-1 and Cytotoxic T-

lymphocyte antigen 4 (CTLA-4) are immune checkpoint

molecules that negatively regulate T-cell immune function (88).
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Monoclonal antibodies targeting these molecules have been

approved by the US FDA to treat many types of cancer, therefore,

it is of particular importance to understand the roles and

mechanisms of snoRNAs in regulating PD-1/PD-L1 and CTLA-4

function. Xie et al. reported that different snoRNA signatures were

highly associated with CTLA-4 and PD-1 expression in the high-

risk group. In addition, patients with high snoRNA expression also

display higher sensitivity to CTLA-4 and PD-1 inhibitors (89),

suggesting that snoRNA could be a predictive molecule that assists

in the treatment of patients with hepatocellular carcinoma.

In addition, snoRNAs are reported to be promising therapeutic

and diagnostic targets for cancer. Zhu et al. identified nine

snoRNAs signature (SNORA11B, SNORA36C, SNORA58,

SNORA70J, SNORA75B, SNORD105B, SNORD126, SNORD3C

and SNORD89) in ovarian cancer and reported these snoRNAs

may serve as prognostic and therapeutic targets (90). Another

snoRNA signature containing six snoRNAs(SNORA2,

SNORA59B, SNORA70B, SNORD12B, SNORD93 and

SNORD116-2) was reported to serve as a novel non-invasive

biomarker for diagnosis and prognosis prediction of renal clear

cell carcinoma (91). Interestingly, Cai et al. found 7 snoRNAs

(SNORD59A, SNORD63B, SNORD100, SNORD99, SNORD63,

SNORD12C, SNORD19) were reduced in tumors and were

significantly increased in immune cells, these snoRNAs were

identified as tumor immune infiltration-associated snoRNAs and

can predict prognosis and immune landscape in patients with colon

cancer (18). In addition to the signature of snoRNAs, single plasma

snoRNAs such as SNORA71A, SNORD33 are also reported to serve

as prognostic and diagnostic biomarkers for cancer (92, 93).

Extracellular vesicles containing SNORA71E and SNORD115-6

can represent biomarkers for the prediction of the response of

breast cancer patients to neoadjuvant chemotherapy (94). All

mentioned studies have proposed snoRNA(s) as valuable

predictive or diagnostic biomarkers, whether there are other

snoRNAs in the liquid biopsy can serve as biomarkers for cancer

diagnosis and prediction of anti-cancer immunity remains

further investigation.
LncSNHG-mediated anti-tumor
immune responses

LncSNHG regulates immune cell function to participate in anti-

tumor immunity. As shown in Figure 4, lncSNHG plays a pivotal

role in anti-tumor immunity via its regulation in immune cells,

such as regulatory T cells, macrophages, natural killer(NK) cells,

and bone marrow-derived suppressor cells. LncSNHG regulates the

direction of immune cell differentiation, the ability to secrete

cytokines, and the proliferation, apoptosis, infiltration and

interaction with tumor cells in the tumor microenvironment. In

addition, lncSNHG can regulate the expression of immune

checkpoints such as PD-L1, CD73 and cytokines such as TGF-b
and IL-6 to participate in anti-tumor immunity. In the following

section, we discuss the advance of lncSNHG in different

immune cells.
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T cells

Regulatory T (Treg) cells are CD4+CD25+ T cells and

specifically express Foxp3 protein (95). Studies have shown that

lncSNHGs can promote the differentiation of regulatory T cells. Pei

et al. found that lncSNHG1 was induced in the CD4+ tumor

infiltrating lymphocyte(TIL), thereby sponging miR-448 to

increase the expression of indoleamine 2,3-dioxygenase (IDO)

and Foxp3 to regulate the differentiation of Treg cells and affect

the immune escape of breast cancer (96). LncSNHG16 is reported to

be secreted into tumor-derived exosomes and be uptaken by gd1 T

cells, which derepress the targeted SMAD5 by sponging miR-16-5p

and its downstream CD73 expression to regulate gd1 T cell

proliferates into suppressive Treg population (97). To date,

research on the expression and regulatory function of lncSNHGs

in T cells is limited, it remains an open question that what is the

expression profile of lncSNHGs in Tregs and other T cells, and what

effect and mechanism do these lncSNHGs have to regulate the anti-

tumor immunity of these T cells.
Macrophage

Tumor-associated macrophages (TAMs) are one of the major

infiltrating cells in the TME, where M1-type TAMs have tumor-

killing effects while M2-type macrophages promote tumor

progression (98). LncSNHG1 was reported to elevate the

phosphorylation of STAT6 and therefore results in IL-4/IL-13

expression to promote M2 macrophage polarization, therefore,

promote tumor development (99). Hu et al. report that

lncSNHG1 can physically bind to high-mobility group box 1

(HMGB1), thus driving the inflammatory cytokines expression

and macrophage activation (100). Qian et al. found that

lncSNHG12 recruited NF-kB1 and promoted IL-6R transcription,

and upregulation of SNHG12 promoted crosstalk between tumor
Frontiers in Immunology 07
cells and macrophages, eventually promoting the immune escape of

breast cancer (101). LncSNHG16 was also shown to sponge miR-

17-5p and elevate NF-kB signaling in promoting proliferation and

inflammatory response in macrophages (102). LncSNHG15 can

exert its function to prevent proinflammatory cytokine production,

this is mediated by its direct interference with K63-linked

ubiquitination of TNF-receptor-associated factor 2 (TRAF2) and

inhibition of MAPK and NF-kB signaling pathways (103).

LncSNHG2(GAS5) was shown to regulate macrophage apoptosis

via activation of P53, Caspase 3, Caspase 7, and Caspase 9, however,

the underlying mechanism remains unclear (85). In summary,

lncSNHGs seem to affect almost all bioprocesses of macrophage,

including proliferation, differentiation, apoptosis, pro-

inflammatory response, and interaction with tumor cells.

There are several studies report that lncSNHGs are also

involved in the cytokine release of macrophages. Zhang et al.

showed that lncSNHG14 can promote misshapen-like kinase 1

(MINK1) expression through a ceRNA mechanism, ultimately

increasing pro-inflammatory cytokine expression in rheumatoid

arthritis (104).In LPS induced acute lung injury, lncSNHG14 was

reported to be induced and mediate Wnt1 inducible signaling

pathway protein 1 (WISP1) expression by sponging miR-34c-3p,

thus promoting proinflammatory proteins IL-18, IL-1b, TNF-a and

IL-6 (105).

Exosomal lncSNHG16 has been shown to directly target miR-

140-5p and regulate the expression of TNF-a, IL-6, and IL-1b in

macrophage, silencing lncSNHG16 inhibits macrophage

proliferation and inflammation in combined Mycobacterium

avium infections (106). Although this study proposes lncSNHG16

as a diagnostic biomarker for Mycobacterium tuberculosis-

infection, the underlying mechanism needs to be investigated. To

date, the existing research of lncSNHGs in macrophages has

focused on the mechanism of ceRNA and protein binding and

modification, whether other mechanisms like DNA methylation,

mRNA splicing, etc., of a specific lncSNHG are involved in the

functional regulation of macrophage remain further investigation.
FIGURE 4

LncRNA are able to regulate a variety of immune cells (e.g. Treg, macrophages, MDSC, NK cells), immune checkpoints (e.g. PD-L1, CD73) and
cytokines (e.g. TGF, IL-6) to influence tumor immunity. Red arrow, upregulation, black arrow, down regulation.
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Bone marrow-derived suppressor cells

MDSC are mainly derived from bone marrow progenitor cells,

and lncSNHG was found to play an important role in the regulation

of MDSC function. It was shown that lncSNHG6 may be involved

in regulating the differentiation of MDSCs by regulating the stability

of EZH2 through the protein ubiquitination degradation pathway,

but this study also showed that lncSNHG16 did not affect the

immunosuppressive function of MDSCs (107). Also, lncSNHG was

also found to be a key player in the infiltration of MDSCs. The

SNHG6-miR-30e-5p-CYSLTR1 network was identified to be

associated with prognosis in lung adenocarcinoma, where SNHG6

expression levels were negatively correlated with levels of

neutrophils, macrophages, and DCs infiltration (108).
Killer cells

LncSNHGs can promote apoptosis and suppress the function of

tumor-killer cells such as CD4+ T lymphocytes, CD8+ T lymphocytes,

and NK cells in tumor immunity. The apoptosis and infiltration of T

lymphocytes caused by up-regulation of lncSNHGs expression were

summarized in Table 2. Tumor cells promote PD-1/PD-L1 immune

checkpoint triggering through upregulation of lncSNHGs, which can

lead to apoptosis of CD4+ T cells (110), CD8+ T cells (111), and

reduced infiltration (113). Particularly, lncSNHG12 is reported to

reduce peripheral blood mononuclear cell proliferation and the ratio

of CD8+ T cells by human antigen R (HuR)/ubiquitin-specific protease

8 (USP8) axis (114). LncSNHGs can also function as communication

mediators between tumor cells and immune killer cells. The

communication is mainly mediated by the extracellular vesical that

cargo lncSNHGs. Huang et al. showed that lncSNHG10 secreted by

tumor cells can upregulate INHBC expression in NK cells, thus

suppressing the secretion of granzyme, perforin, and IFN-g from NK

cells by TGF-bactivation, and consequently diminishing the killing

effect of NK cell (115). LncSNHG7 is embedded in mesenchymal stem

cells (MSCs) derived exosome and affect the recipient cells via miR-

34a-5p/XBP1 axis (116). Cancer stem cells also secret lncSNHG16
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containing exosomes to influence other cells via lncSNHG16-TLR7

binding and MyD88/NF-kB/c-Myc activation. Since the exosomes

derived from MSC and other cells are easily uptaken by NK cells

and CD8+ T cells (117), it is reasonable to suspect that the exosomal

lncSNHGs can influence the killer cell function via exosome-mediated

intercellular communication.

Tumor-infiltrating immune cells can regulate tumor progression

and are important for the evaluation of clinical prognosis and

immunotherapy (118). LncSNHGs are associated with immune

infiltration in a variety of cancers and may be involved in cancer

progression by regulating the function of immune cells. Chen et al.

found that lncSNHG10 was increased and moderately associated with

the infiltration of neutrophils, gdT cells, and macrophages in PC. They

speculated that lncSNHG10 may inhibit the function of neutrophils

andmacrophages and promote the function of plasmacytoid dendritic

cells (pDC) andNK cells, thereby promoting cancer progression (119).

Li et al. also found that lncSNHG9 expression was negatively

correlated with the level of infiltration of T central memory (Tcm)

cells, and T helper cells in prostate cancer, and positively correlated

with the level of infiltration of pDC and NK CD56 bright cells (120).

In addition, Zhou et al. constructed six immune-related markers,

including lncSNHG3, for predicting prognosis and immune

infiltration in patients with hepatocellular carcinoma. They found

that lncSNHG3 positively correlated with Th2 and Follicular T helper

(Tfh) cells and negatively correlated with CD8+ T cells, Treg, and

Th17 cells, and could regulate tumor progression (121).

Beside direct regulating the function of killer cells, lncSNHGs also

function to regulate the expression and function of immune

checkpoint molecules to contribute in immune-escape. A number

of lncSNHGs have been reported to regulate the expression of PD-L1

via different mechanisms and pathways, which is summarized in

Table 2. It seems that the most investigated mechanism of lncSNHGs

on the immune checkpoint is via not only the ceRNAmechanism but

also via interacting with transcription factors, participating in protein

ubiquitination, and other molecular mechanisms. Zhou et al.

reported that lncSNHG4 is upregulated in colorectal cancer and

directly targets miR-144-3p to upregulate PD-L1 and ultimately

increase apoptosis of CD4+ T cells (110). Tian et al. showed that
TABLE 2 Effect of different lncSNHGs on PD-L1.

lncSNHGs Types of
cancer

Expression in
Cancer

Regulatory
site

PD-L1
expression Impact Ref.

LncSNHG15 Gastric cancer up miR-141 up (109)

LncSNHG4 Colorectal cancer up miR-144-3p up CD4+T cell apoptosis (110)

LncSNHG14
Diffuse large cell

lymphoma
up

miR-5590-3p/
ZEB1

up CD8 + T cell apoptosis (111)

LncSNHG14
Diffuse large cell

lymphoma
up miR-152-3p up Promoting TCL apoptosis (112)

LncSNHG1 Renal cell cancer up
miR-129-3p/

STAT3
up Inhibition of CD8+ T cell infiltration (113)

LncSNHG12 Breast cancer up NF-kB1/IL-6R up Inhibition of T-cell infiltration (101)

LncSNHG12
Non-small cell
lung cancer

up
HuR/PD-L1/

USP8
up

Inhibits PBMC, and CD8 T cells reduce TNF-a and IFN-g
levels and increase IL-10 and TGF-b levels

(114)
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tumor cells upregulate LncSNHG1 to promote STAT3-mediated PD-

L1 expression and thus promote immune escape in renal cell

carcinoma (113). As well, LncSNHG14 was reported to promote

the activation of ZEB1, thus trans-activating SNHG14 and promoting

the transcription of PD-L1 (111). LncSNHGs can also stabilize PD-L1

expression by participating in protein ubiquitination. lncSNHG12

binds to HuR and enhances the expression of PD-L1 with USP8,

which improves PD-L1 stability by preventing ubiquitin-dependent

degradation (114). CD73, an ectonucleotidase, is believed to be

another key immune checkpoint molecule. LncSNHG was also

shown to regulate the expression of CD73 in the TME, as Ni et al.

showed that lncSNHG16 was packed into exosomes and acted on

tumor-infiltrating lymphocytes (TILs) to upregulate the expression of

CD73 molecules (97).

Although many studies are focusing on tumor or TME-derived

lncSNHG on killer cell function, the expression and function of

lncSNHG in the killer cell itself are still unclear. Whether lncSNHG

regulates the function of T lymphocytes and NK cells, and the

underlying mechanisms remain to be further investigated.

Beside the immune cells, lncSNHGs are also involved in the

regulation of anti-tumor immune responses by regulating cytokine

expression via different mechanisms and pathways. TGF-b can

inhibit the anti-tumor effects of various immune cells in the TME

(122). Recent studies have demonstrated that lncSNHG10 activates

the TGF-b signaling pathway, leading to reduced secretion of

granzyme, perforin, and IFN-g from NK cells and diminished

killing effect, resulting in immune escape from colorectal cancer

(115). LncSNHGs have been shown to promote the EMT process by

TGF-b (123). lncSNHG1, lncSNHG3, and lncSNHG6 have also

been found to promote tumor proliferation migration and EMT

processes via TGF-b or IL-6 signal pathway (124–126). The

regulation of other tumor-associated cytokines by lncSNHGs and

the impact of this regulation on tumor cells or immune cell

production remains to be investigated.

The tight correlation of lncSNHGs with cancer also provides

promising medical opportunities by targeting certain lncSNHGs. A

systematic analysis based on 33 cancers revealed that lncSNHG3 and

lncSNHG12 are closely associated with the prognosis of patients with

multiple tumors (127). Patients with high lncSNHG7 and

lncSNHG12 levels were reported to be correlated with longer and

shorter overall survival (OS) and disease-free survival, respectively

(15). LncSNGH4, lncSNHG5, lncSNHG7, and lncSNHG12 were also

reported to be potential therapeutic targets and biomarkers for

human cancers (128–131). LncSNHG9 is strongly correlated with

poor immune infiltrations and progression-free survival, suggesting

its role as a promising prognostic biomarker in prostate cancer (120).

In addition, silencing the expression of lncSNHG15 could inhibit the

proliferation and the migration of breast cancer, thus negating

cisplatin resistance and providing novel therapeutic strategies for

breast cancer (132). Silencing lncSNHG12 can restrict tumor growth

and upregulate the ratio of CD8+ T cells, suggesting lncSNHG12

could be a potential therapeutic target (114). The circulating lncRNAs

could be a source of cancer liquid biopsy biomarkers, lncSNHG2

(GAS)in the plasma is suggested to be a diagnostic biomarker for

multiple myeloma (133). LncSNHG1 and lncSNHG18 in the plasma

are reported to serve as diagnostic biomarkers for hepatocellular
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carcinoma (134, 135). Meanwhile, lncSNHG15 is suggested as a

highly specific and sensitive biomarker for diagnosis of acute myeloid

leukemia (136). All these researches provide us a therapeutic and

diagnostic view of lncSNHGs for cancer treatment and diagnosis,

however, the clinical application of these molecules still needs

further verification.
Conclusions

snoRNA and lncSNHG are the transcripts derived from the

SNHGs with or without protein-coding potential, and these two

types of ncRNA are diversely expressed in a variety of tumor and

immune cells. Since cancer immunotherapy has emerged based on

the critical role of different types of immune cells, it is of particular

importance to understander how snoRNA and lncSNHGs are

changed and the detailed mechanisms underlying snoRNA and

lncSNHGs-mediated immune cell function in anti-tumor

immunity. In this review, we have summarized the expression of

snoRNAs and lncSNHGs in distinct immune cell types under

certain clinical circumstances. We reviewed the canonical and

noncanonical mechanism of snoRNA to regulate anti-tumor

immunity via influencing the function of immune cell function

and infiltration, cytokines production, and immune checkpoints

expression. Meantime, we have summarized the roles and

mechanisms of lncSNHGs in regulating the immune cell function

to suggest an ignored role of lncSNHGs in anti-tumor immunity. As

a number of studies have focused on the clinical relevance and their

potential application in cancer, the literature review strongly

supports that snoRNA and lncSNHGs may be promising

biomarkers and treatment targets for cancer immunotherapy.

However, there are several open questions remain to be addressed:
• What are the precise expression pattern and spatiotemporal

relationships of snoRNA and lncSNHGs with immune cell

status, and what is the role of a specific snoRNA and

lncSNHG play in the dysregulated immune cells that

exert anti-tumor immunity?

• What is the role of snoRNA and lncSNHG in adoptively

transferred immune cells, as well as in the immune cells

after immune checkpoint inhibitor treatment, and how

these molecules can be utilized to enhance the anti-tumor

function and reduce adverse events?

• The immune system itself and patients display diverse

individual variations, the expression pattern of snoRNA

and lncSNHGs may vary drastically from patient to patient,

or even from different disease stages of the same patient.

This is the biggest challenge of clinical application of

targeting snoRNA and lncSNHGs.
By answering these questions, we can therefore better optimize

the strategy of utilizing snoRNA and lncSNHGs as treatment or

diagnostic targets for cancer patients. In addition, profiling the

expression pattern of these ncRNAs in the liquid biopsy and the

tissues would help us to better personalize the diagnostic and

treatment strategies.
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